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Abstract

We study the crossover scaling behavior of the height-height correlation function in interface

depinning in random media. We analyze experimental data from a fracture experiment and simulate

an elastic line model with non-linear couplings and disorder. Both exhibit a crossover between

two different universality classes. For the experiment, we fit a functional form to the universal

crossover scaling function. For the model, we vary the system size and the strength of the non-

linear term, and describe the crossover between the two universality classes with a multiparameter

scaling function. Our method provides a general strategy to extract scaling properties in depinning

systems exhibiting crossover phenomena.
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I. INTRODUCTION

Driven interfaces in random media display intriguing scaling laws that are common to a

wide variety of phenomena, including fluid imbibition, crack front roughening, dislocation

hardening, superconducting flux lines, the equilibrium motion of piles of rice down an in-

cline, and domain wall motion in magnets [1, 2]. The scaling laws are commonly associated

with an underlying depinning critical point that has been elucidated by simple models for

interface dynamics. These models have been extensively studied using continuum simula-

tions [3–6], cellular automata [3, 7–11], and field-theoretic ε expansions [3, 12–17], providing

a sophisticated picture of the non-equilibrium phase transition and of the different univer-

sality classes.

The interface morphology is usually characterized by the roughness exponent ζ, resulting

from a coarse graining operation of the interface height function h(x). Namely, when we

change all length scales by a factor b, or x→ bx, then statistically h→ bζh – hence

h(x) ∼ b−ζh(bx). (1)

For many experiments and simulations, it is convenient to measure ζ by computing the

height-height correlation of the interface

C(r) = 〈(h(x+ r)− h(x))2〉 ∼ r2ζ (2)

(In Sec. II [18] we shall study a system with anomalous scaling, where the power law exhibited

by C(r) differs from the universal rescaling exponent ζ. Rather than rescaling h in such

systems, one studies the rescaling of the correlation function directly, C(r) ∼ b−2ζC(br) ∼

r2ζ . These systems are multi-affine [18]: different moments of h will scale with different

exponents.) Here ζ should be uniquely determined by which universality class the system

belongs to. However, in practice, the observed ζ varies (See table I) even for the same type

of system, such as paper wetting. Measuring a single exponent for these systems may prove

inadequate due to the presence of crossover behavior between universality classes. This is a

common source of confusion and controversy. If the crossover is gradual, an experiment or

simulation may measure an effective exponent ζeff intermediate between existing theories,

and appear to demand a new theoretical explanation (i.e., universality class).

In section II we analyze a straightforward experimental example of a crossover between
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Experiment ζ Reference

Fluid flow 0.73 [19]

0.81 [20]

0.65-0.91 [21]

Paper wetting 0.63 [22]

0.62-0.78 [23]

Bacteria growth 0.78 [24]

Burning fronts 0.71 [25]

TABLE I: Roughness Exponents in Experiments. Table reproduced from [1]. Notice that

there is a wide range of ζ reported, even for the same experimental system.

two forms of roughness in two-dimensional fracture. There we introduce the universal

crossover scaling functions, and provide a brief renormalization-group rationale.

In the remainder of the paper, we examine a more complex theoretical model. Crossovers,

long studied in ordinary critical phenomena, have now been studied for several interface

models [22], however theoretical studies have proven challenging in different ways [26]. For

thin film magnets, the experiments [27–29] observe a crossover between short-range and

mean-field universality classes as long-range dipolar fields are introduced, which can be

done by changing the thickness of the film. However, for models of that type, simulations

are challenging, both because of the long-range fields and the striking zig-zag morphologies

that emerge and compete with the avalanche behavior. Crossovers involving the transition

between depinning and sliding dynamics incorporating periodically correlated disorder [30]

have also been studied. It is not typical, however, to study and report the universal scaling

functions for these crossovers – a challenge we now shall address.

We shall analyze a numerically tractable, but analytically tricky crossover [26]: the tran-

sition between the linear, super-rough, quenched Edwards-Wilkinson model (qEW) and the

nonlinear quenched KPZ model (qKPZ) [2, 22]. In both experiment and theory, we focus

on the crossover behavior of the height-height correlation function.

3



10-2 10-1 100 101 102

r/r ∗

10-1

100

(r
/
r
∗
)−

2ζ
−
〈 (h

(x
+
r)
−
h
(x

))
2〉 /C

∗

Bead size 50
Bead size 200
Bead size 300
Scaling Fit

100 101 102 103

r

100

101

102

103

104

105
〈 (h

(x
+
r)
−
h
(x

))
2〉

FIG. 1: (Color online.) Crossover scaling in fracture roughness [18]. The inset shows

experimental data for the height-height correlation function C(r) = 〈(h(x + r) − h(x))2〉 of a 2D

fracture front, generated by pulling apart two pieces of PMMA that have been sand-blasted and

sintered together [18]. The three curves differ in the size of the sand-grain beads; the relation

between the bead size and the toughness fluctuations in the PMMA were not measured. The

dashed lines show two different power-law critical regimes, with C(r) ∼ r2ζ− and C(r) ∼ r2ζ+ ,

governing the short- and long-distance scaling behavior: the crossover between these regimes is

evident. Here our fit gives ζ− = 0.63 and ζ+ = 0.32, within the experimentalists suggested range

ζ− = 0.6 ± 0.05 and ζ+ = 0.35 ± 0.05. The main figure shows a scaling plot of r−2ζ−C(r) versus

r, with the curves shifted vertically and horizontally to best collapse. The thick black curve is a

one-parameter fit of the universal scaling function to the functional form in eqn (4).

II. CROSSOVER IN FRACTURE SURFACE CORRELATIONS

Just as the critical exponent ζ is universal (independent of microscopic details, within a

class of physical system), so too is the crossover behavior between universality classes. As a

simple example, Santucci et al. [18] have measured a relatively sharp crossover between two

regimes for two-dimensional fracture (inset in Fig. 1). Because the fracture is done slowly,
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we can view the crack front as self-organizing to the depinning transition for the crack front.

Well below a critical distance r∗, they observe a power law C(r) ∼ r2ζ− with an exponent

that was interpreted as originating from coalescing cracks [31] or with Larkin scaling [32].

Well above r∗ they observe a different power law C(r) ∼ r2ζ+ consistent with the depinning

transition of a line [32–34]. The crossover between these two universal power-law regimes

should be described by a universal crossover function [35], Cfrac:

C(r) ≈ C∗r−2ζ−Cfrac(r/r
∗) (3)

independent of microscopic details. At small arguments Cfrac(X) must go to a constant, and

at large arguments Cfrac(X) ∼ X2(ζ−−ζ+), so as to interpolate between the two power laws.

When analyzing different systems governed by the same universal crossover, one may plot

all the crossovers in a scaling plot, dividing the distances r on the ordinate by a system-

dependent factor r∗ for each curve, and dividing the magnitudes of the correlations on the

abscissa by a system dependent constant C∗ (see Fig. 1). The resulting data curves then

should align, giving the universal function Cfrac(r/r
∗).

To continue with this simple test case, we may fit the universal scaling function to an

approximate functional form. (Indeed, we find it convenient to do a joint fit of the functional

form, the exponents, and the constants r∗ and C∗.) To the extent that a guessed functional

form reproduces the universal one, it is equivalent: advanced field-theoretic methods for

calculating exact scaling functions aren’t needed to analyze future experiments. However,

judicious choices of functional forms with the correct limiting behavior can greatly facilitate

this process. The interpolation 1/(1 + X−2(ζ−−ζ+)) has the correct limits, but its rather

gradual crossover does not explain the data. We may heuristically add a parameter n which

at large values produces an abrupt crossover:

Cfrac(X) = (1 + (X2(ζ−−ζ+))−n)−1/n. (4)

This yields an excellent fit to the data with n ≈ 4 (see Fig. 1).

Why is the scaling form of eqn (3) expected? Briefly, the renormalization group studies

the behavior of systems under coarse-graining: describing the properties of a system at

length scales changed by a factor b. One gets universal power laws when the system becomes

invariant under repeated coarse-grainings: if C(r)→ b2ζC(r/b), under coarse-graining by a

factor b, then by coarse-graining n times such that r = bn one has C(r) ∝ b2ζn = r2ζ . In
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the case of a crossover, a fixed point is unstable to some direction λ in system space. Then

a small initial λ grows under rescaling by some factor b1/φ, so C(r, λ) → b2ζ−C(r/b, λb1/φ).

Now rescaling until bn = r, we have

C(r, λ)→ b2nζ−C(r/bn, λbn/φ) = r2ζ−C(1, λr1/φ) = r2ζ−Cfrac(λ
φr) (5)

where we choose Cfrac(X) = C(1, X1/φ). If the unstable direction flows to a new fixed

point with a different ζ+, that behavior will be reflected in the large-X dependence C(X) ∼

X2(ζ−−ζ+) [36, Section 4.2]. Note that different physical systems will have different overall

scales of height fluctuations, so we must have an overall scale C∗ for each experiment. (If the

experiments fall into a parameterized family, C∗ will depend smoothly on the parameters,

giving analytic corrections to scaling as discussed in Section IV.) Note, though, that the

rescaling factor r∗ for lengths, while it will still vary from one system to another, now

depends on λ with a power-law singularity, as r∗ = 1/λφ; within the renormalization group,

λmeasures how far along the unstable direction the original system was poised. In particular,

r∗ becomes large as λ→ 0, as in that limit the unstable fixed point remains in control.

The three experiments depicted in Fig. 1 started with different bead sizes. If all other

features of the experiment are held fixed, one may assume that the control parameter λ

depends in some smooth way on the bead size. Had we several values of bead size, we could

then extract values for the universal crossover exponent φ.

In the following sections, we shall perform a far more sophisticated version of this type

of analysis. By exhaustively varying system size and nonlinearity in an interface growth

model, we shall not only generate universal two-variable functional forms for the correlation

crossover scaling function, but will be able to make predictions about both the dependence

of the crossover length scale (corresponding to r∗) and the dependence of the correlation

amplitude (corresponding to C∗) on the control parameters. A rich, nuanced understanding

of the model behavior thus emerges.

III. LINE DEPINNING MODEL

The equations of an interface in a disordered environment may be written generally as

follows. Let the one-dimensional interface, h(x, t) be driven by a force H(t) through a
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disordered environment with a local quenched random force η(h(x), x):

∂h

∂t
= γ∇2h+ λ(∇h)2 + η(h(x), x)− k〈h〉x +H(t). (6)

Here γ is a surface tension, and λ is the coefficient of the KPZ term. The KPZ term controls

lateral spreading of the interface, breaks the statistical tilt symmetry, and changes the

universality class [1]. H(t) is a slowly-increasing external driving force. Our simulations are

done with a lattice automaton; the lattice naively might be thought to break this statistical

tilt symmetry, but simulations have long shown that the model faithfully describes both

universality classes [37].

The term −k〈h〉x is borrowed from simulations of magnets, where it represents the de-

magnetization force [38], approximating the effects of the long-range dipolar field cost of a

net advance in the front. This restoring force ‘self-organizes’ the depinning transition to

the fixed point, allowing simulations to access many metastable states, without having to

enforce an actual quasi-static field. It is known [39] that this restoring force does not pro-

duce loop corrections to the renormalization group equations and therefore does not change

the universality class of the problem. We have confirmed numerically that its effects are

small for our crossover and appear irrelevant. As the restoring force makes the simulation

vastly more efficient, we include this restoring force, but we do not include k in our scaling

analysis.

IV. ANALYSIS OF CROSSOVER SCALING

Using the automaton simulation employed in [40], we tune λ/γ from 0 to 5, and observe

how the resulting behavior changes. Figure 2 shows how the front morphology qualitatively

changes while we increase the nonlinear parameter λ. Notice that with increasing λ the

fronts between events are flatter than at small λ.

According to Equation 2, naively one would assume we could recover the exponent ζ

by defining an effective exponent ζeff to be half the local-log slope of the height-height

correlation functions (Figure 3). From other numerical studies, for qEW, we expect ζEW '

1.25 (Cellular automata [8, 41] models show ζEW = 1.25±0.01; continuous string models [42]

found ζEW ≈ 1.26.). For qKPZ, we expect ζKPZ = 0.63 [11, 43]. However, there are two

things about Figure 3 worth noting: (1) the slope-measure of ζ drifts between 0.63 and 1.0
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FIG. 2: (Color online.) Crossover of qKPZ to qEW Model. Fronts generated from 128×256

simulations with the nonlinear KPZ term coefficients set to (a) λ = 0, (b) λ = 0.001, (c) λ = 0.1,

(d) λ = 5. The random colors/shades represent the area between each pinned front. One can see

that the morphology of the interfaces change dramatically as λ increases.

as we change λ, (2) the measured value is never greater than one as is naively expected for

the linear qEW model. The dropoff at r ∼ L/4 is due to the periodic boundary conditions.

The second issue has a known resolution: for ζ > 1, when the interface is ‘superrough’,

the height cannot grow faster than linearly with distance, so the height-height correlation

function cannot directly exhibit a power law larger than one [44]. This so-called anomalous

scaling [45–47] implies that the exponent ζ is reflected not in the distance-dependence of

the correlation function, but rather in its system-size dependence. We thus consider the

finite-size scaling form

CEW (r|L) ∼ L2ζEW (r/L)2CEW (r/L); (7)

the roughness exponent ζEW may be estimated by the system-size dependence of the mag-

nitude of CEW . Note that the periodic boundary conditions implies that CEW (r|L) =

CEW (−r|L) = CEW (L− r|L); near r = L/2 the correlation function reaches a peak (and ζeff

vanishes, as in Fig. 3). Thus X2CEW (X) = (1−X)2CEW (1−X). To control the sharpness

of the peak in the correlation function at X = 1/2, in analogy to the crossover sharpness
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FIG. 3: (Color online.) Local Log Slope. The measured local-log slope, d logC/d log r of the

height-height correlation function for varying λ and k = 0.01. The lower dashed red line is ζKPZ =

0.63 as expected for the KPZ universality class. The upper dashed blue line is ζSR = 1.0, the

largest growth allowed for super-rough interfaces. The thin lines show the predictions of our fits

(Section IV), and the dashed black line is the fit value of ζKPZ . The sharp cutoff in the curves at

large r is due to the periodic boundary condition, that forces ζeff = 0 at r = L/2; the larger L

curves have later cutoffs. Note as expected that for small λ the curves are described by the EW

behavior ζSR = 1 at small r, while for large λ they are well described by ζKPZ . For intermediate

values of λ ∼ 0.1, we observe a clear transition from EW behavior at small r to KPZ behavior at

intermediate r, before being cut off by the finite size effects.

parameter n of eqn 4, we introduce nEW giving a transition between the two power-laws:

X2CEW (X) = ((X2)−nEW + ((1−X)2)−nEW )−1/nEW . (8)

For qKPZ (Fig. 2c), the correlation function in a system size L takes the finite-size scaling

form

CKPZ(r|L) = Ar2ζKPZCKPZ(r/L), (9)
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where we introduce nKPZ to form a periodic functional form

X2ζKPZCKPZ(X) = ((X2ζKPZ )−nKPZ + ((1−X)2ζKPZ )−nKPZ )−1/nKPZ . (10)

The drift in the exponent ζ, however, demands a study of the scaling near the unstable

qEW fixed point, and the functional form of the resulting crossover scaling function. The role

of λ in generating the crossover from qEW to qKPZ has only been studied qualitatively [4,

7, 10, 11], with no full description of the crossover scaling [26]. The crossover describes the

RG flow from the qEW fixed point to the qKPZ as the relevant parameter λ is added. The

scaling form for the height-height correlation function is thus that of a relevant variable λ

added to the qEW scaling:

C(r|L, λ) = L2ζEW C(r/L, λφr). (11)

For λ� 0, C(r|L, λ)→ CKPZ(r|L), therefore,

C(r/L, λφr)→ A(λ)r2ζKPZCKPZ(r/L)/L2ζEW

= A(λ)(r/L)2ζKPZL−2(ζEW−ζKPZ)CKPZ(r/L)

= Aanalytic(λ)(r/L)2ζKPZ (λφL)−2(ζEW−ζKPZ)CKPZ(r/L). (12)

Here A(λ) is in general a non-universal prefactor for the KPZ correlation function. As with

C∗ in Section II, A is expected to vary[49] with the parameters of the problem. Here it has a

typical smooth variation Aanalytic(λ), times a singular piece Asingular(λ) due to the EW fixed

point: A(λ) = Aanalytic(λ)Asingular(λ). We derive the power-law divergence of the amplitude

Asingular(λ) = λ−2(ζEW−ζKPZ)φ (13)

by noting that C(r/L, λφr) must be a scaling function with only invariant combinations of

r, L, λ.

We must also have C(r/L, 0) ∼ (r/L)2CEW (r|L). Using these limits, Equation 12, and

the fact that A(λ) gets large as λ → 0 and small as λ → ∞, we can construct a function

that crosses over between these two limits:

C(r|L, λ) =Aanalytic ∗
(
(Asingular(λ)BCKPZ(r/L))−nCross + CEW (r/L)−nCross

)−1/nCross

=L2ζKPZC(X, Y ), (14)
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FIG. 4: (Color online.) Height-height Correlation Function. The numerics generated with

an automata code (symbols) are well described by eqn 14 (black curves) with fit parameters φ =

1.0±0.4, ζKPZ = 0.65±0.04, ζEW = 1.1±0.15, nCross = 1.0±0.7, B = 2.5±6.0. nEW = 0.27±0.03,

nKPZ = 1.1 ± 0.6, A0 = 2.7 ± 7, A1 = 770 ± 900, and A∞ = 0.3 ± 1. (A fit constrained to the

expected values of ζEW and ζKPZ give slightly worse, but acceptable fits, with the other parameter

estimates within the quoted ranges.) The legends denote L and λ for each simulated correlation

function; all runs had k = 0.01. The errors quoted are a rough measure of the systematic error [48],

as described in the text, and are representative of the differences we find using different weightings

and functional forms. (They are much larger than the statistical errors.) Note that the amplitude

dependence is captured by the scaling form. Three of the twelve parameters (ζEW , ζKPZ , and φ)

are universal critical exponents, three (A0, A1, and A∞) describe the non-universal dependence of

an overall height scale on parameters, two describe finite-size effects, and only two (nCross and B)

are needed to describe the universal crossover function to the accuracy shown.
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FIG. 5: (Color online.) Scaling collapse of the height-height correlation function. We

collapse the correlation-function data of Fig. 4 to illustrate the crossover between EW and

KPZ-dominated lengths (r < r∗ and r > r∗ respectively, see also [28, 29]). Here r∗ =

L[B(Lλφ)2(ζEW−ζKPZ)]−1/(2−2ζKPZ) is the distance where the EW and KPZ components of the

correlation function are equal in magnitude, and C∗ = λ−2φ(ζEW−ζKPZ)r2ζKPZ factors out the de-

pendence expected in the KPZ regime (hence yielding flat behavior for r � r∗). In (b), we also

factor out the effects of analytic corrections to scaling; here all of the curves lie on a universal curve

apart from the effects of the finite system sizes (causing each curve to drop on the right). In (a), we

see that the analytic correction to scaling has a significant impact on the scaling collapse: ignoring

it in the analysis would produce significant errors in critical exponents and scaling functions. The

thick blue curve shows the scaling function prediction for the crossover (which, if x = r/r∗, can be

shown to be C/C∗ = Bx2(x2nCross + x2nCrossζKPZ )−1/nCross).

where X = r/L and Y = λφr, and CKPZ and CEW are defined in eqns. (7-10). We expand

the analytic function Aanalytic = (A0 − A∞)/(1 + A1λ) + A∞ in a form analytic at zero and

saturating at large λ at A∞,[50] and we include a relative scale factor B. Finally, we vary the

sharpness of the crossover with nCross, just as we did in the experimental study of fracture

(eqn 4).

The theoretical curves in were fit to the data in Figs. (3) and (4) and (6), deleting the

noisy half near r = L/2 in the first, and using weights σ2 ∼
√
r/L designed to equalize

the emphasis on each decade. The errors quoted are a rough estimate of the systematic
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error [48] given by quadratically exploring fits with roughly twice the ξ2 of the best fit.

Note that this gives us a universal function of three variables (r, L, and λ). Note that it

predicts a singularity at small λ in the form of a divergent amplitude Asing ∼ λ−2(ζEW−ζKPZ)φ

in the qKPZ correlation function (eqn 9) as λ → 0. This universal singularity in the am-

plitude (corresponding to a prediction of C∗ in section II) explains the amplitude depen-

dence seen in Fig. 4. There is an analogous universal amplitude dependence seen for the

Heisenberg→Ising crossover at small Ising anisotropy [36, Section 4.1].

We can use the scaling form of the correlation function C(r|L, λ) to derive other, less

complex crossover scaling functions traditionally studied in interface depinning problems [30,

42]. The spectral scaling function is equal to the Fourier transform of our correlation function

(with subtleties at q = 0):

S(q|L, λ) = |h̃(q)|2 =

∫
r

C(r|L, λ) exp(iqr)dr ∼ q−1−2ζEWS(λ−φq, qL). (15)

Here the universal spectral crossover scaling function S(X̃, Ỹ ) can be written in terms of

our universal correlation crossover scaling function (C(X, Y ) from eqn 11) as

S(X̃, Ỹ ) =

∫
dz exp(iz)Ỹ 2ζEW C(z/Ỹ , z/X̃) (16)

depicted in Fig. (6). Here it is known that S does not have anomalous scaling; the power

laws ζEW and ζKPZ can be read off from the slopes at large and small Ỹ . More ordinary,

single-variable scaling functions can be derived from our two-variable scaling functions, such

as that governing the average width of an interface (given by the zero Fourier component

of S(q) or an integral of C(r); such scaling functions (as for the fracture scaling function

of eqn 3) allow traditional scaling collapses (as in Fig. 1). However, one should note that

our analyzed simulations extend to λ ∼ 1, where analytic corrections to scaling, as vividly

illustrated in Fig. 5(a), would likely invisibly distort the resulting scaling collapses. It is an

advantage of multivariable scaling fits that they both allow the incorporation of such analytic

corrections (extending the range of applicability), and force their incorporation (exposing

weaknesses of the naive theory).

V. CONCLUSIONS

In this paper, we have analyzed the scaling properties for an experimental 2d fracture front

and a model of an interface moving in random media, focusing on the crossover scaling of the
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FIG. 6: (Color online.) Rescaled spectral function. This is the spectral function S(q|L, λ) for

the height fluctuations. Note that rescaling by the naive RG power q1+2ζEW here does collapse

the data for vanishing λ (up to a significant noise): the anomalous scaling for the super-rough

interface in real space is not manifested in Fourier space. The theory curves are given by the

Fourier transform of the same best fit shown in previous figures.

roughness. The experimental system is successfully modeled using a one-variable universal

scaling function with one free parameter, controlling the sharpness of the transition. The

theoretical model, the crossover from the qEW to the qKPZ universality class with the

addition of a non-linear term, allows us to estimate the complete universal scaling function

for the height-height correlation function including both finite-size effects and the non-linear
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effects of the tuning parameter λ, while satisfying known limits given by the renormalization

group.

We emphasize here the importance of our sophisticated use of the scaling forms and

corrections predicted from the renormalization group. Fig. 1 illustrates that not only the

power-laws, but the entire functional form of the crossover, is a universal property that

should be reported. Equation 4 is an effective one-parameter way of embodying the sharp-

ness of the crossover, which we use also in the theoretical analysis of Section IV for both

the crossover and the effects of periodic boundary conditions. Figures 3, 4, and 6 show

how different experimental characterizations of the roughness of an interface can be simul-

taneously fit with a single functional form. Figure 5(a) vividly indicates the importance of

analytic corrections to scaling in extending the validity of the theoretical analysis to smaller

systems and farther outside the critical region. Only systems with λ < 10−3 will follow the

scaling behavior without incorporating the analytic corrections, while the entire crossover is

faithfully represented in Fig. 5(b) by including them in the fit.

By developing functional forms for the correlation functions [40], we gain the flexibility of

incorporating analytic corrections, multiple scaling variables, and a systematic error analysis

while allowing the quantitative reporting of the universal scaling functions. One should note

that the parameter estimation errors quoted here are large compared to more traditional

scaling analyses. In part this is due to our estimation of the relevant systematic errors [48];

statistical errors would be perhaps an order of magnitude smaller. In part, however, this

is due to our incorporation of known but usually ignored confounding factors – analytic

corrections to scaling and crossover effects will invisibly distort the results of more direct

measurements, and the drift in exponents quoted in the literature in critical phenomena

often exceeds the error estimates.

It is challenging but satisfying to develop these functional forms. Measuring and fit-

ting them is far more physically intuitive and less technically demanding than direct field-

theoretic calculations [42] (although theoretical calculations often form important inspiration

for choosing functional forms [40]). Successful functions are parsimonious in the number of

adjustable parameters, and developing them often forces one to develop a far more complete

understanding of the physics of the system under consideration.
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[46] J. M. López and J. Schmittbuhl, Phys. Rev. E 57, 6405 (1998), URL http://link.aps.org/

doi/10.1103/PhysRevE.57.6405.
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