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We use a non-equilibrium Monte Carlo simulation method and dynamical scaling to study the

phase transition in three-dimensional Ising spin glasses.

The transition point is repeatedly ap-

proached at finite velocity v (temperature change versus time) in Monte Carlo simulations starting
at a high temperature. This approach has the advantage that the equilibrium limit does not have
to be strictly reached for a scaling analysis to yield critical exponents. For the dynamic exponent
we obtain z = 5.85(9) for bimodal couplings distribution and z = 6.00(10) for the Gaussian case.
Assuming universal dynamic scaling, we combine the two results and obtain z = 5.93 4+ 0.07 for

generic 3D Ising spin glasses.

PACS numbers: 75.10.Nr, 75.40.Mg, 75.40.Gb

I. INTRODUCTION

Understanding spin glasses analytically has proved dif-
ficult, and there are only very few exact results beyond
Parisi’s solution [1-3] of the infinite-range Sherrington-
Kirkpatrick model [4]. Furthermore, Monte Carlo (MC)
simulations in three dimensions proved challenging be-
cause d = 3 turns out to be close to the lower critical
dimension d; below which fluctuations destroy the tran-
sition. For Ising spins, which we study here, d; ~ 2.5 [5].
Nonetheless, there has been substantial progress in re-
cent years, aided by increased computer power, the tech-
nique of parallel tempering [6] (exchange MC) to speed
up equilibration and reduce autocorrelations, and bet-
ter methods of performing finite-size scaling. In particu-
lar, Hasenbusch et al. [7] extracted not only the leading
singular behavior at the transition but also the domi-
nant correction to scaling. This gives confidence that the
asymptotic critical region has been reached (which it had
not in much of the earlier work, see, e.g., discussion in
Ref. [8]), and hence that the critical exponents are accu-
rate. Subsequently, massive simulations by Baity-Jesi et
al. [9], using a special-purpose computer, obtained even
more accurate results, which are consistent with the ear-
lier work of Ref. [7].

These impressive developments have given a good un-
derstanding of the static critical behavior of spin glasses
but our knowledge of their dynamic critical behavior is
much less well developed. To understand critical dynam-
ics of spin glasses (and other similar computationally
hard problems) it is useful to employ new techniques.
Here we explore MC simulations out of equilibrium in
combination with a powerful dynamic scaling theory [10]
building on the Kibble-Zurek (KZ) mechanism [11-19].
We will demonstrate that this approach is particularly
well suited for studies of spin glasses because it avoids
the normally very difficult problem of ensuring that the
simulations are fully equilibrated. Rather, as we shall ex-
plain, deviation from equilibrium is turned into a feature
of the scaling methodology. Using this approach we will
obtain the dynamic exponent z of spin glasses with quite

high accuracy.

Universality is a cornerstone of the theory of critical
phenomena according to which critical exponents and
many other quantities do not depend on microscopic sys-
tem details. Thus, the exponents for a spin glass should
not depend on the distribution of interactions, so results
obtained for, e.g., a bimodal distribution should be the
same as those from a continuous distribution such as
Gaussian. An interesting question, raised by Campbell
and collaborators [20-22], is whether universality may
be violated in spin glasses. While these works claim nu-
merical evidence that the exponents do depend on the
distribution of interactions, other works, e.g., Ref. [8],
found universal behavior, though with some inconsisten-
cies due to corrections to scaling not being incorporated.
The work of Refs. [7] and [9] only used a bimodal distri-
bution of nearest-neighbor interactions, because consid-
erable speedup in the MC code can be obtained in this
case. Unfortunately, simulations of comparable quality
to those in Refs. [7] and [9], i.e. which systematically in-
corporate the leading correction to scaling, have not yet
been done for a continuous distribution of the interac-
tions.

A major focus of the present paper is to test universal-
ity of spin glasses by determining the dynamic exponent
for both Gaussian and bimodal distributions with high
accuracy. Several earlier estimates of the dynamical ex-
ponent z are summarized in Table I. It is seen that there
there are significant differences in the results from differ-
ent works, and claims are again made [21, 22] that the
dynamical exponent, like the static ones, depend on the
distribution of interactions. However, we will see that
our results for 3D Ising spin glasses with bimodal and
Gaussian distributions show the same value for z within
small error bars, thus supporting universality.

In the remainder of the paper, we discuss the model,
simulation method, and dynamical critical scaling scheme
in Sec. IT and present results in Sec. III. We end with a
brief discussion in Sec. IV.



Study Model | Exponent z
Pleimling and Campbell (Ref. [22]) +J 5.7(2)

G 6.2(1)
Nakamura (Ref. [23])* +J 5.1(1)
Katzgraber and Campbell (Ref. [24])* G 6.80(15)
Rieger (Ref. [25])* +J ~6
Ogielski (Ref. [26]) +J 6.0(8)
Belletti et al. (Ref. [27])* +J 6.86(16)
This study +J 5.85(9)

G 6.00(10)

TABLE I: Estimates of the dynamical critical exponent z
for 3D Ising spin glasses with local updates (Metropolis dy-
namics) with a bimodal (£J) or Gaussian coupling distribu-
tion (G). The papers indicated by an asterisk determine a
non-equilibrium coherence length £(¢) below or at T.. This
increases with time ¢ like ¢'/%#(T) where an effective expo-
nent zeg(T) is found empirically to vary as T~!, and is also
found to merge smoothly into the critical exponent z at T,
i.e. zeg(T) = (T./T)z. The value of z quoted by the authors
was obtained by using the best accepted value of T, at that
time. Reference [25] plots values for a temperature dependent
z(T), related to zeg(T) by z(T) = (d — 2+ 1) /2zes(T). The
value quoted in the table is obtained from the data point for
z(T') closest to the currently accepted 7., and the currently
accepted value of n was used [9].

II. MODEL AND METHODS

We study Ising spin glasses that can be described by
the Hamiltonian

H = Z JijUiO'j, (1)
(4:3)

where o; € {—1, 1} and (4, j) stands for the nearest neigh-
bors on a simple cubic lattice of linear size L. We con-
sider (i) a bimodal distribution in which J;; = £+1 with
equal probability and (ii) J;; drawn from a Gaussian with
mean 0 and standard deviation 1. The relevant quantity
to characterize the spin glass transition is the Edward-
Anderson order parameter:

1o (1) @
1 2
q:N;Ji o, (2)

where N = L3, and (1) and (2) stand for two independent
simulations (“replicas”) of the same coupling realizations.
We will study the mean squared order parameter {g?).
The spin glass transition temperature 7T, for the bi-
modal case has been determined to very high numerical
accuracy [9, 28]; T, = 1.102(3). T, for the Gaussian case
is not as well determined, although a reasonable estimate
is also available [24, 29]; T, = 0.94(2). The static expo-
nents for the bimodal case are also well studied in [7, 9],
which gave the correlation length exponent v = 2.562(42)
and correlation function exponent n = —0.3900(36). We

will here regard the T, values and static critical expo-
nents quoted above as known values, given as input in
our scaling analysis to be discussed below. The effects of
the uncertainties given by the error bars, treated as one
standard deviation of a normal distribution, will be taken
into account using a detailed error propagation analysis.

A. Dynamic simulation scheme

The simulations start from an initial temperature T; =
2, roughly twice T, where the system is easily equilibrated
prior to each dynamic (“quench”) simulation. We pro-
ceed with a linearly varying T" as a function of the simu-
lation time 7 (measured in units of a standard MC sweep
consisting of N = L3 Metropolis spin flip attempts) un-
til a final temperature T = 0.5 is reached. Thus, our
quench velocity is defined as v = 1.5/7 and the tempera-
ture is lowered by A = v after each MC step. We choose
the total quench time 7 = 150 x 2" with n =0,1,2,....
This kind of process is also known as simulated annealing
[30], but in that case one normally has in mind a very
slow reduction of T" with the goal of finding an energy
minimum or reaching equilibrium. We are interested in
both slow and fast processes and carry out detailed stud-
ies of the behavior of averages over many quenches as a
function of v and L.

We use 64-bit multi-spin coding to simulate 64 replicas
with the same interactions J;; in a single run (using dif-
ferent random numbers for the acceptance probabilities
for each replica, to avoid correlations). To compute the
order parameter in Eq. (2) we consider overlaps between
32 replica pairs. Since the fluctuations among different
realizations of J;; will in general be much larger than
the statistical errors within a given realization, we only
perform one such 64-replica quench for each disorder re-
alization. For small sizes and short quenches, we gen-
erate O(10°) realizations and for larger sizes and longer
quenches we have at least O(10?) realizations.

For simplicity of notation, we use (...) to denote all
averages involved. After the simulations we use polyno-
mial interpolation to obtain (¢?) at any T within [T}, TY].
We focus on the squared order parameter (¢g?) at or in
the close vicinity of the known T,.. An alternative would
be to perform quenches which stop at exactly T. (in-
stead of continuing below T.). However, since we will
also comnsider the propagation of errors from the uncer-
tainties of T,, we need at least a corresponding window
of temperatures around T,. We actually continue to still
lower temperatures, at not much cost of CPU time, since
our results in this region could then be used in a future
analysis of the dynamics of the spin glass phase without
needing to run new simulations.



B. Dynamic scaling

According to now well established equilibrium finite-
size scaling theory [31], the critical order parameter in
the neighborhood of T, depends asymptotically on the
linear system size L of a d-dimensional system and the
distance § = (T' — T;)/T, from the critical point as

(¢%)eq = L™HDF(OLMY), (3)

where the function f is non-singular. We now have the
quench velocity v as an additional parameter. The KZ
framework [11-19] then suggests that there is a charac-
teristic velocity,

UKZ(L) ~ L—(z+1/1/), (4)

separating slow (quasi-static) and fast processes, and
that a generalized finite-size scaling ansatz applies with
v/vkz as a second scaling argument:

(@)o = L72H0 F(SLYY 0L#H ), ()

We focus on results when the quench has reached the crit-
ical temperature, i.e., § = 0 and the above form reduces
to a much simpler scaling function of a single argument;

(@%)o = L7720 f(pL=H/Y), (6)

This form should hold for v small and L large for any
value of the argument z = vL*t1/¥. Data for large v,
v 2 1, is not described by the scaling form in Eq. (6).
Rather there is a cross-over to a constant value of (g?),
which depends on the initial state at temperature T;. For
example, when v — oo the system does not evolve at all
and its properties are just those in equilibrium at T; [10].
This cross-over is interesting but we will not discuss it
here, focusing instead on the slow dynamics.

For v — 0 at fixed L, the argument of the scaling
function f(z) in Eq. (6) tends to zero, and we must have
f(z — 0) = const. in order that equilibrium finite-size
scaling behavior at T, be obtained. In the opposite limit,
v > v, (L) (but still v <« 1), where  — oo, the scaling
function crosses over to a universal power-law behavior.
To determine the power, note that in this region the cor-
relation length &, at T, satisfies £, < L, so the finite size
does not limit the correlations. Hence the dependence of
(q?), on L is just the trivial prefactor L= in the defini-
tion in Eq. (2). Consistency between this behavior and
the general scaling form in Eq. (6) requires that

| |
2 - -
(@) = T3~y (M)

which should apply for v < 1 down to some v x vkyz
before the cross-over into the quasi-static regime as v is
further lowered. The scaling function itself in the scaling
regime is given by

f(z) x GRS RV (x = ). (8)

We will use Eq. (8) below to constrain data fits for scaling
collapse onto the function f in the appropriate regime.

The dynamic finite-size scaling form in Eq. (6) has
been thoroughly tested on standard Ising models [10] and
yielded high-precision results for z for different types of
dynamics (local and cluster updates) and dimensionality.
In the case of a spin glass, in particular, as anticipated in
Ref. [10] and as will be demonstrated with results in the
present work, a major additional advantage of the quench
approach combined with dynamic scaling is that uncer-
tainties related to poor equilibration due to critical slow-
ing down are avoided. In standard approaches one has
to make sure that equilibrium indeed has been reached,
and this can be very difficult to confirm in practice. In
our approach, equilibration only has to be carried out at
the high initial temperature T; (or, one could also start
with some other initial condition). In the subsequent
quench process, equilibration, or lack thereof, is mani-
fested as the scaling behavior in Egs. (6) and (8), and
the simulation results themselves are never questionable.
Of course, one still has to make sure that the simulation
times are long enough that the system probes sufficiently
large length scales that corrections to scaling are small,
but it is highly advantageous that we do not need to en-
sure equilibration.

III. RESULTS

We use many different velocities and system sizes
L =8,12,... up to L = 128 for the bimodal case and up
to L = 96 for the Gaussian case. With the static expo-
nents v and n known (we use the values quoted above for
both the bimodal and Gaussian cases), the dynamic ex-
ponent z enters as the only unknown exponent in fitting
our data to Eq. (6). We present our data in Fig. 1. We
quantify the quality of the collapse using x2 per degree
of freedom relative to a function fitted to all the data.
As fitting function we choose a high-order polynomial at
lower velocities, which is matched to a linear function
at high velocities with a slope equal to the exponent in
Eq. (8). After z is determined this way, we introduce
Gaussian noise to the MC data points as well as to the
parameters T, v, and 7, with standard deviation equal to
the corresponding error bars, repeating the scaling anal-
ysis with such altered data many times to obtain error
estimates for z.

Results of the data collapse procedure are shown for
both coupling distributions in Fig. 1. Here high-velocity
points were removed for each L until the data collapse
was satisfactory, and only the points included are shown
in the figure. The removed high-v points gradually
split off from the power-law scaling regime in a way
very similar to the behavior in ferromagnets found in
Ref. [10]. We obtain z = 5.85(9) for the bimodal case
and z = 6.00(10) for the Gaussian case. The plateau on
the low-velocity side indicates the quasi-static regime,
while the straight line on the high-velocity side in these



10 0005, Gaussian

L

10™ 8
e 12
e 16
10 24
32
o 48
10 ° 64
96

10—4 [ [ [ [ [ [

10° 10° 10° 10° 10° 10"

bimodal

2. .1
<q>L+n
N

10 o 12
o 16
] 24
10 32
o 48
3 e 64
10 9%
o 128

10-4 ||u,||| ||u,||| ||u,||| ||u,||| ||u,||| 1
10° 10° 10" 10° 10° 10

z+1v

vL

2 1
<q>L+n
N

FIG. 1: (Color online) Scaling after quenching to 7., using
the form (6). The static exponents v and n have been fixed
so the only exponent to be optimized for scaling collapse is
the dynamic exponent z, for which we obtain z = 5.85(9) and
6.00(10) for bimodal (top) and Gaussian (bottom) distribu-
tions, respectively. The error bars on the data points are not
visible as they are much smaller then the plotting symbols.

log-log plots shows the universal scaling governed by the
power-law in Eq. (8).

We have, thus, demonstrated dynamic scaling at the
spin glass transition and its cross-over into the standard
equilibrium finite-size scaling. The fits have excellent re-
duced x? values close to 1 and the values of z are also
stable with respect to removing small system sizes.

Note that the way the the fitting function is
parametrized is not important in practice, provided that
the function is capable of reproducing the true scaling
function and that the number of parameters is much less
than the total number of data points included in the fit
(which here is easily satisfied because the number of data
points is of the order 100 and the number of parameters
is less than 10). We have not found any significant dis-
crepancies between fits using different values of the break
point between the polynomial and linear regimes, as long
as it is in the beginning of the linear scaling regime where
a straight line is an appropriate fit.

The above analysis did not consider any scaling cor-
rections, as the data for the larger system sizes follow
the expected forms very precisely despite the error bars

being very small. We have also carried out fits using
various correction terms, but have not found any statis-
tically significant corrections within the data set used in
Fig. 1. We conclude that the dynamic scaling corrections
must be very small, as can also be visually observed in
the very linear behavior over several orders of magnitude
of the scaling variable. The internal consistency built in
as a constraint on the fitting function obeying power-law
scaling exactly with the exponent in Eq. (8) in the scal-
ing regime is also an indication of the soundness of the
procedures without corrections.

IV. DISCUSSION

The non-equilibrium MC simulations and accompany-
ing scaling analysis we have used here in large-scale stud-
ies of 3D Ising spin glasses demonstrate the utility of this
method for highly frustrated systems. We have used ex-
isting knowledge of the T, values and static exponents of
the systems studies, and found remarkably good fits with
the dynamic exponent z as the only adjustable parame-
ter. We note that the dynamic MC scheme can also be
used to extract critical points and static exponents, as has
recently been done for quantum models in Refs. [32, 33].

The results presented in Fig. 1 for two different cou-
pling distributions are in agreement with each other
within fairly small error bars, thus supporting universal-
ity for the dynamic exponent for Ising spin glasses with
single-spin Metropolis MC updates. We naturally expect
this to extend to any local dynamics. If we assume uni-
versality, we can combine our two independent estimates
of the dynamic exponent (see the caption of Fig. 1) to
obtain a more precise value for the 3D Ising spin glass
universality class:

2 =5.93+0.07. (9)

Looking back at Table I, our results are in good over-
all agreement with those of Pleimling and Campbell [22],
though the spread in their values is wider and the er-
ror bars are somewhat larger. Our results are quite far
away (up to 5-10 error bars) from many of the other esti-
mates which have similar or only slightly larger statistical
errors. The discrepancy illustrates the difficulties in re-
liably studying systems with a large dynamic exponent.
Our method circumvents problems related to insufficient
equilibration, and our scaling plots extend all the way
from the equilibrium behavior to a wide region of univer-
sal power-law scaling, with confirmed negligible scaling
corrections. We therefore do not expect our results to be
affected by any errors beyond purely statistical ones.

The complete description of all our data by the sim-
ple scaling function (6) also demonstrates that the spin
glass transition, when approached from T > T, is not
qualitatively different from a ferromagnetic transition as
far as scaling is concerned, only the values of the ex-
ponents are different, with the dynamic exponent being
very much larger in the spin glass. Even the form of the



scaling functions shown in Fig. 1 are very similar to those
of ferromagnetic Ising models [10]. From the perspective
of the generic derivation of KZ scaling behavior recently
presented in Ref. [10], this simply reflects the fact that
there is a single dominant divergent length scale ¢ in
the system, and the characteristic time scale 7 is just a
power of this length-scale; 7 ~ &*. The situation may
be completely different when approaching the spin glass
transition from the ordered side, where the dynamic ex-
ponent is temperature dependent, see e.g. Ref. [34] for a
recent discussion. It would be interesting to also study
such quenches using generalized KZ scaling, but from a
technical perspective this is much more difficult as the
advantage of fast equilibration at 7; no longer applies
when T; < T,.

After the completion of all calculations reported in this
paper another non-equilibrium study appeared [34] for
the J = #1 model in which a random (T" = o0) state
was suddenly quenched to the temperature of interest

and the growth of correlations versus simulation time was
monitored. Close to T, a dynamic exponent z ~ 6.0 was
found in this way, in excellent agreement with our results.
The good agreement further supports our assertion made
above that corrections to dynamic scaling are very small
in this system.

Acknowledgments

We would like to thank Arnab Das and Roderich
Moessner for helpful discussions. The work of CWL, AP,
and AWS is supported by the NSF under grant No. PHY-
1211284. APY acknowledges support from a Gutzwiller
Fellowship at the Max Planck Institute for the Physics
of Complex Systems, the Humboldt Foundation, and the
NSF through grant DMR-1207036.

G. Parisi, Phys. Rev. Lett. 43, 1754 (1979).
G. Parisi, J. Phys. A. 13, 1101 (1980).
G. Parisi, Phys. Rev. Lett. 50, 1946 (1983).
D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,
1792 (1975).
[5] S. Boettcher, Phys. Rev. Lett. 95, 197205 (2005).
[6] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65,
1604 (1996).
[7] M. Hasenbusch, A. Pelissetto, and E. Vicari, J. Stat.
Mech. p. L02001 (2008).
[8] H. G. Katzgraber, M. Korner, and A. P. Young, Phys.
Rev. B 73, 224432 (2006).
[9] M. Baity-Jesi et al., Phys. Rev. B 88, 224416 (2013).
[10] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys.
Rev. B 89, 054307 (2014).
[11] T. W. B. Kibble, J. Phys. A: Math. Gen. 9, 1387 (1976).
[12] W. H. Zurek, Nature 317, 505 (1985).
[13] H. K. Janssen, B. Schaub, and B. Schmittman, Z. Phys.
B: Condens. Matter 73, 539 (1989).
[14] F. Zhong and Z. Xu, Phys. Rev. B 71, 132402 (2005).
[15] A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).
[16] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett.
95, 105701 (2005).
[17] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[18] J. Dziarmaga, Adv. Phys. 59, 1063 (2010).
[19] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalat-
tore, Rev. Mod. Phys. 83, 863 (2011).

[20] P. O. Mari and I. A. Campbell, Phys. Rev. E. 59, 2653
(1999).

[21] P. O. Mari and I. A. Campbell, arXiv:cond-mat/0111174,
(2001).

[22] M. Pleimling and I. A. Campbell, Phys. Rev. B 72,
184429 (2005).

[23] T. Nakamura, arXiv:cond-mat/0603062, (2006).

[24] H. G. Katzgraber and 1. A. Campbell, Phys. Rev. B 72,

014462 (2005).

H. Reiger, J. Phys. A 26, L615 (1993).

A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).

F. Belletti et al., J. Stat. Phys. 135, 1121 (2009).

M. Hasenbusch, A. Pelissetto, and E. Vicari, Phys. Rev.

B 78, 214205 (2008).

[29] E. Marinari, G. Parisi, and J. J. Ruiz-Lorenzo, Phys.
Rev. B 58, 14852 (1998).

[30] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, Science
220 671 (1983).

[31] M. N. Barber, in Phase Transitions and Critical Phenom-
ena, Vol. 8, edited by C. Domb and J. Lebowitz (Aca-
demic, London, 1983).

[32] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys.
Rev. B 87, 174302 (2013).

[33] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys.
Rev. Lett. 114, 147203 (2015).

[34] L. A. Fernandez and V. Martin-Mayor, arXiv:1412.4645.



