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Systems of particles interacting with so-called “stealthy” pair potentials have been shown to
possess infinitely-degenerate disordered hyperuniform classical ground states with novel physical
properties. Previous attempts to sample the infinitely-degenerate ground states used energy min-
imization techniques, introducing an algorithm dependence that is artificial in nature. Recently,
an ensemble theory of stealthy hyperuniform ground states was formulated to predict the structure
and thermodynamics that was shown to be in excellent agreement with corresponding computer
simulation results in the canonical ensemble (in the zero-temperature limit). In this paper, we
provide details and justifications of the simulation procedure, which involves performing molecular
dynamics simulations at sufficiently low temperatures and minimizing the energy of the snapshots
for both the high-density disordered regime, where the theory applies, as well as lower densities. We
also use numerical simulations to extend our study to the lower-density regime. We report results
for the pair correlation functions, structure factors, and Voronoi cell statistics. In the high-density
regime, we verify the theoretical ansatz that stealthy disordered ground states behave like “pseudo”
disordered equilibrium hard-sphere systems in Fourier space. The pair statistics obey certain exact
integral conditions with very high accuracy. These results show that as the density decreases from
the high-density limit, the disordered ground states in the canonical ensemble are characterized by
an increasing degree of short-range order and eventually the system undergoes a phase transition to
crystalline ground states. In the crystalline regime (low densities), there exist aperiodic structures
that are part of the ground-state manifold, but yet are not entropically favored. We also provide
numerical evidence suggesting that different forms of stealthy pair potentials produce the same
ground-state ensemble in the zero-temperature limit. Our techniques may be applied to sample the
zero-temperature limit of the canonical ensemble of other potentials with highly degenerate ground
states.

I. INTRODUCTION

There has been a long-standing interest in the phase
behavior of many-particle systems in d-dimensional Eu-
clidean spaces Rd in which the particles interact with soft,
bounded pair potentials [1–12]. Considerable attention
has been devoted to the determination of the classical
ground states (global energy minima) of such interactions
[3, 6, 11, 12]. While typical interactions lead to unique
classical ground states, certain special pair potentials are
characterized by degenerate classical ground states – a
phenomenon that has attracted recent attention [12–22].
One family of such pair interactions are the so-called

“stealthy potentials” because their ground states cor-
respond to configurations that completely suppress sin-
gle scattering for a range of wavenumbers. The Fourier
transforms of these potentials are bounded, non-negative
and have compact support [12], and hence they have
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corresponding direct-space potentials that are bounded
and long-ranged. Because of their special construction in
Fourier space, finding the ground states of stealthy po-
tentials is equivalent to constraining the structure factor
to be zero for wave vectors k contained within the sup-
port of the Fourier transformed potential [12], as will be
summarized in Sec. II. In the case when the constrained
wave vectors lie in the radial interval 0 < |k| ≤ K, the
stealthy ground states fall within the class of hyperuni-
form states of matter [23] and can be tuned to have
varying degrees of disorder. Disordered hyperuniform
systems in general are of current interest because they
are characterized by an anomalously large suppression
of long-wavelength density fluctuations and can exist as
equilibrium or nonequilibrium states, either classically or
quantum mechanically [24–37]. Moreover, because disor-
dered hyperuniform states of matter have characteristics
that lie between a crystal and a liquid [12], they are en-
dowed with novel physical properties [18, 19, 38–46].

When a dimensionless parameter χ, inversely propor-
tional to the number density ρ and proportional to Kd

(size of the constrained region) is sufficiently small, the
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hyperuniform ground states are infinitely degenerate and
counterintuitively disordered (i.e., isotropic without any
Bragg peaks) [12]. However, when χ is large enough (ρ is
sufficiently small), there is a phase transition to a regime
in which the ground states are crystalline or highly or-
dered [13–15, 19]. For each spatial dimension d, there
is a special value of χ, χ∗

max, at which the ground state
is unique [47]. The unique ground state is the dual (re-
ciprocal lattice) of the densest Bravais lattice packing in
each dimension [12]. In two and higher dimensions, as
soon as χ drops below χ∗

max, the set of the ground states
become uncountably infinite and gradually includes pro-
gressively less ordered structures [12]. Similar to stealthy
potentials, a family of two-, three-, and four-body poten-
tials that lead to disordered ground states has also been
defined in Fourier space and studied [17, 18, 21].

Due to the complexity of the problem, almost all pre-
vious investigations of the ground states employed com-
puter simulations. Such numerical studies were carried
out in one, two and three dimensions [13, 14, 17–19]. The
ground states were sampled by minimization of poten-
tial energy at fixed densities starting from random initial
conditions in a d-dimensional cubic simulation box under
periodic boundary conditions. A few optimization tech-
niques were employed to find the global energy minima
with very high precision [14, 17].

Generally, a numerically obtained ground-state config-
uration depends on the number of particles N within the
fundamental cell, initial particle configuration, shape of
the fundamental cell, and particular optimization tech-
nique used [12]. Adding to the complexity of the problem
is that the disordered ground states are highly degener-
ate with a configurational dimensionality that depends
on the density, and there are an infinite number of dis-
tinct ways to sample this complex ground-state manifold,
each with its own probability measure. These nontrivial
aspects had made the task of formulating a statistical-
mechanical theory of stealthy degenerate ground states
a daunting one. Recently, we have formulated such an
ensemble theory that yields analytical predictions of the
structural characteristics and other properties of stealthy
degenerate ground states [12]. A number of exact results
for the thermodynamic and structural properties of these
ground states were derived that applied to general en-
sembles. We then specialized our results to the canonical
ensemble (in the zero-temperature limit) by exploiting an
ansatz that stealthy disordered ground states (for suffi-
ciently small χ) behave remarkably like “pseudo” disor-
dered equilibrium hard-sphere systems in Fourier space.
Our theoretical predictions for the pair correlation func-
tion g2(r) and structure factor S(k) of these entropi-
cally favored disordered ground states were shown to be
in agreement with corresponding computer simulations
across the first three space dimensions. We also made
predictions for the corresponding excited states for suffi-
ciently small temperatures that were in agreement with
simulations.

Because the focus of that previous investigation was

the development of ensemble theories, few simulation
details were presented about how the canonical ensem-
ble was sampled to produce stealthy disordered ground
states. One aim of the present paper is to provide a com-
prehensive description of the numerical procedure that
we used to produce the simulation results in Ref. 12.
Moreover, here we also extend those results by apply-
ing the simulation procedure to study numerically the
ground states in the canonical ensemble for all allowable
values of χ and thus investigate the entire phase diagram
for the entropically favored states across the first three
space dimensions. In the second paper of this series, we
will study the so-called exotic aperiodic “wavy phases”
identified in previous numerical work [14] (or “stacked-
slider phases”, as called in the sequel to this paper [48]),
a special part of the ground-state manifold. An analyti-
cal model will enable an even more detailed study of this
phase.

As a justification of sampling the canonical ensemble
instead of minimizing energy, we also demonstrate here
how a variety of different optimization techniques affect
the ground states that are sampled, which was not previ-
ously investigated [14, 17, 18]. This investigation reveals
that the pair statistics of the ground-state configurations
indeed generally depend on the algorithm. Moreover, we
show here that the energy minimization results depend
on the initial conditions as well. We also provide the rea-
son why the simulations in Ref. 12 and this paper employ
non-cubic, possibly deforming simulation boxes for d ≥ 2.
Because almost all previous numerical simulations were
performed using some specific form of stealthy potentials,
we show here that different forms of stealthy potentials
produce identical pair correlation functions, suggesting
that the specific choice of the potential form does not
affect the ensemble being sampled.

Among our major findings, we show that energy min-
imizations starting from random initial conditions may
lead to clustering of particles, the degree of which de-
pends on the algorithm for a finite range of χ below 1/2
across the first three space dimensions. When minimiz-
ing the energy starting from configurations equilibrated
at some temperature TE , the ground state configurations
discovered depend on TE . However, the algorithm depen-
dence diminishes in the TE → 0 limit. We also demon-
strate that the pair statistics [g2(r) and S(k)] in this limit
do not depend on the particular form of the stealthy po-
tential. The similarity between the structure factor in
this limit and the pair correlation function of an equilib-
rium hard-sphere system in direct space [12] is valid for
χ up to some dimension-dependent values between 0.25
and 0.33 in the first three space dimensions. Beyond
this range of χ, the hard-sphere analogy in Fourier space
undergoes modification. As χ increases further (to the
value of about 0.4 in two dimensions, for example), the
first peak in the structure factor diminishes while second
peak in the structure factor grows and engulfs the first
peak. Our simulated pair statistics obey certain exact
integral conditions in Ref. 12 with very high accuracy, in-
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dicating the high fidelity of the numerical results. In the
infinite-system-size limit, at χ = 0.5, the entropically fa-
vored ground states undergo a transition from disordered
states to crystalline states. Depending on the dimension,
this phase transition can occur when aperiodic structures
still are part of the ground state manifold, demonstrat-
ing that crystalline (ordered) structures can have a higher
entropy than disordered structures.
The rest of the paper is organized as follows: In Sec. II,

we briefly summarize the numerical collective-coordinate
procedure and other details of the simulation that we em-
ploy in the present paper with justifications. In Sec. III,
we study the dependence of the results on a variety of en-
ergy minimization algorithms, initial conditions, and the
forms of the stealthy potentials. In Sec. IV, we provide
pair correlation function, structure factor, Voronoi cell-
volume distribution, and configuration snapshots of the
stealthy hyperuniform ground states obtained from the
canonical ensemble in the zero-temperature limit. We
provide concluding remarks and discussion in Sec. V, in-
cluding suggestions for sampling the canonical ensemble
in the zero-temperature limit of other potentials with de-
generate disordered ground states.

II. MATHEMATICAL RELATIONS AND

SIMULATION PROCEDURE

As detailed in Sec. II of Ref. 12, we simulate point
processes in periodic fundamental cells (i.e. simulation
boxes) with a pairwise additive potential v(r) such that
its Fourier transform exists. Under nearest image con-
vention, the total potential energy can be calculated by
summing over all pairs of particles:

Φ(rN ) =
∑

i<j

v(rij), (1)

where N is the number of particles, rN = r1, r2, ..., rN is
the locations of the particles in d-dimensional Euclidean
space and rij = ri−rj . Instead of summing over all pair-
wise contributions in the real space, the potential energy
can also be represented in Fourier space:

Φ(rN ) =
1

2vF

[

∑

k

ṽ(k)|ñ(k)|2 −N
∑

k

ṽ(k)

]

, (2)

where vF is the volume of the fundamental cell, ṽ(k) =
∫

vF
v(r) exp(ik · r)dr is the Fourier transform of the pair

potential, ñ(k) =
∑N

j=1 exp(−ik · rj) is the complex col-

lective density variable (with ñ(k = 0) = N), and both
summations are over all reciprocal lattice vector k’s ap-
propriate to the fundamental cell. For every k 6= 0, ñ(k)
is related to the structure factor, S(k), via

S(k) =
|ñ(k)|2

N
. (3)

Given a ṽ(k), the corresponding real-space pair potential
is

v(r) =
1

vF

∑

k

ṽ(k) exp(−ik · r). (4)

In a finite-sized system, the real-space pair potential has
the same periodicity as the fundamental cell. Therefore,
in the infinite-volume limit, the cell periodicity disap-
pears.
A family of “stealthy” potentials, which completely

suppress single scattering for all wave vectors within
a specific cutoff in their ground states, are defined as
[13, 14, 17–20]:

ṽ(k) =

{

V (k), if |k| < K,

0, otherwise,
(5)

where V (k) is a positive isotropic function and K is a
constant. In this paper we always take K = 1, which
sets the length scale. We will also use V (k) = 1 unless
otherwise specified. In the infinite-system-size limit, the
isotropic ṽ(k) correspond to an isotropic real-space pair
potential v(r) [12]. However, for finite systems, the cor-
responding v(r) is anisotropic. In Appendix A, we com-
pare the infinite-system-size limit v(r) with the finite-size
v(r)’s in different shaped simulation boxes and select the
simulation box shape to be used in this paper based on
which v(r) is closest to the infinite-size-limit v(r).
From Eqs. (2) and (5), one can see that a configuration

is a stealthy ground state if ñ(k) = 0 for all k-points such
that 0 < |k| < K. Therefore, finding a ground state of a
stealthy potential is equivalent to constraining ñ(k) = 0
for all of those k-points. However, in a simulation, one
does not need to check all of the constraints. As detailed
in Ref. 12, if there are (2M + 1) k-points within the
constrained radius, only M of them are independent and
needed to be constrained to zero. Equation (2) can be
simplified as [49]:

Φ(rN ) =
1

vF

∑

k

ṽ(k)|ñ(k)|2 + C, (6)

where the sum is over all independent constraints, and

C = [N(N − 1)− 2N
∑

k

ṽ(k)]/(2vF ) (7)

is a constant independent of the particle positions r
N .

We now introduce a parameter

χ =
M

d(N − 1)
, (8)

which determines the degree to which the ground states
are constrained, and therefore the degeneracy and disor-
der of the ground states [14]. Note that the constraints
depend on K and the fundamental cell but are indepen-
dent of the specific shape of ṽ(k) as long as ṽ(k) > 0
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for all 0 < |k| < K. Therefore, changing ṽ(k) does not
change the set of the ground states. However, there is
no proof that changing ṽ(k) does not change the relative
sampling weights of the ground states.

In this paper we study various systems with different
χ’s and N ’s. One numerical complication is that these
numbers cannot be chosen arbitrarily, since M = χd(N−
1) must be an integer consistent with the specific shape
of the simulation box. (For example, a list of the allowed
M values for a two-dimensional square box is given in
Table II of Ref. 14.) This constraint is especially hard
to meet when simulating multiple systems at the same χ
value across dimensions. In fact, both χ and N in Table I
(see Appendix C) had to be chosen carefully to meet this
constraint.

Taking the gradient of Eq. (6) yields the forces on par-
ticles:

Fj = −▽jΦ(r
N ) =

2

vF

∑

k

k ṽ(k) Im[ñ(k) exp(ik · rj)],

(9)
where the sum is also over all independent constraints.
This equation enables us to perform both energy mini-
mizations and molecular dynamics (MD) simulations. In
an energy minimization, a derivative-based algorithm is
used. The first term on the right side of Eq. (6) is pro-
vided to the algorithm as the objective function and the
negative of the force in Eq. (9) is provided as the deriva-
tive. In order to minimize energy, we have tried differ-
ent algorithms including MINOP algorithm [50], steepest
descent algorithm allowing large steps [51], low-storage
BFGS (L-BFGS) algorithm [52–54], Polak-Ribiere con-
jugate gradient algorithm [51, 55], and our “local gradi-
ent descent” algorithm described in Appendix B. When
χ < 0.5, the objective function always ends up being
very close to zero (the minimum). The maximum end-
ing objective function for different algorithms varies from
as high as 10−7 for conjugate gradient algorithm, to
10−17 for local gradient descent and steepest descent al-
gorithms, to 10−20 for L-BFGS algorithm, and to as low
as 10−25 for MINOP algorithm. From our practical point
of view, all of these algorithms are precise enough, since
an error of 10−7 or lower is indiscernible from any re-
sults presented below. Because L-BFGS algorithm is the
fastest, we will use it unless otherwise specified.

The energy minimizations, if started from random ini-
tial configurations, will sample an algorithm-dependent,
non-equilibrium ensemble. To sample the canonical en-
semble at a given equilibrium temperature TE we use
MD simulations. One important parameter in MD sim-
ulations is the integration time step. Since the optimal
choice of the time step depends on the temperature, and
the latter varies across several orders of magnitude in
this paper, we desire a systematic way to determine the
optimal time step. Starting from an energy minimized
configuration and a very small time step (0.01 in dimen-
sionless units), we repeat the following steps 104 times to
equilibrate the system and find a suitable time step:

• Assign a random velocity from Boltzmann distri-
bution at TE to each particle.

• Calculate the total (kinetic and potential) energy
of the system E1.

• Evolve the system 1500 time steps using the veloc-
ity Verlet algorithm [56].

• Calculate the total energy of the system E2.

• If | ln E1

E2

| > 1 × 10−5, the time step is too large
and errors will build up quickly. Therefore, we de-
crease the time step by 5%. On the other hand,
if | ln E1

E2

| < 4 × 10−6, there is still some room to
increase the time step. Since increasing the time
step increases the efficiency of MD simulations, we
increase the time step by 5%.

After the system is equilibrated and the time step is cho-
sen, we perform constant temperature MD simulations
with particle velocity resetting [57]. A randomly cho-
sen particle is assigned a random velocity, drawn from
Maxwell-Boltzmann distribution, every 100 steps. We
take a sample configuration every 3000 time steps until
we have sampled 20000 configurations unless otherwise
specified. This amounts to an implementation of the gen-
eration of configurations in the canonical ensemble.
The above MD procedure works well for χ < 0.5. How-

ever, two new features arise when it is applied to χ ≥ 0.5
in all dimensions. First, the potential energy surface de-
velops local minima and energy barriers that can trap the
system if TE is too small. We address this problem by
using simulated annealing, employing a thermodynamic
cooling schedule [58] which starts at T = 2 × 10−3 and
ends at 10−6. Note that, by adopting a cooling schedule,
we concede that we may only take one sample at the end
of each MD trajectory, whereas a fixed-temperature MD
trajectory produces multiple samples.
The second new feature is that the entropically favored

ground states are crystalline for χ ≥ 0.5. Unlike disor-
dered structures, a crystalline structure has long-range
order and may not “fit” in simulation boxes with certain
shapes. To overcome the second problem, we simulate
isothermal-isobaric ensemble with a deformable simula-
tion box. Every 20 MD time steps, 10 Monte Carlo trial
moves to deform the simulation box are attempted. The
pressure is calculated from Eq. (41) of Ref. 12.
We employed the Wang-Landau Monte Carlo [59] to

attempt to determine the entropically favored ground
states for χ > 0.5 in two and three dimensions. The
Wang-Landau Monte Carlo is used to calculate the mi-
crocanonical entropy S(Φ) as a function of the potential
energy Φ. We limit our simulations to the energy range
3×10−10 < Φ−Φ0 < 10−9 (in dimensionless units), where
Φ0 is the ground state energy, by rejecting any trial move
that violates this energy tolerance. This energy range is
evenly divided into 1000 bins. Starting from a perfect
crystal structure in a simulation box shaped like a fun-
damental cell, small perturbations are introduced so that
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the energy is within the range. After that, 60 stages of
Monte Carlo simulations are performed, each stage con-
taining 3 × 107 trial moves. The “modification factor”
in [59] is f = exp[5/(n+ 10)], where n is the number of
stages.

III. DEPENDENCE ON ENERGY

MINIMIZATION ALGORITHM, MD

TEMPERATURE AND ṽ(k)

In this section, we present numerical simulation results
demonstrating that:

• Energy minimizations starting from Poisson initial
configurations using different algorithms can yield
ground states with different pair correlation func-
tions.

• Energy minimizations starting from MD snapshots
at different temperatures can yield ground states
with different pair correlation functions.

• For configurations obtained by minimizing energy
starting from MD snapshots at sufficiently small
temperature, pair correlation functions do not de-
pend on the minimization algorithm and the form
of the stealthy potential.

These results motivate the reason why we ultimately
study and report results in Sec. IV in the canonical en-
semble in the zero-temperature limit. For concreteness
and visual clarity, we present results here in two dimen-
sions. However, we have verified that all of the conclu-
sions here also apply to one and three dimensions.

We performed energy minimizations starting from
Poisson initial configurations (i.e. TE → ∞ state at fixed
density) using each of the 5 numerical algorithms men-
tioned in Sec. II at χ = 0.2 and χ = 0.4. The results
are shown in Figs. 1 and 2. At χ = 0.2, the pair corre-
lation functions produced by the MINOP algorithm and
the L-BFGS algorithm are almost identical. However,
the pair correlation function produced by the conjugate
gradient algorithm is noticeably different. The steepest
descent algorithm and our local gradient descent algo-
rithm produce a significantly different pair correlation
function with a much weaker peak at r = 0. The pair
correlation functions produced by some algorithms ap-
pear to have g2(r) ∝ log(r) divergence near the origin.
Since this divergence means particles have a tendency to
form clusters, we call it “clustering effect”. At χ = 0.4,
the clustering effect disappears, but the pair statistics
produced by different algorithms are still different. The
fact that different optimization algorithms produce dif-
ferent pair statistics means that they sample the ground-
state manifold with different weights. In other words,
different optimization algorithms are sampling different
ground-state ensembles.
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g 2(r
)

MINOP
Steepest Descent
L-BFGS
Conjugate Gradient
Local Gradient Descent
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FIG. 1. (Color online) Pair correlation function as obtained
from different optimization algorithms (as described in the
legend) starting from Poisson initial configurations in two di-
mensions at χ = 0.2. Each curve is averaged over 20,000
configurations of 136 particles each. The left inset zooms in
near the origin, showing the differences between the five al-
gorithms more clearly. The right inset uses a semi-logarithm
scale to show g2(r) ∝ log(r) near the origin.
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FIG. 2. (Color online) As in Fig. 1, except that χ = 0.4
and each curve is averaged over 20,000 configurations of 151
particles each. The inset zooms in near the first well, showing
the differences between the five algorithms more clearly.

In order to avoid the complexity caused by the details
of various optimization algorithms, we turn our interest
to the canonical ensemble in the T → 0 limit. To sam-
ple this ensemble, we perform molecular dynamics (MD)
simulations at sufficiently small temperature TE , period-
ically take “snapshots”, and then use a minimization al-
gorithm to bring each snapshot to a ground state. To de-
termine a “sufficiently small” TE, we calculated the pair
correlation functions at various TE ’s and present them
in Fig. 3. The energy minimization result starting from
TE → ∞ initial configurations clearly display “clustering
effect” at χ = 0.2. When TE goes to zero, the “cluster-
ing effect” also diminishes. At χ = 0.4, particles develop
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hard cores (g2(0) = 0), therefore there is no clustering
even if TE is large or infinite. However, the peak height of
g2(r) becomes dependent on TE at this χ value. For both
χ values, the pair correlation functions of the two low-
est TE ’s are almost identical, verifying that the TE → 0
limit exists. These results show that TE = 2 × 10−6 is
sufficiently small in two dimensions. Similarly, we have
found that TE = 2 × 10−4 and TE = 1 × 10−6 are suf-
ficiently small in one and three dimensions, respectively.
These temperatures are used in generating all of the re-
sults presented in Sec. IVA.
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=2×10
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, then L-BFGS

MD at T
E
=2×10
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, then L-BFGS
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E
=2×10

-6
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(a)
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FIG. 3. (Color online) Pair correlation function produced by
L-BFGS algorithm starting from snapshots of MD at different
equilibration temperatures TE , (a) χ = 0.2 and (b) χ = 0.4.
Each curve is averaged over 20,000 configurations of 136 par-
ticles each or 151 particles each.

The energy minimization result starting from Poisson
initial configurations is different for different algorithms,
but the canonical ensemble in the T → 0 limit should
not depend on any particular algorithm. After finding
that TE = 2 × 10−6 is sufficiently small, we confirm the
disappearing of algorithmic dependence by calculating
the pair correlation function produced by different energy
minimization algorithms starting from MD snapshots at

TE = 2 × 10−6. Figure 4 shows the results. The curves
for all algorithms almost coincide.
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r
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g 2(r
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L-BFGS
Conjugate Gradient
Local Gradient Descent

FIG. 4. (Color online) Pair correlation function produced by
the five different algorithms starting from snapshots of MD
at equilibration temperature TE = 2× 10−6 at χ = 0.2. Each
curve is averaged over 20,000 configurations of 136 particles
each.

Lastly, the function V (k) in Eq. (5) can have differ-
ent forms. This paper mainly use V (k) = 1 but we
also want to know if the results obtained using this form
are equivalent to those generated using other positive
isotropic forms of V (k) as well. In principle, stealthy po-
tentials of any form should have the same set of ground-
state configurations, but the form of the stealthy poten-
tial could theoretically affect the curvature of the poten-
tial energy surface near each ground-state configurations,
and thus also affect their relative weights. Figure (5)
shows the pair correlation function produced by different
V (k)’s. The pair correlation functions for V (k) = 1 and
V (k) = (1 − k)2 at TE = 2 × 10−6 are almost identical.
For V (k) = (1 − k)6, we initially tried TE = 2 × 10−6

but found that the “clustering effect” is still noticeable.
We further lowered the temperature to TE = 2 × 10−10

to completely suppress the “clustering effect” to produce
a pair correlation function identical to that of V (k) = 1
and V (k) = (1−k)2 potentials. This result suggests that
the functional form of V (k) does not produce noticeable
differences in the ground-state ensembles in the T → 0
limit of the canonical ensemble.
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FIG. 5. (Color online) Pair correlation function produced by
different potentials starting from snapshots of MD at suffi-
ciently low temperature at χ = 0.2. Each curve is averaged
over 20,000 configurations of 136 particles each.

IV. CANONICAL ENSEMBLE IN THE T → 0
LIMIT

We will show here that the entropically favored ground
states in the canonical ensemble in the T → 0 limit for
the first three space dimensions are very different below
and above χ = 0.5. For χ < 0.5, the entropically favored
ground states are disordered while for χ ≥ 0.5 the entrop-
ically favored ground states are crystalline. Therefore, we
will characterize them differently. For χ < 0.5, we will
report the pair correlation function, structure factor, and
Voronoi cell statistics. For sufficiently small χ, we will
show that the simulation results agree well with theory
[12]. For χ ≥ 0.5, we will report the crystal structures.
The numbers of particles in all of the systems reported
in this section are collected in Appendix C.

A. χ < 0.5 region

Representative entropically favored stealthy ground
states in the first three space dimensions at χ = 0.1 and
χ = 0.4 are shown in Figs. 6-8. As χ increases from 0.1 to
0.4, the stealthiness increases, accompanied with a visu-
ally perceptible increase in short-range order. This trend
in short-range order is consistent with previous studies
[14, 17, 18].

(a)

(b)

FIG. 6. (Color online) Representative one-dimensional entropically favored stealthy ground states at (a) χ = 0.1 and (b)
χ = 0.4.

(a) (b)

FIG. 7. (Color online) Representative two-dimensional entropically favored stealthy ground states at (a) χ = 0.1 and (b)
χ = 0.4.
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(a) (b)

FIG. 8. (Color online) Representative three-dimensional entropically favored stealthy ground states at (a) χ = 0.1 and (b)
χ = 0.4.
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FIG. 9. (Color online) Structure factors for 1 ≤ d ≤ 3 for 0.05 ≤ χ ≤ 0.33 from simulations and theory [12]. The smaller χ
simulation results are also compared with the theoretical results in the infinite-volume limit [12]. For χ ≤ 0.1, the theoretical
and simulation curves are almost indistinguishable, and the structure factor is almost independent of the space dimension.
However, simulated S(k) in different dimensions become very different at larger χ. Theoretical results for χ ≥ 0.25 are not
presented because they are not valid in this regime.
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FIG. 10. (Color online) Pair correlation functions for 1 ≤ d ≤ 3 for 0.05 ≤ χ ≤ 0.33 from simulations and theory [12]. The
smaller χ simulation results are also compared with the theoretical results in the infinite-volume limit [12]. For χ ≤ 0.1, the
theoretical and simulation curves are almost indistinguishable. Theoretical results for χ ≥ 0.25 are not presented because they
are not valid in this regime.

We have calculated the pair correlation functions and
the structure factors for various χ values. Results for
0.05 ≤ χ ≤ 0.33 are shown in Figs. 9 and 10. The χ < 0.2
results are in excellent agreement with the “pseudo hard-
sphere ansatz”, which states that the structure factor
behaves like pseudo equilibrium hard-sphere systems in
Fourier space [12]. However, the theory gradually be-
comes invalid as χ increases.
The pair correlation functions of the entropically fa-

vored stealthy ground states are shown in Fig. 10. When
χ ≤ 0.2, since the structure factor is similar to the pair
correlation function of the hard-sphere system, inversely
the pair correlation function is also similar to the struc-
ture factor of the hard-sphere system. As χ grows larger,
the pseudo hard-sphere ansatz gradually deviates from
the simulation result.
We have checked that these pair statistics are consis-

tent with four theoretical integral conditions of the pair
statistics in the infinite-volume limit [12]. The first three
conditions are Eqs. (58), (59), and (63) of Ref. 12, which
are

∫

Rd

P (r)dr = 0, (10)

∫

Rd

P (r)v(r)dr = 0, (11)

and

g2(0) = 1− 2dχ+ 2d2χ

∫ ∞

K

kd−1Q̃(k)dk, (12)

where P (r) is the Fourier transform of Θ(k−1)Q̃(k), Θ(x)

is the Heaviside step function, and Q̃(k) = S(k)− 1.

The fourth condition is that the pressure calculated
from the “virial equation” [12] has to be either non-
convergent or convergent to the pressure calculated from
the energy route [12]. All pair statistics in Figs. 9
and 10 were generated using the step-function potential
(the V (k) = 1 case of Eq. (5)), but this potential does
not lead to a convergent virial pressure. However, as
we have shown earlier, the stealthy ground states that
we generated here are also the ground states of other
stealthy functional forms ṽ(k). In one dimension, to
test our simulation procedure, we used the potential form
V (k) = (1 − k) to calculate the pressure from both the
virial equation (Eq. (43) of Ref. 12) and the energy equa-
tion (Eq. (41) of Ref. 12). The pressure from the virial
equation converges, and agrees with the exact pressure
from the energy equation, thus confirming the accuracy
of our numerical results. These checks involve integrals of
g2(r) and S(k) that are only slowly converging. There-
fore, passing them demonstrates that our results have
very high precision.
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FIG. 11. (Color online) Structure factor and pair correlation
function for d = 2 for 0.33 ≤ χ ≤ 0.46, as obtained from
simulations.

For smaller χ values, the maximum of the structure
factor is at the constraint cutoff k = K. However, for
higher χ values, the maximum of S(k) is no longer at
k = 1. To probe this transition we have calculated the
structure factor in two dimensions for 0.33 ≤ χ ≤ 0.46.
The results are shown in Fig. 11. As χ increases, the
peak at k = 1 gradually decreases its height, while the
subsequent peak gradually grows and engulfs the first
peak.

Besides pair statistics, other widely used characteri-
zation of point patterns include certain statistics of the
Voronoi cells [14, 60–62]. A Voronoi cell is the region con-
sisting of all of the points closer to a specific particle than
to any other. We have computed the Voronoi tessellation
of the entropically favored stealthy ground states using
dD Convex Hulls and Delaunay Triangulations package
[63] of Computational Geometry Algorithms Library [64].
Since the number density of the stealthy ground states
depends on the dimension and χ, we rescaled each con-
figuration to unity density for comparison of the Voronoi
cell volumes. The probability distribution function p(vc)
of the Voronoi cell volumes (where vc is the volume of
a Voronoi cell) are shown in Fig. 12. In the same di-

mension, as χ increases, the distribution of Voronoi cell
volumes narrows. This is expected because the system
becomes more ordered as χ increases. For the same χ,
the distribution also narrows as the dimension increases,
consistent with theoretical results that at fixed χ, the
nearest-neighbor distance distribution narrows as dimen-
sion increases [12]. In Fig. 12, we additionally show
the Voronoi cell-volume distribution of saturated random
sequential addition (RSA) [65–67] packings, the sphere
packings generated by randomly and sequentially plac-
ing spheres into a large volume subject to the nonover-
lap constraint until no additional spheres can be placed.
Saturated RSA packings are neither stealthy nor hyper-
uniform [65, 66]. However, the Voronoi cell-volume dis-
tributions of saturated RSA packings look similar to that
of the entropically favored stealthy ground states. This
is not unexpected because Voronoi cell statistics are local
characteristics, and hence are not sensitive to the stealth-
iness, which is a large-scale property.
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FIG. 12. (Color online) Voronoi cell-volume distribution for
1 ≤ d ≤ 3 for 0.05 ≤ χ ≤ 0.25. For the same dimension,
the Voronoi cell-volume distribution becomes narrower when
χ increases. For the same χ, the Voronoi cell-volume distri-
bution also becomes narrower when dimension increases. We
also present Voronoi cell-volume distributions of RSA pack-
ings at saturation here.
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One interesting phenomenon is that as χ increases and
approaches 1/2, systems that are not sufficiently large
can become crystalline. In Fig. 13, we show two snap-
shots of MD simulations at χ = 0.48. The smaller con-
figuration is crystalline. However, systems that are four
times larger remains disordered at the same χ and tem-
perature. Therefore, this strongly indicates that crystal-
lization is a finite-size effect for χ tending to 1/2 from
below.

(a)

(b)

FIG. 13. (Color online) (a) Low-temperature MD snapshot
of a 126-particle system at χ = 0.48, the ground-state con-
figuration is crystalline. (b) MD snapshot of a 504-particle
system at the same TE and χ, the system does not crystallize
and is indeed disordered without any Bragg peaks.

B. χ ≥ 0.5 region

As explained in Sec. II, we perform MD-based simu-
lated annealing with Monte Carlo moves of the simula-
tion box for χ > 0.5, since this method works better with
rough potential energy surface and can mitigate the finite
size effect. We performed this simulation at χ = 0.55,
χ = 0.73, and χ = 0.81 in two dimensions. The results
are shown in Fig. 14. The resulting configuration is al-
ways triangular lattice. Even though the ground-state
manifold in this χ regime contains so-called aperiodic
“wavy” phases discovered previously [14] [but which are
called “stacked-slider” phases in the sequel to this pa-
per [48], since they are aperiodic configurations with a
high degree of order in which rows (in two dimensions)
or planes (in three dimensions) of particles can slide past
each other] as well as crystals other than the triangular
lattice, the entropically favored ground state is always a
triangular lattice. This means that the triangular lattice
has a higher entropy than stacked-slider phases, although

the latter appear to be more disordered [68].
Although we will show analytically that crystals are

more entropically favored than stacked-slider phases in
the upcoming paper of this series, we still need simula-
tion results to determine which crystal has the highest
entropy. The results of MD-based simulated annealing
with Monte Carlo moves of the simulation box suggest
that triangular lattice has the highest entropy in two di-
mensions. It seems natural to apply the same technique
to three dimensions to determine the entropically favored
crystal structure. However, we were unable to crystallize
the system in three dimensions. Even the longest cooling
schedule that we tried resulted in stacked-slider phases.

(a)

(b)

(c)

FIG. 14. (Color online) MD-based simulated annealing result
at (a) χ = 0.55, (b) χ = 0.73, and (c) χ = 0.81. The ending
configuration is triangular lattice except for small deforma-
tions in the χ = 0.55 case.

Another way to find the entropically favored crystal is
to use Wang-Landau Monte Carlo to directly calculate
the entropy of different crystal structures as a function
of the potential energy. We have performed this simula-
tion on two-dimensional triangular lattice, square lattice,
and three-dimensional body-centered cubic (BCC) lat-
tice, face-centered cubic (FCC) lattice, and simple cubic
(SC) lattice. The results are shown in Figs. 15 and 16. In
all cases the entropy decreases as the energy decreases. In
two dimensions, the entropy of the square lattice clearly
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decreases faster than that of the triangular lattice at ev-
ery χ values, confirming that the triangular lattice is
entropically favored over the square lattice in the zero-
temperature limit. In three dimensions at χ = 0.58, the
entropy of the FCC lattice decreases more slowly than
that of the BCC and SC lattice, suggesting that the en-
tropically favored ground state in three dimensions at
χ = 0.58 is the FCC lattice. At higher χ values, the scal-
ing of the entropy of the FCC lattice and the BCC lattice
become very close to each other, preventing us from de-
termining the entropically favored ground state at these
χ values.
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FIG. 15. (Color online) Microcanonical entropy as a function
of energy S(Φ) calculated from Wang-Landau Monte Carlo of
triangular lattice and square lattice at various χ’s. Here Φ0

denotes the ground-state energy.
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FIG. 16. (Color online) Microcanonical entropy as a function
of energy S(Φ) calculated from Wang-Landau Monte Carlo of
BCC lattice, FCC lattice, and SC lattice at various χ’s. A
curve for SC lattice is not presented for χ ≥ 0.68 because the
latter is not a ground state at such high χ values. Here Φ0

denotes the ground-state energy.

V. CONCLUSIONS AND DISCUSSION

The uncountably infinitely degenerate classical ground
states of the stealthy potentials have been sampled previ-
ously using energy minimizations. We demonstrate here
that this way of sampling the ground states to produce
ensembles of configurations introduces dependencies on
the energy minimization algorithm and the initial con-
figuration. Such artificial dependencies are avoided in
studying the canonical ensemble in the T → 0 limit. We
sample this ensemble by performing MD simulations at
sufficiently low temperatures, periodically taking snap-
shots, and minimizing the energy of the snapshots.
The configurations in this ensemble become more or-

dered as χ increases and obey certain theoretical con-
ditions on their pair statistics [12], similar to previous
energy minimization results. However, other properties
of this ensemble are unique. First, our numerical re-
sults demonstrate that the pair statistics of this ensem-
ble displays no “clustering effect” (divergence of g2(r) as
r → 0) for any χ values, and is independent of the func-
tional form of the stealthy potential. Second, we numeri-
cally verify the theoretical ansatz [12] that for sufficiently
small χ stealthy disordered ground states behave like
”pseudo” disordered equilibrium hard-sphere systems in
Fourier space, i.e., S(k) has the same functional form as
the pair correlation function for equilibrium hard spheres
for sufficiently small densities. Third, when χ is above
the critical value of 0.5, our results strongly indicate that
crystal structures are entropically favored in both two
and three dimensions in the infinite-volume limit. Our
numerical evidence suggest that the entropically favored
crystal in two dimensions is the triangular lattice. How-
ever, we could not determine the entropically favored
crystal structure in three dimensions. For finite systems,
the disordered-to-crystal phase transition can happen at
a slightly lower χ. A theoretical explanation of this phe-
nomenon remains an open problem.
Besides ground states of stealthy potentials, other dis-

ordered degenerate ground states of many-particle sys-
tems have been studied using energy minimizations.
Specifically, previous researchers have constrained the
structure factor to have some targeted functional form
other than zero for prescribed wave vectors [17, 18, 21].
Finding the configurations corresponding to such tar-
geted structure factors amounts to finding the ground
states of two-, three- and four-body potentials, in con-
trast to the two-body stealthy potential studied in the
present paper. This situation is the most general appli-
cation of the collective-coordinate approach. It will be
interesting to study the resulting pair statistics of the
ground states for these more general interactions in the
zero-temperature limit of the canonical ensemble.
The collective-coordinate approach is an independent

and fruitful addition to the basic statistical mechan-
ics problem of connecting local interactions to macro-
scopic observables. One important feature of collective-
coordinate interactions is that it has uncountably in-
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finitely degenerate classical ground states [12]. In the
case of isotropic pair interactions, the only other sys-
tem that we know with this feature is the hard-sphere
system. However, there are two important differences
between hard-sphere systems and collective-coordinate
ground states. First, while the dimensionality of the
configuration space of equilibrium hard-sphere systems
consisting of N particles within a periodic box is fixed
[simply determined by the nontrivial number of degrees
of freedom, d(N−1)], the dimensionality of the collective-
coordinate ground-state configuration space decreases as
χ increases and, on a per particle basis, eventually van-
ishes [12]. The decreased dimensionality of the ground-
state configuration space creates challenges for accurate
sampling of the entropically favored ground states us-
ing numerical simulations and hence the development of
better sampling methods is a fertile ground for future
research.

Second, while the probability measure of the equi-
librium hard-sphere system is uniform over its entire
ground-state manifold, that of the stealthy ground states
is not uniform. To illustrate this point, imagine a one-
dimensional energy landscape that has a double-well po-
tential behavior in a portion of the configuration space,
as shown in Fig. 17. Each minimum represents a degen-
erate ground state (as we find with stealthy potentials)
and therefore the well depths of the minima are the same.
Let us now consider harmonic approximations of the two
wells in the vicinity of x1 and x2, respectively.

V1(x) = a1(x− x1)
2,

and

V2(x) = a2(x− x2)
2,

where x is the configurational coordinate. At very low
temperature, to a good approximation, the system can
only visit the part of the configuration space with energy
less than ε, and ε → 0 as T → 0. Solving Vi(x) < ε,
where i = 1, 2, one finds the feasible region of configura-
tion space associated with both wells:

x1 −
√

ε/a1 < x < x1 +
√

ε/a1,

and

x2 −
√

ε/a2 < x < x2 +
√

ε/a2.

When a1 6= a2, we see that the feasible regions associ-
ated with the two potential wells have different ranges.
Therefore, the weights associated with the two minima,
i.e. the relative probabilities for finding the system
in the vicinity of those minima, will be also different.
Similarly, in the stealthy multi-dimensional configura-
tion space that we are studying, the magnitude of the
eigenvalues of the Hessian matrix will determine the rel-
ative weights. Therefore, the probability measure of the

stealthy ground states is not uniform over the ground-
state manifold, unlike the degenerate ground states of
classical hard spheres. Our low-temperature MD simula-
tions sample ground states with this non-uniform prob-
ability measure. It would be useful to devise theories to
estimate the weights of different portions of the ground-
state manifold. However, a feature that complicates the
problem is that the Hessian matrix has zero eigenval-
ues. In the associated directions of the eigenvectors of
the configuration space, the energy scales more slowly
than quadratically (harmonically) but we do not know
the specific form.
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FIG. 17. (Color online) A model one-dimensional energy land-
scape with two wells located at x1 and x2 of the same depth
but different curvatures. The “feasible regions”, i.e. regions
where V (x) < ε, is marked by red dashed lines.

This paper, which investigates the entropically favored
ground states, is the first of a two-paper series. In the
second paper, we will study aspects of the ground-state
manifold with an emphasis on configurations that are not
entropically favored for χ above 1/2 (the ordered regime).
In particular, we will more fully investigate the nature
of so-called “wavy” crystals or “stacked-slider” phases,
discovered in Ref. 14. Using an analytical description of
such states, we will demonstrate that they are part of
the ground state but are not entropically favored. Our
analytical model will also demonstrate that stacked-slider
phases exist in three and higher dimensions.

ACKNOWLEDGMENTS

G. Z. thanks Steven Atkinson for his careful reading
of some parts of the manuscript. This research was sup-
ported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and En-
gineering under Award No. DE-FG02-04-ER46108.

Appendix A: Real-space potential in finite systems



14

(a) (b)

(c) (d)

(e) (f )

(g)

FIG. 18. (Color online) A portion of the real-space potential v(r) around the origin for the stealthy potential (5) with K = 1
and V (k) = 1. (first 3 rows) Real-space potential in a periodic simulation box that is [(a), (c), and (e)] square or [(b), (d), and
(f)] rhombic in shape; the latter has a 60◦ interior angle. The volumes of the simulation boxs, vF , are [(a) and (b)] 100, [(c) and
(d)] 400, and [(e) and (f)] 1385. (a)-(d) use unrealistically small simulation boxes and is intended to illustrate finite-size effect
only. (g) The real-space potential in the infinite-system-size limit. All potentials are normalized by their respective values at
the origin since scaling does not affect the ground state. Note that starting from the center, the dark (red) region indicate the
highest values of the potential, whereas towards the edge of the box, the dark (blue) region indicate the lowest values of the
potential.

In the infinite-system-size limit, an isotropic ṽ(k) cor-
respond to an isotropic real-space pair potential v(r).
However, for finite systems, the corresponding v(r) is
anisotropic. To illustrate the finite-size effect, we com-
pare the two-dimensional real-space potential v(r) in the
infinite-system-size limit to corresponding potentials as-

sociated with finite-sized fundamental cells of square and
rhombic shapes of different volumes in Fig. 18. The real-
space potential in the rhombic simulation box with a 60◦

interior angle is appreciably more isotropic than the real-
space potential in a square simulation box. Therefore, in
this paper, we will henceforth use rhombic fundamental
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cells in two dimensions. Similarly, in three dimensions,
we always use a simulation box shaped like a fundamen-
tal cell of a body-centered cubic (BCC) lattice since BCC
lattice is the unique ground state at χ∗

max.

Appendix B: Local Gradient Descent Algorithm

Most optimization algorithms are designed for effi-
ciency. They use complex rules to determine the direc-
tion of the next step and take as large steps as possible.
These features make their path less obvious. To mini-
mize energy in the path following the gradient vector, we
designed a “local gradient descent algorithm” with the
following steps:

1. Start from an initial guess, x, find the function
value f(x) and derivative f ′(x).

2. Start from a relatively large (10−3 times the simula-
tion box side length) step size, s, calculate the vec-

tor to the next step ∆x = −s f ′(x)
|f ′(x)| . Find the func-

tion value at the next step f(x+∆x). Calculate the
change of function value ∆f = f(x+∆x) − f(x).

3. If we are following the path of steepest descent ac-
curately, the change of the function value should be
close to f ′(x) · ∆x. If the difference between ∆f
and f ′(x) ·∆x is less than one percent, we accept
this move. Otherwise, we abort this move and half
the step size s.

4. Repeat the above steps until a minimum is found
with enough precision.

Appendix C: Number of particles of every system in

Sec. IV

TABLE I. The number of particles N of each systems shown
in Figs. 9 and 10.

χ N for d = 1 N for d = 2 N for d = 3

0.05 1001 541 261

0.1 501 270 131

0.143 351 190 92

0.2 251 136 66

0.25 201 109 53

0.33 151 181 191

In this appendix we report the number of particlesN in
each system in Sec. IV. Both configurations in Fig. 6 con-
sist of 51 particles. Configurations (a) and (b) in Fig. 7
consist of 271 and 151 particles, respectively. Those in
Fig. 8 consist of 131 and 161 particles, respectively.

TABLE II. The number of particles N of each systems shown
in Fig. 11.

χ N

0.33 181

0.35 171

0.38 161

0.4 151

0.43 141

0.46 131

TABLE III. The number of particles N of each systems shown
in Fig. 12.

χ N for d = 1 N for d = 2 N for d = 3

0.05 1001 541 261

0.1 501 270 131

0.143 351 190 92

0.2 251 136 66

0.25 201 109 53

The number of particles of each system in Figs. 9, 10,
11, and 12 are shown in Table I, I, II, and III, respec-
tively. Each configuration in Figs. 14, 15, and 16 consist
of 36, 400, and 343 particles, respectively.
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