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“Stealthy potentials”, a family of long-ranged isotropic pair potentials, produce infinitely degen-
erate disordered ground states at high densities and crystalline ground states at low densities in
d-dimensional Euclidean space R

d. In the previous paper in this series, we numerically studied the
entropically favored ground states in the canonical enesemble in the zero-temperature limit across
the first three Euclidean space dimensions. In this paper, we investigate using both numerical and
theoretical techniques metastable stacked-slider phases, which are part of the ground-state manifold
of “stealthy” potentials at densities in which crystal ground states are favored entropically. Our
numerical results enable us to devise analytical models of this phase in two, three and higher dimen-
sions. Utilizing this model, we estimated the size of the feasible region in configuration space of the
stacked-slider phase, finding it to be smaller than that of crystal structures in the infinite-system-size
limit, which is consistent with our recent previous work. In two dimensions, we also determine exact
expressions for the pair correlation function and structure factor of the analytical model of stacked-
slider phases, and analyze the connectedness of the ground-state manifold of stealthy potentials in
this density regime. We demonstrate that stacked-slider phases are distinguishable states of matter;
they are non-periodic, statistically anisotropic structures that possess long-range orientational order
but have zero shear modulus. We outline some possible future avenues of research to elucidate our
understanding of this novel phase of matter.

I. INTRODUCTION

A fundamental problem of statistical mechanics is the
determination of the phase diagram of interacting many-
particle systems. A substantial variety of pair interac-
tions can produce a dramatic diversity of macroscopic
phases, including crystals [1], quasicrystals [2–6], liquid
crystals [7], hexatic phases [8–11], disordered hyperuni-
form systems [12–18], and liquids [19]. While crystals
and liquids are the most common condensed states of
matter, there are other states in between. For example,
quasicrystals and liquid crystals both have anisotropy
and long-range orientational order, like crystals, but lack
long-range translational order, similar to liquids. Other
phases with features that lie between crystals and liquids
include disordered hyperuniform systems, which are dis-
ordered but behave more like crystals in the way in which
they suppress long-range density fluctuations [12, 17].
A family of long-ranged isotropic pair potentials, called

“stealthy potentials,” produce infinitely degenerate dis-
ordered hyperuniform classical ground states at high den-
sities in d-dimensional Euclidean space R

d [14, 18, 20–
23, 25]. Stealthy potentials are often specially con-
structed such that finding a ground state is equivalent
to constraining the structure factor S(k) to be zero for
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all wave vectors k such that 0 < |k| < K, where K is
some radial cut-off value. A dimensionless measure of
the relative fraction of constrained degrees of freedom
(proportional to Kd) compared to the total number of
degrees of freedom, χ, controls the degree of order and
degeneracy of the ground states of these potentials.

In the previous paper in this series [25], we numeri-
cally studied the entropically favored ground states, i.e.,
configurations that most likely to appear in the canoni-
cal enesemble in the zero-temperature limit, of stealthy
potentials. We found that entropically favored ground
states are disordered for χ < 1/2, and crystalline for
χ > 1/2 up to a certain critical value [18].

The main focus of this paper is the investigation of
“stacked-slider” phases, which are metastable states that
are part of the ground-state manifold for some χ above
1/2, although not entropically favored. Stacked-slider
phases were first discovered in two dimensions in Ref. 20
and were originally called “wavy crystals” because they
were observed to consist of “particle columns that display
a meandering displacement away from linearity.” How-
ever, we will see that “stacked-slider phases” for arbitrary
dimensions is a more suitable name for this phase, and
this designation will be used henceforth.

The authors of Ref. 20 easily distinguished stacked-
slider phases from crystal phases by a lack of periodicity
in direct space and a lack of Bragg peaks in its diffrac-
tion pattern. Distinguishing stacked-slider phases and
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disordered phases, on the other hand, was based on a
different property. In disordered phases, all k’s such that
|k| ≥ K have positive structure factors. However, in
stacked-slider phases, the structure factor at some k’s
such that |k| ≥ K are “implicitly constrained” to vanish
identically [20], i.e., they are induced to be zero by the
constraints inside the radius K. The existence of implicit
constraints was used to distinguish stacked-slider phases
from disordered phases in Ref. 20.

There are still many outstanding questions concern-
ing stacked-slider phases. Can a theoretical model of
stacked phases in the thermodynamic limit be devised
to elucidate previous numerical studies? One disadvan-
tage of numerical studies is that finite-size effects make it
difficult to conclude anything definitive about the large
system limit. For example, are stacked-slider phases
isotropic or anisotropic in this limit? Moreover, to what
extent does the choice of the simulation box shape af-
fect the results? Were any important features of stacked-
slider phases overlooked by studying finite-precision sim-
ulation results? Lastly, because Ref. 20 studied two di-
mensions only, we do not know whether stacked-slider
phases exist in other dimensions. This paper provides
additional insights into these unanswered questions.

The rest of the paper is organized as follows: In Sec. II,
we perform numerical studies with much higher preci-
sion than previously. The numerical results enabled us
to find an analytical model of two-dimensional stacked-
slider phases, presented in Sec. III. We generalize this
model to higher dimensions in Sec. IV. We demonstrate
that stacked-slider phases are distinguishable states of
matter; they are non-periodic, statistically anisotropic
structures that possess long-range orientational order but
have zero shear modulus. The model also shows that im-
plicit constraints exist. In Sec. V, we use this analytical
model to show that stacked-slider phases are not entropi-
cally favored in the zero-temperature limit of the canoni-
cal ensemble. In Sec. VI, we postulate that the transition
between stacked-slider phases and disordered phases oc-
curs at a slightly lower χ than that reported in Ref. 20
from energy minimizations from high-temperature limit
(Poisson) initial configurations. In Sec. VII, we make
concluding remarks and draw comparisons to other com-
mon phases of matter.

II. NUMERICAL STUDY OF 2D

STACKED-SLIDER PHASES

In this section, we numerically study the ground states
of a stealthy potential at a variety of χ’s (or densi-
ties) in two dimensions. We begin with the mathemati-
cal relations and simulation procedure in Sec. II A, and
then present our results in Sec. II B. These results will
suggest an analytical model of two-dimensional stacked-
slider phases in Sec. III.

A. Mathematical relations and simulation

procedure

As detailed in the previous paper of this series [25]
and other references [14, 18, 20–23], we simulate systems
consisting of N point particles, located at rN=r1, r2, ...,
rN , in a simulation box in R

d under periodic boundary
conditions. The number density is ρ = N/vF , where
vF is the volume of the simulation box. The particles
interact with a pairwise additive potential v(r) such that
its Fourier transform is:

ṽ(k) =

{

V (|k|), if |k| < K,

0, otherwise,
(1)

where ṽ(k) =
∫

vF
v(r) exp(−ik ·r)dr is the Fourier trans-

form of the pair potential v(r), V (k) is a positive function
and K is a constant.
Under such potential, the total potential energy of the

system can be calculated in the Fourier space:

Φ(rN ) =
1

2vF

∑

k

V (|k|)|ñ(k)|2 + C, (2)

where the sum is over all reciprocal lattice vector k’s
of the simulation box such that 0 < |k| < K, ñ(k) =
∑N

j=1 exp(−ik · rj), and

C = [N(N − 1)−N
∑

k

ṽ(k)]/(2vF ) (3)

is a constant independent of the particle positions r
N .

Thus, the first term on the right side of Eq. (2) is the
only configuration-dependent contribution to the poten-
tial energy:

Φ′(rN ) =
1

2vF

∑

k

V (k)|ñ(k)|2. (4)

Since V (k) > 0 and vF > 0, Eq. (4) shows that Φ′(rN ) ≥
0. Therefore, if configurations such that Φ′(rN ) = 0 ex-
ist, then they are the classical ground states of this po-
tential. These configurations are achieved by constrain-
ing ñ(k) to zero for all 0 < |k| < K and are said to be
“stealthy up to K”. Since ñ(k) is related to the structure
factor S(k) by S(k) = |ñ(k)|2/N for every k 6= 0, con-
straining ñ(k) to zero is equivalent to constraining S(k)
to zero. Let M be half the number of k points in the
summation of Eq. (2) [24], the parameter

χ =
M

d(N − 1)
, (5)

determines the degree to which the ground states are
constrained, and therefore the degeneracy and disorder
of the ground states [20]. For a fixed K, the parameter
χ is inversely proportional to the density [18, 22, 25].
When χ ≤ χ∗

max, where χ∗
max is a dimension-dependent
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constant, all the constraints are indeed satisfiable, thus
Φ′(rN ) of the classical ground states is zero [18]. The χ
values we studied in this paper is always less than χ∗

max.
In this section, we choose N = 100, K = 1, and

V (k) = 1. The relatively small choice of N increases the
precision of the ground states we find. We will see that
high precision is important in extracting an analytical
model from numerical results. The constant K and the
magnitude of V (k) simply sets the length scale and the
energy scale. Although the function form of V (k) could
theoretically affect the probability of sampling different
parts of the ground-state manifold, it does not affect the
manifold itself [18, 25]. As explained in Ref. 25, we use
a rhombic simulation box with a 60◦ interior angle to
alleviate finite-size effect.
The ground states reported in this section are produced

by the following steps:

• Start from a Poisson (i.e., ideal gas) initial config-
uration.

• Minimize Φ′(rN ) (in Eq. (4)) using low-storage
BFGS algorithm [26–28].

• Minimize Φ′(rN ) using MINOP algorithm [30].

• If Φ′(rN ) < 10−20, we successfully find a relatively
high-precision ground state.

• Otherwise, what we found is either an imprecise
ground state or a local minimum of Φ′(rN ). There-
fore, we discard this configuration.

As detailed in Ref. 25, low-storage BFGS algorithm is the
fastest in minimizing Φ′(rN ), while MINOP algorithm
finds the most precise ground states. Therefore, we min-
imize Φ′(rN ) using these two algorithms consecutively to
maximize both efficiency and precision.
These steps are performed Nt times for a variety of

simulation box side lengths (and therefore a variety of
χ’s), listed in Table I [29]. As detailed in Ref. 20, for
a finite system, only certain values of χ are allowed.
The χ values in Table I contains all possible choices
in the range 0.5 < χ < χ∗

max, which covers the pre-
viously reported stacked-slider phase regime in two di-
mensions, 0.57... ≤ χ < 0.77... [20, 22]. Except for
χ = 0.8787 . . ., where we could not precisely identify
ground states, we plot the real-space configuration and
reciprocal-space structure factor of at least 50 success-
ful energy minimized results and visually inspect them.
We divide them into different categories based on their
appearances, and then present representative configura-
tions below.

B. Results

Representative numerically obtained ground-state con-
figurations and their structure factors (in logarithmic
scales) are presented in Figs. 1-3. For 0.5303 . . . ≤ χ ≤
0.6060 . . ., the ground-state manifold appears to contain
a variety of structures (see Fig. 1). Except for the first

TABLE I. The χ values, number of trials Nt, and number of
successes Ns for each simulation box side length L.

L χ Nt Ns

56 0.5303. . . 1000000 15615

57 0.5606. . . 199915 17127

58 0.5909. . . 200000 411

59 0.6060. . . 199965 8875

60 0.6363. . . 1000000 27788

62 0.6666. . . 1000000 76727

63 0.6818. . . 1000000 157501

64 0.7121. . . 200000 119563

65 0.7424. . . 1000000 165203

66 0.7575. . . 200000 80258

68 0.7878. . . 200000 2577

70 0.8787. . . 200000 0

one, all real-space configurations in Fig. 1 appear to be
Bravais lattices. However, their structure factors are not
as simple as a collection of Bragg peaks among a zero-
intensity background, suggesting that the real-space con-
figurations are not perfect Bravais lattices.
At χ = 0.6363 . . . and χ = 0.6666 . . . a type of rela-

tively simple-looking configurations appear (see Fig. 2).
The real-space configurations appear to be comprised of
straight lines of particles with wave-like displacements
relative to each other. The structure factor, on the other
hand, consist of straight lines of non-zero values in a
background of virtually zero (< 10−20) intensities.
For χ ≥ 0.6818 . . ., the results are similar to that in

Fig. 2, but there exist so many constraints that the non-
zero-valued lines in the structure factor have to be inter-
rupted. The interruptions grow in lengths as χ increases
and eventually, at χ = 0.7878 . . ., the only non-zero struc-
ture factors are the Bragg peaks, and the real-space con-
figuration becomes a Bravais lattice.

III. ANALYTICAL MODEL OF

TWO-DIMENSIONAL STACKED-SLIDER PHASE

In this section we look closer at the simulation results
that yield stacked-slider phases to see if an exact ana-
lytical construction can be extracted. We will see that
understanding the configuration shown in Fig. 2 is the
key to understand other configurations. The real-space
configuration in Fig. 2 seems to be made of straight, hori-
zontal lines that are displaced relative to each other. Are
the displacements of different horizontal lines indepen-
dent of each other or correlated in some way? To answer
this question, we numerically constructed a configura-
tion that is made of horizontal straight lines of particles,
just like the one shown in Fig. 2, but with independent
random displacements along each horizontal line. The
structure factor of the new configuration has exactly the
same support (the set of k’s such that S(k) 6= 0) as the



4

FIG. 1. (Color online) Four representative numerically obtained ground-state configurations at χ = 0.5606 . . . (left) and their
corresponding structure factors (right), where colors indicate intensity values at reciprocal lattice points.

FIG. 2. (Color online) A numerically obtained ground-state configuration at χ = 0.5606 . . . (left) and the corresponding
structure factor (right), where colors indicate intensity values at reciprocal lattice points.
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FIG. 3. (Color online) (left) Four representative numerically obtained ground-state configurations at χ = 0.6818 . . . (first row),
χ = 0.7121 . . . (second row), χ = 0.7424 . . . (third row), and χ = 0.7878 . . . (fourth row). (right) Their corresponding structure
factors, where colors indicate intensity values at reciprocal lattice points.

one shown in Fig. 2. Thus, the new configuration is also
a ground state at this χ value. Therefore, the displace-
ments of each line does not need to be correlated in any
way. This allows us to find a two-dimensional stacked-
slider phase model, depicted in Fig. 4.

x

y

a

b

...
 ..

.

... ...... ...

...
 ..

.

FIG. 4. (Color online) A schematic plot of the two-
dimensional stacked-slider phase model. Each horizontal line
of particles (indicated by large (blue) dots) form a one-
dimensional integer lattice with lattice spacing a. Then, mul-
tiple horizontal integer lattices are “stacked” vertically, with
spacing b. Each horizontal line of particles can be translated
freely to “slide” with respect to each other.
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This analytical model allows the calculation of various
properties of the two-dimensional stacked-slider phases.
One can find the analytical pair correlation function and
structure factor of this model, assuming that the dis-
placement of each line is independent and uniformly dis-
tributed between 0 and a. The pair correlation func-
tion g2(r) is defined such that ρg2(r)dr is the conditional
probability that a particle is found between r and r+dr,
given that there is a particle at the origin. For the two-
dimensional stacked-slider phase, g2(r) can be found di-
rectly from the definition of this model:

g2(x, y) = b
∑

j 6=0

δ(y − bj) + abδ(y)
∑

j 6=0

δ(x− aj), (6)

where x and y are horizontal and vertical coordinates,
both summations are over all non-zero integer j’s, and
δ denotes the Dirac delta function. The structure factor
S(k) can be found by Fourier transforming g2(r) − 1:

S(k) = 1 + ρF [g2(r)− 1], (7)

where F [· · · ] denotes Fourier transform. Substituting (6)
into (7), one gets:

S(k) =
2πδ(kx)

a

(

2π

b
III 2π

b
(ky)− 1

)

+
2π

a
III 2π

a
(kx)−

4π2

ab
δ(kx)δ(ky),

(8)

where kx and ky denotes the horizontal and vertical com-

ponents of k, and IIIT (t) =
∑+∞

j=−∞ δ(t−jT ) is the Dirac

“comb” function. Both the pair correlation function (6)
and the structure factor (8) are anisotropic, since swap-
ping x and y in (6) and (8) gives different expressions.
A topological property this model can predict is the

connectedness of the ground-state manifold, i.e., whether
or not a ground state can be continuously deformed to
another ground state without crossing any energy bar-
rier. Each stacked-slider configuration is obviously con-
tinuously connected to a rectangular lattice by the slid-
ing motion of different lines. However, there are many
permutations of the rectangular lattice. Are these per-
mutations connected to each other through vertical and
horizontal sliding motions? In Appendix A, we show that
for a finite-sized rectangular lattice consisting of N par-
ticles, all permutations are connected if and only if N is
even.
Having found an analytical model of the ground states

in this χ range, we move on to lower and higher χ
ranges. The lower χ simulation results appear to be
more complex. The first configuration in Fig. 1 ap-
pears to be similar to our existing analytical model, ex-
cept that the non-zero-valued regions in the structure
factor are not strictly lines: The highest-intensity lines
(S(k) ∼ 100) are surrounded by lower-intensity regions
(S(k) ∼ 10−10), which are surrounded by even lower-
intensity regions (S(k) ∼ 10−20). The structure factor
in the lower-intensity regions are very small, but are

still much larger than the machine precision. (We use
double-precision numbers, which have around 16 signif-
icant digits, to calculate ñ(k). Therefore, the machine
precision of S(k) = |ñ(k)|2/N should be on the order of
(10−16)2/N = 10−34.) So a natural question arises: Are
the lower-intensity regions real or are they an artifact of
finite-precision simulations?
To answer this question, we chose a k point right next

to the highest-intensity line, and plotted the structure
factor at this k point versus the potential energy dur-
ing the energy minimization (see Fig. 5). As Φ′ goes to
zero, the structure factor at this k point also goes to zero.
Thus, we believe the lower-intensity regions are the re-
sult of numerical imprecision. If one could carry out an
infinite-precision simulation and drive this configuration
to a true ground state, the structure factors in the lower-
intensity regions should go to zero, and the configuration
would become consistent with our analytical model.

(a)

(b)

(c)

1e-024 1e-018 1e-012 1e-006 1
Φ’

1e-008

0.0001

1

S(
k)

FIG. 5. (Color online) (a) A numerically obtained ground
state at χ = 0.5606 . . .. (b) The corresponding structure fac-
tors. A specific k point is indicated by a black square and
an arrow. (c) The structure factor at this particular k point
is plotted against total energy Φ′ during the optimization,
showing S(k) → 0 as Φ′ → 0.

Having understood the first configuration in Fig. 1, let
us move on to other configurations in that figure. The
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second and the third configurations appear to be interme-
diate configurations between the first one and the fourth
one. The fourth configuration looks like a Bravais lattice,
except that the Bragg peaks are smeared out. Again, to
find out whether this broadening of the Bragg peaks is
real or artificial, we plotted the structure factor at a k

point near a Bragg peak versus the potential energy in
Fig. 6. We find again that the structure factor at this k
point goes to zero as Φ′ goes to zero. Thus, the smearing
out of the Bragg peaks is also due to numerical impreci-
sion. If one could carry out an infinite-precision energy
minimization on this configuration, one should get a Bra-
vais lattice.

(a)

(b)

(c)

1e-018 1e-012 1e-006
Φ’

1e-012

1e-008

0.0001

1

S(
k)

FIG. 6. (Color online) (a) A numerically obtained ground
state at χ = 0.5606 . . .. (b) The corresponding structure fac-
tors. A specific k point is indicated by a black square and
an arrow. (c) The structure factor at this particular k point
is plotted against total energy Φ′ during the optimization,
showing S(k) → 0 as Φ′ → 0.

So far we have demonstrated that the numerically
obtained ground states follow a simple model at χ =
0.6363 . . . and χ = 0.6666 . . .. We have also demonstrated
that while the numerically obtained ground states for
0.5303 . . . ≤ χ < 0.6363 . . . appear to be richer, they are
actually exactly the same as either the model or a Bravais
lattice, if we could perform infinite-precision simulations.

However, as we move to higher χ’s, the ground states
start to lose degrees of freedom. As shown in Fig. 3,
at χ = 0.6818 . . ., the high-intensity lines in the struc-
ture factor develops zero-intensity interruptions. In our
stacked-slider phase model, if each line of particles could
move independently, then the high-intensity lines in the
structure factor would have no interruptions. Thus, these
interruptions indicate constraints in the displacements of
each line of particles. At χ = 0.7121 . . ., the lines are in-
terrupted even further, indicating even more constraints
in the displacements of each line. At χ = 0.7424 . . ., the
structure becomes a two-particle-basis crystal. Eventu-
ally, at χ = 0.7878 . . ., the structure becomes a Bravais
lattice.
Starting from χ = 0.6818 . . ., the stacked-slider phase

become more constrained as χ increases. To study how
constrained this phase is at different χ values, we cal-
culate the number of zero eigenvalues ne of the Hessian
matrix of the potential energy. This number is equal to
the number of independent ways to deform the structure
such that the energy scales more slowly than quadratic,
which is an upper bound of the dimensionality of the
ground-state configuration space nc (i.e. the number of
independent ways to deform the structure such that the
Φ′(rN ) remains zero). For χ < 0.6818 . . ., our model pre-
dicts nc = 11 (since there are 2 translational degrees of
freedom, and 9 independent ways to slide the 10 lines
of particles relative to each other), and our calculation
also find ne = 11. At χ = 0.6818 . . ., χ = 0.7121 . . .,
χ = 0.7424 . . ., and χ = 0.7878 . . ., our calculations find
ne = 9, ne = 5, ne = 3, and ne = 2, respectively. This
calculation suggests that as χ increases, nc gradually de-
creases. Eventually, nc = 2, indicating that there is no
way to deform the structure other than trivial transla-
tions.

IV. GENERALIZED STACKED-SLIDER PHASE

MODEL

We now generalize the two-dimensional stacked-slider
phase model to higher dimensions. To begin with, we
present and prove the following theorem:
Stealthy Stacking Theorem: Let dP and dQ be posi-

tive integers. Let W be (dP +dQ)-dimensional Euclidean
space. Let WP be a dP -dimensional subspace of W and
WQ be the dQ-dimensional orthogonal complement space
of WP . Let P be a point pattern in WP with density ρP .
For each point a ∈ P , let Q(a) be a point pattern in
WQ with the some density ρQ independent of a. If P is
stealthy up to certain reciprocal-space cutoff KP and all
Q(a)’s are stealthy up to certain reciprocal-space cutoff
KQ in their subspace, then the following point pattern
in W :

{a+ b|a ∈ P,b ∈ Q(a)} (9)

is a stealthy point pattern up to K = min(KP ,KQ).
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Proof: The collective density variable of the point pattern
in Eq. (9) is:

ñ(k) =
∑

a∈P

∑

b∈Q(a)

exp[−ik · (a+ b)]. (10)

Since WP and WQ are two orthogonal complementary
subspaces of W , we can divide vector k into two parts,
k = kP +kQ, where kP ∈ WP and kQ ∈ WQ. Therefore,

ñ(k) =
∑

a∈P

∑

b∈Q(a)

exp[−i(kP + kQ) · (a + b)]

=
∑

a∈P

exp(ikP · a)
∑

b∈Q(a)

exp(−ikQ · b).
(11)

For any k such that 0 < |k| < K, |kQ| ≤ |k| < K ≤ KQ.
If kQ 6= 0, then the stealthiness of point patterns Q(a)
gives:

∑

b∈Q(a)

exp(−ikQ · b) = 0, (12)

therefore ñ(k) = 0. On the other hand, if kQ = 0, then
kP = k and Eq. (11) becomes:

ñ(k) = NQ(a)

∑

a∈P

exp(−ik · a), (13)

where NQ(a) is the number of particles in pattern Q(a),
which is independent of a because all the Q(a)’s have the
same density. Since 0 < |k| < K ≤ KP , the stealthiness
of point pattern P gives:

ñ(k) = 0. (14)

To summarize, for any k such that 0 < |k| < K, no
matter kQ = 0 or not, ñ(k) is always zero. Therefore,
the point pattern (9) is stealthy up to K.
The parameter χ of this point pattern can be calcu-

lated using Eq. (35) of Reference [18]. Our calculation
yields

χ =
v1(dP + dQ;K)

2(dP + dQ)(2π)dP+dQρPρQ
, (15)

where v1(d; r) is the volume of a d-dimensional hyper-
sphere of radius r.
In the case KP = KQ, using Eq. (35) of Reference [18],

Eq. (15) can be simplified to:

χ =
2v1(dP + dQ; 1)

v1(dP ; 1)v1(dQ; 1)

dPdQ
dP + dQ

χPχQ. (16)

This theorem allows us to construct stacked-slider con-
figurations in higher dimensions. To construct a stacked-
slider configuration in d ≥ 2, choose two lower dimen-
sions dP and dQ such that dP + dQ = d. Choose a dP -
dimensional stealthy configuration P and replace each

r P

rQ

FIG. 7. (Color online) A schematic plot of the stacked-slider
phase model. The large black dots form an integer lattice
(point pattern P ). By replacing each black dot with a two-
dimensional stealthy point pattern (indicated by small blue
dots) of the same density (point patterns Q(a)), the over-
all three-dimensional point pattern consisting of all the small
blue dots is stealthy. The two vectors rP and rQ are in sub-
spaces WP and WQ, respectively. Note that since some Q(a)’s
are two-dimensional stacked-slider configurations, this config-
uration allows both inter-layer and intra-layer sliding motions,
as detailed in Sec. III.

particle a in P with a dQ-dimensional stealthy configu-
ration Q(a), and the resulting d-dimensional configura-
tion is a stacked-slider one. The resulting configuration
is often anisotropic, since dP dimensions are treated sep-
arately from the remaining dQ dimensions. See Fig. 7
for an illustration of a three-dimensional stacked-slider
configuration with dP = 1 and dQ = 2.
Certain three-dimensional crystal structures can allow

sliding deformations while remaining stealthy at rela-
tively large (greater than 0.5) χ. As Fig. 8 shows, the
simple cubic lattice allows the sliding motion of each
two-dimensional square-lattice layer and the sliding mo-
tion of each line of particles inside every layer for χ up
to 0.6981 . . .. Barlow packings [31], including the face-
centered cubic packing and the hexagonal close packing,
also allow the sliding motion of each triangular-lattice
layer of particles for χ up to 0.7600 . . ..
Equation (16) can be used to calculate the maximum χ

values of the stacked slider-phase, χss
max, assuming uncon-

strained sliding motions, in each space dimension d. To
do this one can try all possible combinations of positive
integers dP and dQ such that dP+dQ = d, and let χP and
χQ equal to χ∗

max in dP and dQ dimensions, respectively.
Our calculations for 2 ≤ d ≤ 4 are summarized in Ta-
ble II. There is no obvious trend in these low dimensions.
However, as d increases, the factor

2v1(dP+dQ;1)
v1(dP ;1)v1(dQ;1)

dP dQ

dP+dQ

in Eq. (16) decreases for any dP and dQ. Thus, χss
max

should become arbitrarily small in sufficiently high di-
mensions.
Similar to two-dimensional stacked-slider configura-
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FIG. 8. (Color online) A three-dimensional stacked-slider con-
figuration stealthy up to χ = 0.6981 . . .. This configuration
is obtained by sliding each vertical plane of particles relative
to each other and then sliding each vertical line in each plane
relative to each other starting from the simple cubic lattice.

TABLE II. Comparison of the maximum χ value of stacked
slider-phases predicted by the generalized model, χss

max, and
the maximum χ value of Bravais lattices, χ∗

max, in two, three,
and four dimensions.

d χss
max χ∗

max χss
max/χ

∗
max

2 π/4 π/
√
12 0.8660...

3 4π

9
√

3

2
√

2π

9
0.8712...

4
√

2π2

16

π2

8
0.7071...

tions, the higher-dimensional ones also have “implicit
constraints” (i.e. k vectors such that |k| ≥ K and
S(k) = 0). As seen in Eq. (11), S(k) = |ñ(k)|2/N = 0 as
long as 0 < |kQ| < K. One can thus choose arbitrarily
large kP such that |k| = |kP + kQ| ≥ K.

V. FEASIBLE REGION OF THE

CONFIGURATION SPACE

Although stacked-slider configurations are part of the
ground-state manifold of stealthy potentials, we will show
in this section that they are not entropically favored, as
indicated in Ref. 18. Entropically favored ground states
are the configurations that most likely appear in the
canonical ensemble in the zero-temperature limit [18].
In this limit, as a good approximation, the system can
only visit part of the configuration space where Φ′(rN )
(in Eq. (4)) is less than ǫ, where ǫ tends to zero as the
temperature tends to zero. This part of the configura-

tion space is therefore called the “feasible region”. If the
feasible region corresponding to one set of the ground
states is much smaller than the entire feasible region in
the configuration space, this set will almost never appear
in the canonical ensemble, i.e., they are not entropically
favored.
In the infinite-system-size limit, the feasible region of

any stacked-slider configuration is much smaller than
that of any crystal, if both the stacked-slider configu-
ration and the crystal are ground states. This is be-
cause as N → ∞, the configurational dimension nc (i.e.
the number of independent ways to deform the struc-
ture such that the Φ′(rN ) remains zero) of stacked-slider
phases scales more slowly than the number of parti-
cles N . For example, for a two-dimensional stacked-
slider configuration in which each row of particles can
slide independently, nc scales as

√
N . As discussed in

Sec. III, the number of zero eigenvalues of the Hes-
sian matrix of the potential energy, ne, is equal to nc.
Since a non-zero eigenvalue of the Hessian matrix corre-
spond to a quadratic scaling in one direction, in the dN -
dimensional configuration space, Φ′(rN ) has quadratic
scaling in dN − nc directions. In these directions, as
ǫ → 0, the width of the feasible region scales as

√
ǫ. In

the rest nc directions, the width of the feasible region is
much larger, since these directions correspond to trans-
lations of different rows of particles, which keeps Φ′(rN )
zero. Let the widths of the feasible region in these direc-
tions be L, the total volume of the feasible region of the
stacked-sliding phase is approximately

Vs ≈ Lncǫ
dN−nc

2 ≈ L
√
N ǫ

dN−

√

N
2 . (17)

In case of a crystalline structure, ne scales as N when
N → ∞. This can be seen in Fig. 9, where we plot
f = ne/(dN) versus N for triangular lattices at χ = 0.6.
This figure shows that f tends to some constant as N
grows, which means ne scales as N . Since a zero eigen-
value of the Hessian matrix of Φ′(rN ) implies a slower-
than-quadratic scaling in some direction, the width of the
feasible region in these ne directions scales larger than

√
ǫ

as ǫ → 0. Let the widths of the feasible region in these
ne directions be ǫ

x, where 0 < x < 1/2 is some exponent.
The width of the feasible region in the remaining dN−ne

directions scales as
√
ǫ. The total volume of the feasible

region of a crystal is approximately

Vc ≈ ǫ
dN−ne

2 ǫnex ≈ ǫ
dN(1−f)

2 ǫdNfx. (18)

The ratio of Vs and Vc is approximately

Vs

Vc

≈ L
√
N ǫ

dNf(1−2x)−
√

N

2 . (19)

Since x < 1/2, as N → ∞ and ǫ → 0, Vs

Vc
→ 0. There-

fore, the feasible region of the stacked-slider phase is
much smaller than that of the crystal. Since there are al-
ways crystalline structures competing with stacked-slider
phase, the latter is never entropically favored.
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FIG. 9. (Color online) The fraction of zero eigenvalues of the

Hessian matrix of the potential energy, f =
ne

dN
, for triangu-

lar lattices of various number of particles N at χ = 0.6.

VI. RELATIVE STABILITY OF

STACKED-SLIDER PHASES

We have shown that the feasible region of stacked-
slider phases is always smaller than that of crystal phases,
and thus concluded that stacked-slider phases are never
equilibrium phases. This conclusion is confirmed by low-
temperature molecular dynamics simulations reported in
Ref. 25, which found disordered structures for χ < 1/2
and crystalline structures for χ > 1/2. However, this
simple conclusion cannot explain or predict energy min-
imization results from high-temperature initial configu-
rations that were used previously [20], where a transi-
tion from disordered phases to metastable stacked-slider
phases was observed as χ increases, characterized by the
change of the support of S(k). In two dimensions, Ref. 20
reported that this transition is at χ = 0.57 . . ., but
high-fidelity simulations, reported in Sec. II, produced
stacked-slider configurations at χ = 0.5305 . . ., suggest-
ing that the transition is earlier than 0.5305 . . .. Another
observation on the disordered region supports our result:
Section V of Ref. 22 reported that the fraction of normal
modes with vanishing frequency, f , in disordered phases
is exactly 1 − 2χ for χ < 1/2. However, this exact re-
lation cannot be true for the χ > 1/2 region, since f
is non-negative. This suggests that there exists a sharp
transition at χ = 1/2, which is likely the phase transi-
tion to the stacked-slider phase. Although Ref. 22 only
reported the relation f = 1 − 2χ in two dimensions, it
explained this relation by simple counting arguments in-
volving the number of constraints versus the number of
degrees of freedom, and hence this relation should ap-
ply in any dimension. Therefore, for any d, as long as
stacked-slider phases exist for some χ above 1/2, there
should be a non-equilibrium phase transition from dis-
ordered phases to stacked-slider phases at the threshold
χ = 1/2.

It is noteworthy that one dimension is an exception
of the above discussion. Previously, the existence of im-
plicit constraints (k’s such that |k| ≥ K and S(k) = 0)
was often used to distinguish stacked-slider phases from
disordered phases [20, 22]. Therefore, one-dimensional
stealthy ground states in the range 1/3 < χ < 1/2,
proven to have implicit constraints [32], were considered
to be stacked-slider phases [22]. However, this study sug-
gests that one-dimensional stealthy ground states in this
range is not a typical stacked-slider phase. First, our
model only predicts stacked-slider phases if the space di-
mension, d, is a sum of two positive integers d = dP +dQ.
This requires that d ≥ 2. Second, the χ range of the
one-dimensional stealthy ground states with implicit con-
straints is also very different from that of the higher-
dimensional stacked-slider phases. We also found that
one-dimensional stealthy ground states in this χ range
satisfy the relation f = 1−2χ, and can be obtained from
energy minimizations starting from random initial config-
urations with 100% success rate, both are characteristics
of disordered phases [22].

VII. CONCLUSIONS AND DISCUSSION

In this paper, we studied using numerical and the-
oretical techniques stacked-slider phases, which are
metastable states that are part of the ground-state man-
ifold of “stealthy” potentials at densities in which crystal
ground states are favored entropically in the canonical
ensemble in the zero-temperature limit [18, 25]. The nu-
merical results suggested analytical models of this phase
in two, three and higher dimensions. Utilizing this model,
we estimated the size of the feasible region of the stacked-
slider phase, finding it to be smaller than that of crystal
structures in the infinite-system-size limit, which is con-
sistent with our recent previous work [18, 25]. In two
dimensions, we also determined exact expressions for the
pair correlation function and structure factor of the an-
alytical model of stacked-slider phases, and analyzed the
connectedness of the ground-state manifold of stealthy
potentials in this density regime.
Our analytical constructions demonstrate that

stacked-slider phases are non-periodic, statistically
anisotropic structures that possess long-range orien-
tational order but have zero shear modulus. Since
stacked-slider phases are part of the ground-state mani-
fold of stealthy potentials, they are also hyperuniform.
Therefore, stacked-slider phases are distinguishable
states of matter that are uniquely different from some
common states of matter listed in Table III. Note
that distinctions between the attributes indicated
in the table may be subtly different. For example,
crystals, quasicrystals, and stacked-slider phases all
have long-range orientational order, but with different
symmetries. While crystals can only have two-fold,
three-fold, four-fold, or six-fold rotational symmetries,
quasicrystals have prohibited crystallographic rotational
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TABLE III. Comparison of the properties of some common states of matter. Here “crystals” and “quasicrystals” signify perfect
crystals and perfect quasicrystals, respectively, without any defects (e.g., phonons and phasons). The checks and crosses indicate
whether or not different phases have the attributes listed in the first column.

crystals
[1]

quasicrystals
[2–6]

stacked-slider
phases

disordered
ground states of

stealthy potentials
[14, 18, 20–22]

liquid crystals
[7]

liquids
[19]

periodicity 3 7 7 7 7 7

positive
shear modulus

3 3 7 7 7 7

hyperuniformity 3 3 3 3 7 7

anisotropy 3 3 3 7 3 7

long-range
orientational order

3 7 3 7 3 7

symmetries. Stacked-slider phases generally do not have
any rotational symmetry, but the fact that they can
be constructed by stacking lower-dimensional stealthy
configurations in a higher-dimensional space makes the
stacking directions different from the sliding directions,
giving them their unique orientational order.
Our understanding of stacked-slider phases is only in

its infancy with many open questions. For example,
what is the nature of the associated excited states? Can
stacked-slider phases emerge from particles interacting
with other potentials not necessarily as ground states?
Can such phases be entropically favored in some ensem-
ble and with what other phases would it coexist? This is
just a partial list of possible of future avenues of research
in our understanding of this novel phase of matter.
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Appendix A: Connectedness of permutations of 2D

stacked-slider phase

As discussed in Sec. III, each two-dimensional stacked-
slider configuration is connected to a permutation of
the rectangular lattice. Therefore, a natural question
is whether or not these permutations of the rectangu-
lar lattice are also connected through sliding motions. If
all permutations of the rectangular lattice are connected,
then the entire stacked-slider phase ground-state mani-
fold is connected. We will show that, for a rectangular
lattice consist of A rows and B columns of particles, if
each row and each column can slide individually, then all
permutations of the rectangular lattice are connected if
and only if AB is even. We will number all the particles

from 1 to AB. Each permutation will be represented by
an A-by-B matrix. Three different sliding motions will
be frequently used in this section. They are:

• move the top row of particles to the right by one
particle spacing, denoted by

→⇒,

• move the leftmost column of particles upward by

one particle spacing, denoted by
↑⇒,

• and move the leftmost column of particles down-

ward by one particle spacing, denoted by
↓⇒.

As an example of this notation, for A = B = 2, per-

mutations

(

1 2

3 4

)

and

(

2 1

3 4

)

are connected because:

(

1 2

3 4

)

→⇒
(

2 1

3 4

)

. (A1)

Similarly, permutations

(

1 2

3 4

)

and

(

3 2

1 4

)

are con-

nected because:
(

1 2

3 4

)

↓⇒
(

3 2

1 4

)

. (A2)

So far we have demonstrated that it is possible to swap
the two adjacent particles in the first row (by Eq. (A1))
or the two adjacent particles in the first column (by
Eq. (A2)) for A = B = 2. Since the system has trans-
lational symmetry, one can swap any two adjacent par-
ticles. The swapping of any two non-adjacent particles
can be done by a series of adjacent-particle swapping.
For example, to swap non-adjacent particles 1 and 4 in
(

1 2

3 4

)

, one can swap particles 1 and 2, then swap par-

ticles 1 and 4, and then swap particles 2 and 4. Finally,
since we can swap any two particles, we can connect one
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permutation to any other permutation by swapping each
particle with the particle in its new place. Therefore, all
permutations of 2-by-2 rectangular lattices are connected
by row-sliding and column-sliding movements.
Next, we show that one can swap two adjacent particles

for A = 3 and B = 4. To swap the first two particles
in the first row, one can perform the following sliding
operations:







1 2 3 4

5 6 7 8

9 10 11 12







→⇒







4 1 2 3

5 6 7 8

9 10 11 12







↑⇒







5 1 2 3

9 6 7 8

4 10 11 12







→⇒







3 5 1 2

9 6 7 8

4 10 11 12







↓⇒







4 5 1 2

3 6 7 8

9 10 11 12







→⇒







2 4 5 1

3 6 7 8

9 10 11 12







↑⇒







3 4 5 1

9 6 7 8

2 10 11 12







→⇒







1 3 4 5

9 6 7 8

2 10 11 12







→⇒







5 1 3 4

9 6 7 8

2 10 11 12







↓⇒







2 1 3 4

5 6 7 8

9 10 11 12






. (A3)

To swap the first two particles in the first column, one
can perform the following sliding operations starting from
the 3rd-to-last configuration in Eq. (A3):







1 3 4 5

9 6 7 8

2 10 11 12







↓⇒







2 3 4 5

1 6 7 8

9 10 11 12







→⇒







5 2 3 4

1 6 7 8

9 10 11 12






.

(A4)

Eqs. (A3) and (A4) shows the steps to swap the first
two particles in the first row, or the first two particles
in the first column, for A = 3 and B = 4. This can be
generalized to anyA > 3 and any even B > 4. The gener-
alization to A > 3 is more obvious because the same steps
can be directly applied to any A and achieve the same
goal. The generalization to larger even B is less obvious.
For this case, one need to repeat the first four operations
in Eq. (A3) (B/2− 1) times and then perform the rest of
the steps in Eqs. (A3) or Eq. (A4). Since it is possible to
swap any two adjacent particles for any A and any even
B , from the same argument as the A = B = 2 case, all
permutations of particles for any A and any even B are
also connected. Similarly, all permutations of particles
for any even A and any B are also connected because a
90◦ rotation turns it to the even B case. Therefore, all
permutations are connected as long as AB is even.

When AB is odd, not all permutations are connected.
This is because none of the sliding operations change the
parity of the permutation. Thus, two permutations with
different parity cannot be connected with any combina-
tions of sliding operations.
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