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Abstract

Non-equilibrium and equilibrium fluid systems differ due to the existence of long-range corre-

lations in non-equilibrium that are not present in equilibrium, except at critical points. Here we

examine fluctuations of the temperature, of the pressure tensor, and of the heat current in a fluid

maintained in a non-equilibrium stationary state (NESS) with a fixed temperature gradient, a sys-

tem where the non-equilibrium correlations are especially long ranged. For this particular NESS

our results show that (1) The mean-squared fluctuations in non-equilibrium differ markedly in their

system size scaling compared to their equilibrium counterparts and (2) There are large, nonlocal,

correlations of the normal stress in this NESS. These terms provide important corrections to the

fluctuating normal stress in linearized Landau-Lifshitz fluctuating hydrodynamics.

In recent years fluctuations in fluids

maintained in non-equilibrium steady states

(NESS), and in non-equilibrium fluids in gen-

eral, have attracted a large amount of atten-

tion. Of particular interest are the studies of

Evans, Cohen and Morris (ECM) [1], Evans

and Searles [2], and of Gallavotti and Cohen

[3]. Later related work was done by Jarzynski

[4] and by Crooks [5]. Particularly in the ear-

lier work, a focus was on non-equilibrium cur-

rents and entropy production. For example,

if Pxyτ is the time average of the microscopic

stress tensor, Pxy, over a time interval τ then

in a NESS with a steady shear rate, γ, ECM

studied the probability distribution P(Pxyτ )

in a N−particle system. Using an analysis

based upon their computer simulations, they

showed that,

P(Pxyτ )

P(−Pxyτ )
= exp

{

Nγ

ˆ τ

0

dτPxy[Γ (τ)]

}

(1)

On the RHS the phase space time-

dependence Γ (τ) is restricted such that only

the dynamical states i with a given value of

Pxyτ =
´ τ

0
dτPxy[Γi(τ)] are taken into ac-

count. They also numerically determined

P(Pxyτ ) and found it had a sharp peak

around it’s average value and that although

the bulk of the distribution was consis-

tent with positive entropy production, there

was a tail part consistent with negative en-

tropy production. The system size or N -

dependence of the width of the distribution,
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P(Pxyτ ) is an interesting open problem.

Prior to this work, it was established in the

1960′s through the 1980′s that correlations

are very different in non-equilibrium fluid sys-

tems than they are equilibrium systems [6–8].

For example, in the early 1980′s it was pre-

dicted [9] that the temperature and density

correlations in a fluid in a NESS with a tem-

perature gradient were extraordinarily long-

ranged (in a sense growing with system size).

This prediction was subsequently confirmed

[10, 11] with great precision in small angle

light scattering experiments. For very small

angle scattering, the scattering was found to

be larger than the equilibrium scattering by

a factor of 105. All of this implies that the

statistics of fluctuations in non-equilibrium

fluids will in general be very different than

those for fluctuations in the same fluid in an

equilibrium state. For reviews see [8, 11–13]

Here we will expand on this point by ex-

amining the system size dependence of not

only the temperature fluctuations and distri-

bution, but also the fluctuations and distribu-

tions of the pressure tensor, and heat current

for a fluid in a NESS with a temperature gra-

dient. This particular NESS (see also point 6

in the discussion) is unique because the cor-

relations are so strong that they extend over

the entire system size, see Eq.(3). This is very

different then the correlations in other NESS,

which typically decay as a power law. We find

that that temperature and pressure or nor-

mal stress tensor fluctuations in a fluid with a

temperature gradient are so large that many

of the assumptions that are commonly made

about non-equilibrium fluids when one uses

equilibrium-like methods, such as maximum

entropy formalisms, power series expansions,

etc. to describe their properties, are called

into question and may not be justified. We

show that relative root mean square fluctua-

tions of some thermodynamic and transport

quantities do not in general scale with par-

ticle number, N, as 1/N1/2 as do their equi-

librium counterparts. We also describe the

distributions of these fluctuations, and point

out their anomalous properties as well.

The new results in this paper are: (1) We

show that the previously computed temper-

ature fluctuations for a fluid in a tempera-

ture gradient scale as 1/N (d−2)/2 and not as

1/N1/2, (2) We compute for the first time the

pressure or stress fluctuations for a fluid in a

temperature gradient. These fluctuations are

shown to scale as 1/N (d−2), (3) We compute

for the first time the heat current fluctua-

tions for a fluid in a temperature gradient.

These fluctuations do not exhibit anamolous

scaling, (4) We discuss the implications of

these fluctuation results for the distributions

of temperature, pressure, and heat current,

(5) We argue that the linearized about the

NESS Landau and Lifshitz fluctuating hy-
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drodyanmics are not consistent with the long

range nature of the normal stress fluctua-

tions.

We start with the well-known expression

for the small wavenumber behavior of the

temperature fluctuations [9, 11],

〈

|δT (k)|2
〉

NESS
=

kBT

ρDT (ν +DT )

(k‖∇T )2

k6
.(2)

Here ρ, ν and DT are the mass density, the

kinematic viscosity, and thermal diffusivity of

the fluid. This result is valid as long as k >

1/L, with L the system size. Here we have

assumed that the temperature gradient is in,

say, the z-direction so that k‖ =
√

k2
x + k2

y is

the magnitude of the wavenumber parallel to

the confining walls. We note that this cor-

relation function is long ranged as indicated

by its k−4 behavior at small wave numbers,

while as the equilibrium temperature fluctu-

ations are localized in space with no singular

behavior of the corresponding Fourier trans-

forms at small wave numbers. In order to de-

termine the spatial correlation of the temper-

ature fluctuations one must invert the Fourier

transform to obtain the correlation function

CT,NESS(r) [11]. Using Eq. (2) we find that

the spatial average of the temperature cor-

relations has a strikingly different size de-

pendence than the corresponding equilibrium

temperature correlation. That is

∆̄T,NESS ∝
kBT

ρDT (ν +DT )
L4−d(∇T )2, (3)

where

∆̄T,NESS =
1

Ld

ˆ

drCT,NESS(r), (4)

where L is the characteristic system size. In

general we will suppress numerical factors in

spatially averaged quantities. The N depen-

dence of this spatial average is easily found

to be of order N (4−d)/dwhile the equilibrium

quantity would be

∆̄T,eq =
kBT

2

Ldρcv
, (5)

where cv is the specific heat per mass at

constant volume. The N -dependence quoted

above for Eq.(3) is for fixed ∇T . Physically,

and experimentally, it may be more reason-

able to use ∇T = ∆T
L

with ∆T the tem-

perature distance between the fluid confin-

ing plates in the direction of the temperature

gradient and fix ∆T . In this case the scaling

of Eq.(3) is ∆̄T,NESS ∝ 1/Ld−2 ∝ 1/N (d−2)/d.

In either case ∆̄T,NESS is large compared to

∆̄T,eq in the large system size limit. Below

we generally fix ∆T , to examine the system

size dependence. The theoretical results ap-

pear even more anomalous if the temperature

gradient is fixed.

For three dimensional systems a natural

length, l, that occurs is

l =
kBT

ρDT (ν +DT )
. (6)

For water at STP, l ≈ 3 × 10−9cm. The ra-

tio of the non-equilibrium to equilibrium tem-
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perature fluctuations is

∆̄T,NESS

∆̄T,eq

=

(

ρcvℓ

nkBσ

)

nσ3

(

∆T

T

)2(
L

σ

)2

.(7)

with σ a molecular diameter. This ratio is

generally large if L ≫ σ. Taking the reduced

density to be unity, for water this requires,

roughly,

L

σ
> ǫ =

T

∆T

(

nkBσ

ρcvℓ

)1/2

(8)

or, L/σ > 10 for typical experiments[10, 11]

where ∆T/T < 1/5. This sets the scale of

the system size where non-equilibrium fluctu-

ations become dominant. If we assume that

the temperature fluctuations in the NESS

have a Gaussian distribution, we find, again

for three dimensions, that

PNESS[δT ] ∼ exp[−
L

2ℓ

(δT )2

(∆T )2
] (9)

The corresponding probability distribution

for equilibrium temperature fluctuations is

Peq[δT ] ∼ exp[−L3 ρcv(δT )
2

2kBT 2
]. (10)

From a comparison of these two distributions

one can see that the non-equilibrium distri-

bution is dominant whenever the inequality

given by Eq.(8) is satisfied. From Eq.(9) we

see that in non-equilibrium the temperature

fluctuations scale as δT ∼ 1/L1/2 ∼ 1/N1/6

in three-dimensional systems (compared to

1/N1/2 in equilibrium systems).

Next we consider pressure or normal stress

fluctuations in this NESS. It is important

to note that the average pressure or normal

stress at some point in the fluid has a non-

equilibrium term that is proportional to the

square of the temperature gradient. This fol-

lows from direct calculations, but it can be

understood by symmetry arguments as well,

since the pressure, for example, is a scalar

quantity. The result for the most important

non-equilibrium part of the (spatial and ther-

mal) average pressure in three-dimensions is

singular in the limit of large systems and is

found to be [14, 15]

PNESS ∝ AℓL (∇T )2 = Aℓ
(∆T )2

L
, (11)

with

A = ρcp(γ−1)
2T

[

1− 1
αcp

(

∂cp
∂T

)

P
+ 1

α2

(

∂α
∂T

)

P

]

(12)

Here cp, γ, α are, respectively the specific heat

at constant pressure, the ratio of specific

heats, and the coefficient of thermal expan-

sion. More generally, the long distance part

of the fluctuating pressure is [14, 15]

P̃ (x) = A[δT (x)]2 (13)

Averaging this over the NESS and using

Eq.(2) gives Eq.(11).

The pressure fluctuations are

δP̃ (x) = A[(δT (x))2 − 〈(δT (x))2〉NESS]

and the non-equilibrium correlation function

is CPP (x,y) =< δP̃ (x)δP̃ (y) >NESS. Using
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a Gaussian approximation, we find this

correlation function to be,

CPP (x,y) = 2A2[< δT (x)δT (y) >NESS]
2

(14)

The growth of the temperature correlations

with distance implies that the spatially aver-

aged CPP behaves as,

∆̄P,NESS ∝ [
ℓA(∆T )2

L
]2 ∝

1

L2
(15)

while in equilibrium,

∆̄P,eq =
nkBT

L3

(

∂P

∂n

)

s

∝
1

L3
(16)

Again, the non-equilibrium fluctuations are

large compared to the equilibrium ones at

large length scales. Comparing Eqs.(15) and

(16) and using Eq.(8), this roughly occurs

when L/σ > ǫ4, or, in typical experiments,

L/σ > 104.

If we assume Gaussian behavior then the

normal stress fluctuation distributions in the

NESS and in equilibrium are

PNESS[δP ] ∼ exp[−
L2

2

(

δP

Aℓ (∆T )2

)2

] (17)

and

Peq(δP ) ∼ exp

[

−
L3

2nkBT

(

∂n

∂P

)

s

(δP )2
]

.

(18)

That is, in three-dimensional non-

equilibrium systems the normal stress

fluctuations scale as δP ∼ 1/L ∼ 1/N1/3

(compared to 1/N1/2 in equilibrium systems).

As a final example we consider the NESS

fluctuations in the heat current in some di-

rection, δjH,α, where α = (x, y, z). There

are both linear and nonlinear (analogous to

Eq.(13)) contributions to the heat flux. The

linear contribution can be obtained by identi-

fying the microscopic fluctuating heat current

as δjH(x) = −λ∇δT (x) with δT the fluctu-

ating temperature gives,

CL
H,αβ(x,y) = λ2∇x,α∇y,β < δT (x)δT (y) >NESS

(19)

The long ranged part of the temperature fluc-

tuation in Eq.(19) is given by Eq.(2), with the

final result for CL
H in Fourier space given by,

CL
H,αβ(k) =

cpkBTλ

(ν +DT )k4
k̂αk̂β[k‖∇T ]2 (20)

This result can also be directly obtained with

kinetic theory methods [16]. Here the k̂ de-

notes unit vectors. The 1/k2 dependence in

Eq.(20) implies that for systems in d dimen-

sions, CL
H(r → ∞) ∼ 1/rd−2, that is, power

law correlations. The angular factors don’t

really change this in general. For example, it

is easy to see that if in three-dimensions one

look in the middle of the fluid at xz = yz and

considers correlations along that plane (per-

pendicular to the direction of the tempera-

ture gradient) as a function of r⊥ one finds

that the z−component of the current fluctu-

ations is ∼ 1/r⊥. Physically this means that

if there is a current fluctuation in the wrong

direction then the fluctuations in that entire
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plane will likely also be in the wrong direc-

tion. To obtain a better measure of these

correlations we consider the spatial average

of CL
H(x),

∆̄L
H,NESS ∝

kBTcpλ

(DT + ν)
L2−d(∇T )2 ∝

(∆T )2

Ld

(21)

That is, even though the current correlations

are of long-range, they are weighted by a fac-

tor of (∇T )2 ∝ 1/L2 , for fixed ∆T , so that

qualitatively scales just like ∆̄H,eq ∝ 1/Ld

and is, in fact, small compared to ∆̄H,eq be-

cause it is of relative order
(

∆T
T

)2
.

In analogy with Eq.(13), the non-linear

portion of the fluctuating heat current is

jH(x) ∝ δT (x)u(x), with u the fluctuating

fluid velocity. The fluctuation correlation of

this quantity gives CNL
H (x). It can be read-

ily computed [9, 11] and in space it decays

as ∼ (∇T )2/r2d−4 ∼ (∆T )2/[L2r2d−4]. To

obtain a better measure of these correlations

we consider the spatial average of CNL
H (x),

∆̄NL
H,NESS ∝

(∆T )2

L2d−2
(22)

These correlations are even weaker then those

from the linear portion of the fluctuating heat

current and can therefore be neglected.

We conclude with a number of remarks:

1. The result for ∆̄P,NESS, Eq.(15), has

an important implication. In Landau

and Lifshitz (L&L) fluctuating hydro-

dynamics an input is that the fluc-

tuating stress tensor is local in space

and time. Averaging the normal com-

ponent of the L&L fluctuating stress

tensor correlation function in three-

dimensions over space and and a mi-

croscopic time interval leads to a quan-

tity ∆̄ that scales like ∆̄ ∝ 1/L3 which

should be compared with ∆̄P,NESS ∝

1/L2. That is, our results indicate that

there are important corrections to the

usual linearized L&L equations due to

the very long-range correlations that

exist, in at least some NESS.

In a non-linear fluctuating hydro-

dynamic description these anomalous

terms will be generated by fluctuation

or renormalization effects.

2. Compared to the pressure or stress fluc-

tuations both the linear and non-linear

heat current fluctuations are of rela-

tively short range. This result is ac-

tually important: It is consistent with

the local assumption for the fluctu-

ating heat current in the L&L ap-

proach. This in part explains why con-

ventional linearized fluctuating hydro-

dynamics can be used to successfully

compute the very long range NESS

temperature fluctuations [11, 17].

3. As another measure of just how anoma-

lous the normal stress fluctuations are,

note that if a fluctuation as large as the

6



average value of PNESS is considered,

Eq.(11), in PNESS[δP ] then the prob-

ability of that fluctuation is of O(L0).

That is, the normal stress is not a self-

averaging quantity.

4. The correlations in a fluid with a con-

stant velocity gradient (that is, the

case studied by ECM) are very differ-

ent (see, for example, [18]) then either a

fluid with a temperature gradient, or in

a mixture with a concentration gradi-

ent. Although there are power law cor-

relations in the velocity gradient case,

they are sufficiently weak that the nor-

malized NESS stress-tensor correlation

function does scale like ∼ 1/N1/2. This

is true whether the velocity gradient,

∇u, with u the hydrodynamic velocity,

is fixed or if ∇u = ∆u/L is used, and

∆u is fixed.

5. In our presentation we have ignored a

discussion of the boundaries, that must

be present in this NESS. For the case of

perfectly conducting walls the temper-

ature fluctuation problem in a bounded

geometry has been discussed and solved

elsewhere [11].

6. Structurally identical results as those

given here for a single component fluid

with a temperature gradient are ob-

tained in a fluid mixture with either

a concentration gradient or a temper-

ature gradient(see [11] and references

therein). In this case, the temperature

fluctuations, the concentration fluctua-

tions, and the normal stress, or pres-

sure, fluctuations are all found to obey

anomalous statistics.

7. The profound difference between cor-

relations in non-equilibrium and equi-

librium systems means that many of

the theoretical techniques developed

to describe equilibrium systems cannot

be applied to non-equilibrium systems.

Non-equilibrium quantities do not have

virial expansions [6]. A local expan-

sion of the fluxes or currents in terms

of powers of the gradients is also not

possible [8, 19, 20]. Other techniques

such as maximizing an entropy (for ex-

ample, the so-called max cal method

[21]) to obtain a non-equilibrium distri-

bution function may not work, at least

in their most naive form.
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tional Science Foundation under grant num-
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