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We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations
are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum
fluctuations induce transitions between the period-two states over the quasienergy barrier. We find
the effective quantum activation energies for such transitions and their scaling with the difference of
the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation
time with the quantum noise parameters in the critical region near the threshold. The results are
extended to oscillators with nonlinear friction.
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I. INTRODUCTION

Parametrically driven oscillators are of fundamental
interest as a platform for studying quantum physics
away from thermal equilibrium in well-characterized sys-
tems. Examples include noise squeezing, low-noise quan-
tum amplification, photon generation, quantum measure-
ments, and the preparation of a superposition of coher-
ent states in a dissipative environment [1–9]. Classically,
parametrically excited vibrational states are states with
a broken discrete time-translation symmetry, as their pe-
riod is twice the modulation period [10]. Excitation of pe-
riod two vibrations with the increasing driving strength
is somewhat reminiscent of the mean-field ferromagnetic
phase transition with lowering temperature.

A distinctive feature of the parametric oscillator is
the possibility to have a stable state with unbroken
time-translation symmetry along with the stable period-
two vibrational states (more precisely, such states are
called asymptotically stable). In the symmetric state,
vibrations are either not excited or there may be small-
amplitude vibrations with the same period as the driving.
In the parameter space there is a critical point where this
state and the period-two states merge.

In this paper we study quantum fluctuations near the
critical point. They are strong and slow. We find the
long-time behavior of their correlation functions and the
scaling of the correlation time with ~ and temperature.
As the system moves deeper into the range of coexisting
period-two states, in the neglect of fluctuations it would
localize in one of them or in the symmetric state, if it is
also stable. A major manifestation of quantum fluctu-
ations is switching between the states. We identify the
switching mechanism and find the switching rates. We
study how the rates scale with the driving amplitude and
how there occurs a crossover to the previously explored
scaling far from the critical point.

We focus on quantum effects for weakly damped oscil-
lators, where the decay rate Γ is small compared to the

oscillator eigenfrequency ω0. This condition is usually
met in the experiments with superconducting microcav-
ities and with Josephson-junction based systems used in
quantum information. For weakly damped oscillators,
nonlinearity becomes substantial already for compara-
tively small vibration amplitudes, once the nonlinearity-
induced shift of the vibration frequency becomes compa-
rable with Γ. It is the nonlinearity that leads to multi-
stability of forced vibrations. Even though the nonlinear
effects are strong, they occur in the range of compara-
tively small vibration amplitudes, and classically, the os-
cillator motion is almost sinusoidal vibrations with slowly
varying amplitude and phase.
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FIG. 1. The relation between the parameters of the driving
field where the number of stable vibrational states changes.
Parameters µp and fp characterize the scaled detuning of the
field frequency from resonance and the scaled field amplitude,
respectively, see Eq. (5). For fp < 1 or µp < µB1 the oscillator
has no period-two vibrational states. In the region fp > 1
and µp > µB1 there are two stable period-two states. For
µp > µB2 the state with no period-two vibrations is stable,
too. On the long-dashed line the stable and unstable period-
two states coalesce. The point µp = 0, fp = 1 where the three
bifurcation lines merge is the critical point. The dot-dashed
line shows where the three stable states are equally occupied
in the stationary regime.

Classically, the dynamics of a driven underdamped os-
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cillator is determined by two parameters, the scaled fre-
quency and amplitude of the driving [10]. The analysis
of the dynamics is simplified near bifurcation parameter
values, where the number of the stable vibrational states
changes. In this region one of the motions becomes slow,
an analog of the “soft mode” [11]. The bifurcation re-
lation between the oscillator parameters in the case of
close-to-resonant parametric driving is shown in Fig. 1.
The possibility to describe the dynamics by a single

dynamical variable also significantly simplifies quantum
analysis [12]. Such variable commutes with itself at dif-
ferent times, and therefore its dynamics is essentially
classical. However, the fluctuations are quantum, be-
cause the noise that causes them has quantum origin and
its intensity is ∝ ~ for low temperature. As we show,
this picture applies near the critical point. We note that,
in terms of the Floquet states of the modulated oscilla-
tor, this case corresponds to the distance between the
quasienergy levels being much smaller than their width
due to dissipation.
In the penultimate section of the paper we consider the

dynamics near the critical point in the presence of non-
linear friction, where the friction coefficient is quadratic
in the vibration amplitude. Such friction plays an im-
portant role in various types of mesoscopic vibrational
systems [9, 13, 14]. The bifurcation diagram in this case
differs from that in Fig. 1 and the critical point does not
correspond to the minimal strength of the driving field.
However, as we show, the method we develop to ana-
lyze quantum fluctuations near the critical point can be
extended to this case as well.

II. THE MODEL

We consider a parametrically driven oscillator with the
Duffing (Kerr) nonlinearity. The Hamiltonian of the os-
cillator reads

H0 =
1

2
p2 +

1

2
ω2
0q

2 +
1

4
γq4 +

1

2
q2F cosωF t, (1)

where q and p are the oscillator coordinate and momen-
tum, the mass is set equal to one, and γ is the anhar-
monicity parameter. Parameter F gives the amplitude
of the driving, whereas ωF is the driving frequency.
We assume the driving to be resonant and not too

strong,

|δω| ≪ ω0, δω =
1

2
ωF − ω0; |γ|〈q2〉 ≪ ω2

0 . (2)

It is convenient to change to the rotating frame
using the standard canonical transformation U(t) =
exp

(

−ia†aωF t/2
)

, where a† and a are the raising and
lowering operators of the oscillator. We introduce slowly
varying in time dimensionless coordinate Q and momen-
tum P , using as a scaling factor the characteristic am-
plitude of forced vibrations Cp = |2Fc/3γ|

1/2 [parameter

Fc is defined below in Eq. (7)],

U †(t)qU(t) = Cp(Q cosϕ + P sinϕ),

U †(t)pU(t) = −
1

2
CpωF (Q sinϕ − P cosϕ) (3)

with ϕ = 1
2ωF t+

1
4π. The commutation relation between

P and Q is

[P,Q] = −iλp, λp = 3|γ|~/(ωFFc). (4)

Parameter λp ∝ ~ plays the role of the Planck constant
in the quantum dynamics in the rotating frame. This is
the small parameter of the theory, λp ≪ 1. Note that it
is determined by the oscillator nonlinearity, λp ∝ γ. As
we will see, for λp ≪ 1 the oscillator dynamics near the
critical point is semiclassical.
For characteristic |Q|, |P | . 1, where 〈q2〉 . C2

p, the

last inequality in Eq. (2) implies F ≪ ω2
0 . To simplify

the analysis near the critical point, in Eqs. (3) and (4)
we choose the variables in the form that slightly differs
from that in Ref. 12.
In the range (2) the oscillator dynamics can be ana-

lyzed in the rotating wave approximation (RWA). The

Hamiltonian in the rotating frame is U †H0U − i~U †U̇ =
(F 2

c /6γ)ĝp. Operator ĝp = gp(Q,P ) is independent of
time and has the form

gp(Q,P ) =
1

4

(

P 2 +Q2
)2

−
1

2
µp(P

2 +Q2)

+
1

2
fpsgnγ(QP + PQ),

µp =
ωF (ωF − 2ω0)

Fc
sgnγ, fp = F/Fc. (5)

The eigenvalues of ĝp (multiplied by F 2
c /6γ) give the os-

cillator quasienergies.
In Eq. (5), parameter fp is the scaled driving amplitude

F ; in what follows we assume fp > 0. Parameter µp

gives the detuning of the driving frequency from twice the
oscillator eigenfrequency. The scaling factor in both fp
and µp is the critical amplitude Fc needed for parametric
excitation of the oscillator.
Relaxation of the oscillator results from the coupling

to a thermal bath. The coupling leads to oscillator decay
due to scattering by the bath excitations. For a weak cou-
pling, one of the most important scattering mechanisms
is scattering with energy transfer ≈ ~ω0 in an elementary
event [15–17]. It comes from the coupling, which is lin-
ear in the oscillator coordinate and/or momentum. In a
phenomenological description of the oscillator dynamics
such scattering corresponds to a friction force −2Γq̇. The
friction coefficient Γ is simply expressed in terms of the
appropriate correlator of the thermal bath variables.
It is important for what follows that relaxation comes

along with a quantum noise. The equations of motion for
slow variablesQ,P in the rotating frame in dimensionless
time τ = Γt read

Q̇ = −iλ−1
p [Q, ĝp]sgnγ −Q+ f̂Q(τ),

Ṗ = −iλ−1
p [P, ĝp]sgnγ − P + f̂P (τ). (6)
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Here, Ȧ ≡ dA/dτ . We have set

Fc = 2ΓωF , (7)

in which case, indeed, Fc is the threshold value of the
driving amplitude, as will be seen below.

In Eq. (6), f̂Q,P are quantum noise operators. The
noise is δ-correlated in slow time, cf. [12],

〈f̂Q(τ)f̂Q(τ
′)〉b = 〈f̂P (τ)f̂P (τ

′)〉b = 2Dδ(τ − τ ′),

〈[f̂Q(τ), f̂P (τ
′)]〉b = 2iλpδ(τ − τ ′),

D = λp(n̄+ 1/2), n̄ = [exp(~ω0/kBT )− 1]−1. (8)

Here, n̄ is the oscillator Planck number and 〈·〉b means
averaging over the bath state. Parameter D plays the
role of the effective temperature of the quantum noise,
D ∝ λp ∝ ~ for ~ω0 ≫ kBT . We assume that temper-
ature is not too high, so that D ≪ 1. The commuta-
tion relation in Eq. (8) guarantees that the commutator
[Q,P ] = iλp does not change in time. The noise corre-
lators are understood in the Stratonovich sense [18]; in

particular, 〈[f̂Q(τ), P (τ)]〉b = 〈[Q(τ), f̂P (τ)]〉b = iλp.

III. SLOW QUANTUM DYNAMICS NEAR THE

CRITICAL POINT

The stable vibrational states of the oscillator are given
by the stable stationary solutions of Eq. (6) without
noise. The bifurcation values of the parameters fp, µp,
where the number of the stable states changes, lie on the
lines µp = ±µB(fp) and (µp ≥ 0, fp = 1) on the (fp, µp)-
plane,

µB = (f2
p − 1)1/2. (9)

The bifurcation lines are shown in Fig. 1. For µp < µB1 ≡
−µB and for fp < 1 the only stable state of the oscillator
is Q = P = 0. The amplitude of period-two vibrations in
this state is zero, and below we call it the zero-amplitude
state. At µp = µB1 this state becomes unstable. For
larger µp or fp the oscillator has two stable states, which
correspond to period-two vibrations in the lab frame with
the reduced squared amplitude Q2+P 2 = µp+(f2

p−1)1/2

and with the phases differing by π. For µp = µB2 the
state Q = P = 0 becomes stable and there emerge two
unstable states, which correspond to unstable period-two
vibrational states in the lab frame[10]. The values of
the control parameter µB1 and µB2 correspond to the
supercritical and subcritical pitchfork bifurcations [11].
On the line fp = 1, µp > 0 the stable and unstable states,
which correspond to period-two vibrations, coalesce.
At the critical point (µp = 0, fp = 1) all three bifur-

cation lines merge. Such merging is robust, it does not
disappear if the model is slightly changed, although the
position of the critical point can change. The associated
strong singularity of the dynamics in the absence of noise
leads to comparatively strong fluctuation effects.

Near the critical point, for small Q,P the coordinateQ
varies in time much slower than P . This is seen from the
linearized equations (6), which in the absence of noise

take the form Q̇ = (fp − 1)Q − µpP sgnγ, Ṗ = −(fp +
1)P + µpQsgnγ.
Because Q(τ) is slow, P (τ) adiabatically follows Q(τ).

For the dimensionless time τ ≫ 1, function P (τ) can be
expressed in terms of Q(τ) by disregarding the quantum

noise f̂P (τ) and setting Ṗ = 0. The latter equation gives
a function Pad

(

Q(τ)
)

. Substituting P = Pad(Q) into the

full nonlinear equation for Q̇, one obtains

Q̇ ≈ −∂QU(Q) + f̂Q(τ), (10)

U(Q) =
1

4
Q2

[

µ2
p − (f2

p − 1)
]

+
1

4
Q4

(

−µp +
1

3
Q2

)

[U(Q) has an extra factor 2/(fp + 1) which is set equal
to 1, to the leading order in fp − 1]. To justify disre-

garding f̂P (τ), we note that fluctuations of P (τ) due to

f̂P (τ) are small, 〈
[

P (τ) − Pad

(

Q(τ)
)]2

〉 ≈ D/(fp + 1).

Since the linear in P (τ) term in the full equation for Q̇
is proportional to the small parameter µP , the effect on
Q(τ) from these fluctuations is small compared to that

from the noise f̂Q(τ). For times τ ≫ 1, the distribution
over P is Gaussian, ∝ exp{−[P −Pad(Q)]2/2D(fp +1)},
it is squeezed around Pad(Q).

A. The effective potential for the slow variable

For µB1 < µp < µB2, the effective potential U(Q),
Eq. (10), has a local maximum at Q = 0 and two sym-
metric minima at Q1,2 = ±(µB + µp)

1/2. The minima
correspond to the stable period-two vibrations in the lab
frame.
For µp > µB2, f

2
p > 1, function U(Q) still have the

minima at Q1,2, but now it has a local minimum at Q = 0

and two additional local maxima at Q = ±(µp − µB)
1/2.

The minimum at Q = 0 corresponds to the stable zero-
amplitude state. The local maxima correspond to unsta-
ble period-two vibrations.
The behavior of the oscillator near the onset of period-

two vibrations at µB1 has similarities with the mean-field
picture of the critical behavior at the second-order phase
transition. The time-translation symmetry of the stable
stationary state at Q = 0 is spontaneously broken and
there emerge two vibrational states with equal ampli-
tudes and opposite phases and with period 4π/ωF . Such
behavior is usually described by an effective potential
which is quartic in the coordinate Q.
A key observation is that, near the critical point fp =

1, µp = 0, it is necessary to keep the sixth-order term
in U(Q). This follows from Eq. (10). The system be-
comes softer than at the bifurcation point far away from
the critical point. Such form of the potential reminds
the Landau free energy for a system that can undergo a
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first-order phase transition, and indeed, an analog of this
transition can occur in the driven oscillator, see below.

B. The quantum Fokker-Planck equation

Equation (10) has the form of the Langevin equation
of a classical particle with one dynamical variable (half-
degree of freedom) driven by a δ-correlated noise. Indeed,

f̂Q(τ) and Q(τ) commute, and therefore [Q(τ), Q(τ ′)] =
0. However, the noise has quantum origin, its correla-
tor (8) explicitly contains ~. The slow quantum fluc-
tuations can be alternatively described by the Fokker-
Planck equation for the probability density ρ(Q, τ). From
Eq. (10), it reads

∂τρ = ∂Q(ρ ∂QU) +D∂2
Qρ. (11)

The stationary distribution of the oscillator near the
critical point has the Boltzmann form

ρst(Q) = Z−1 exp[−U(Q)/D], (12)

where Z =
∫

dQ exp[−U(Q)/D] is the effective partition
function. The evolution of this distribution with varying
fp is shown in Fig. 2.

FIG. 2. Evolution of the stationary distribution ρst(Q) with
varying amplitude of the driving field for µp = 0. For f2

p < 1
the distribution has a single broad maximum at Q = 0. With
increasing fp there are developed two sharp maxima at the
positions that correspond to the period-two vibrational states.

The full stationary Wigner distribution is a product of
ρst(Q) and a Gaussian distribution over P , with the po-
sition of the maximum over P being Q-dependent. Func-
tion ρst(Q) can be thought of as the integral over P of
this full distribution. The distribution (12) is maximal
at the minima of U(Q), i.e., at the values of Q that cor-
respond either to the stable states of the oscillator. Near
the critical point the distribution is broad, which corre-
sponds to large fluctuations in this range.

IV. SCALING OF THE RATES OF

QUANTUM-FLUCTUATION INDUCED

SWITCHING

Once the depth of the minima of U(Q) becomes large
compared to λp(2n̄ + 1), the dynamics of the oscillator
is characterized by two very different time scales. One is
the relaxation time 1/U ′′(Q) for Q near the stable states.
The other is a much slower time over which the oscilla-
tor can switch between the minima due to comparatively
rare large fluctuations. The switching rate Wsw is given
by the Kramers theory [19] of thermally activated switch-
ing over a potential barrier. This theory immediately ex-
tends in the present case to quantum fluctuations, even
though there is, of course, no thermal activation for low
temperatures. In dimensionless time τ = Γt

Wsw = Ωsw exp(−RA/λp), RA = ∆U/(n̄+ 1/2),

Ωsw = [|U ′′(QS)|U
′′(Qa)]

1/2/2π,

∆U = U(QS)− U(Qa). (13)

Here, Qa is the position of the stable state (attractor)
from which the oscillator switches and QS is the posi-
tion of the adjacent local potential maximum [a saddle
point on the (Q,P )-plane] over which the switching oc-
curs. Function RA is the quantum activation energy for
the switching, it is proportional to the height of the po-
tential barrier overcome in the switching.
Remarkably, Eq. (13) for the switching rate has the

same structure as the expression for the rate of tunnel-
ing from a potential well of U(Q) in the sense that the
rate is exponential in 1/λp ∝ 1/~. However, switching
occurs not via tunneling under the barrier of U(Q) but
by going over the barrier. Tunneling requires the fast
variable P to be involved. Therefore the tunneling expo-
nent is parametrically larger than RA and the tunneling
rate is exponentially smaller [20].
The states between which the switching occurs and

the rate Wsw depend on the parameter region on the
bifurcation diagram in Fig. 1. We start with the region
µB1(fp) < µp < µB2(fp). Here, the oscillator is bistable.
It can switch from one period-two state to the other. By
symmetry, the switching rates for the both states are the
same. In Eq. (13) Qa = ±(µB + µp)

1/2, depending on
the initially occupied state. The switching occurs over
the unstable state QS = 0.
The dependence of the activation energyRA for switch-

ing between the period-two states on the parameters is
shown in Fig. 3. For exact resonance, µp = 0, it fol-

lows from Eq. (10) that RA = (f2
p − 1)3/2/3(2n̄ + 1).

In this case RA displays a power law dependence on the
distance from the critical field amplitude fp − 1. The
scaling exponent is 3/2. For nonzero µp, the behavior be-
comes more complicated and is not described by a simple
power law. Close to the bifurcation line µB1(fp), func-
tion RA scales as a power of the distance from µB1(fp),
RA ≈ µB(µp − µB1)

2/2(2n̄ + 1), cf. Ref. 12. We note
that the scaling of the switching rates near a bifurcation
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point of a different type has been observed for resonantly
driven Josephson junction based quantum oscillators [21].
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FIG. 3. The quantum activation energy R̃A = (n̄ + 1/2)RA

for switching between the parametrically excited period-two
vibrational states with opposite phases. In the shown range
of the scaled driving field amplitude 1.04 < fp ≡ F/Fc < 1.2
and the scaled frequency detuning |µp| < µB(fp), the period-
two vibrations are the only stable states of the oscillator.

A different situation occurs in the range µp > µB2(fp)
and fp > 1. Here, far from the bifurcation lines in Fig. 1
the potential U(Q) has three local minima separated by
two local maxima. Interstate switching occurs via a tran-
sition from a minimum of U(Q) over the adjacent maxi-
mum. This means that from the stable period-two states
the oscillator can switch to the zero-amplitude state and
vice versa, but direct switching between the period-two
states is exponentially unlikely.
The switching activation energies in the region of

tristability are shown in Fig. 4; RA1 and RA0 refer to
switching from a period-two state to the zero-amplitude
state and from the zero-amplitude state to one of the
period-two states, respectively. To find RA1, one sets in
Eq. (13) Qa = ±(µp + µB)

1/2, whereas to find RA0 one

sets Qa = 0; in the both cases, QS = ±(µp − µB)
1/2. In-

terestingly, from Eq. (10), the activation energy RA1 dis-
plays simple scaling behavior, RA1 = (f2

p − 1)3/2/3(n̄ +
1/2) independent of µp. The activation energy of switch-
ing from the zero-amplitude state displays a more com-
plicated behavior. It decreases with the increasing field
amplitude. Near the bifurcation line µp = µB(fp) we
have RA0 ≈ µB(µp−µB2)

2/2(2n̄+1), in agreement with
the previous work [12].
In the stationary regime, for RA1 > RA0 it is ex-

ponentially more probable for the system to be in the
state of period-two vibrations. On the other hand, for
RA0 > RA1, preferentially occupied is the zero-amplitude
state, where the period-two vibrations are not excited.
The interrelation between the field amplitude and fre-
quency where RA1 = RA0 corresponds to an analog
of a first-order phase transition: here the populations
of the different stable states of the oscillator are close
to each other. From Eq. (10), near the critical point
the “phase-transition” value of fp is given by expression

(f2
p − 1)1/2 = µp/2. It is shown by the dot-dashed line

R
�
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FIG. 4. The quantum activation energies R̃A1 = (n̄+1/2)RA1

and R̃A0 = (n̄+1/2)RA0 for switching from a state of period-
two vibrations to the zero-amplitude state and from the zero-
amplitude state to one of the states of period-two vibrations,
respectively. The curves refer to the region of tristability,
where the scaled driving field amplitude fp > 1 and the scaled
frequency detuning µp > µB(fp).

in Fig. 1.

V. QUANTUM FLUCTUATIONS IN THE

IMMEDIATE VICINITY OF THE CRITICAL

POINT

Close to the critical point, where |f2
p−1| . D2/3, |µp| .

D1/3, the stationary distribution (12) is almost flat, as
seen from Fig. 2. This indicates anomalously large quan-
tum fluctuations of the oscillator variable Q (whereas the
fluctuations of the other variable, P , are squeezed). The
fluctuational mean-square displacement is 〈Q2〉 ∼ D1/3,
whereas far from the critical region the mean-square dis-
placement about a stable state is ∼ D (D ∝ ~ is the small
parameter of the theory, D ≪ 1). In the critical region
the exponents RA/λp are no longer large and the con-
cept of switching rates becomes ill-defined. One cannot
separate switching from other fluctuations.
A convenient characteristic of the fluctuation dynam-

ics is the long-time decay of the correlation functions of
the oscillator. This decay is characterized by the low-
est nonzero eigenvalue ν1 of the Fokker-Planck equa-
tion (11). It can be found in a standard way [18] by
reducing Eq. (11) to a Schrödinger-type equation for
ρ̃(Q) = exp[U(Q)/2D]ρ(Q). The quantum noise inten-
sity D can be scaled out of this equation by changing to
the scaled time D2/3τ , scaled coordinate D−1/6Q, and
scaled parameters D−1/3µp and D−2/3(f2

p − 1).
The dependence of the decrement ν1 on the frequency

detuning parameter µp ∝ (ωF−2ω0)/Fc for several values
of the scaled driving field amplitude fp = F/Fc is shown
in Fig. 5. It is seen that, for a given µp, the dynamics is
slowed down, i.e., ν1 decreases with the increasing driving
amplitude. This is to be expected and is in agreement
with Fig. 2. For f2

p < 1 or (f2
p − 1)1/2 + µp < 0, the

oscillator has one stable state, Q = 0. As f2
p increases,

the minimum of U(Q) at Q = 0 becomes more and more
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shallow and the relaxation rate, which is related to the
curvature of U(Q), goes down. As f2

p further increases,
the system goes into the regime of coexisting period-two
states (via the range of coexisting three stable states,
for µp > 0, cf. Fig. 1). For large (f2

p − 1)/D2/3, ν1 is
determined by the exponentially small rate of interstate
switching that rapidly decreases with increasing fp, see
Figs. 3 and 4.

-2 0 2 4
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6
-2 0 2 4

0

3
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Ν
1
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2
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FIG. 5. The smallest nonzero eigenvalue ν1 of the ki-
netic equation (11), which determines the long-time decay
of the correlation functions very close to the critical point
µp = 0, fp = 1. The curves from top down correspond to
(f2

p − 1)/D2/3 = −4,−2, 0, 2, 4, 6.

The dependence of ν1 on the frequency detuning in
Fig. 5 is profoundly nonmonotonic. For f2

p−1 < 0, where
the system has only one stable state, Q = 0, this behav-
ior is a consequence of the nonmonotonic dependence of
the curvature of U ′′(0) on µp, see Eq. (10). Close to the
critical point the nonparabolicity of U(Q) is substantial.
This is also seen from Fig. 2, which shows that the sta-
tionary probability distribution becomes profoundly non-
Gaussian near the critical point. Therefore ν1 is different
from U ′′(0). The minimum of ν1 is reached for µp > 0.

In the range µp > µB1 = −(f2
p − 1)1/2 the oscillator

has two or three stable states in the neglect of fluctua-
tions. For large (µp − µB1)/D

1/3, the decrement ν1 is
determined by the rate of interstate switching. This ex-
plains the decrease of ν1 with increasing µp in Fig. 5 for

f2
p > 1 and for not too large µp/D

1/3.
To understand the behavior of ν1 for larger µp in the

range of tristability of the oscillator, we consider the bal-
ance equations for the populations of the two period-two
states w1,2 and the zero-amplitude state w0,

ẇ0 = −2W01w0 +W10(w1 + w2),

ẇi = W01w0 −W10wi (i = 1, 2), (14)

where W01 = W02 ∝ exp(−RA0/λp) is the rate of switch-
ing from the zero-amplitude state to one of the period-
two states andW10 = W20 ∝ exp(−RA1/λp) is the rate of
switching from a period-two state to the zero-amplitude
state.
From Eq. (14), ν1 = W10 in the region of tristabil-

ity where the slow dynamics is determined by inter-state

switching. The exponent RA1/λp in Eq. (13) for the rate
W10 is independent of µp, cf. Fig. 4. However, the pref-

actor Ωsw ∝ (f2
p − 1)1/2[µ2

p − (f2
p − 1)]1/2 is increasing

with increasing µp. Therefore, somewhat unexpectedly,
ν1 starts slowly increasing with µp in the tristability re-
gion.

VI. EFFECT OF NONLINEAR FRICTION

Mesoscopic vibrational systems often display nonlinear
friction, as mentioned in the Introduction. Phenomeno-
logically, it is described by a friction force proportional to
−q2q̇ or −q̇3; both forms lead to the same time evolution
of the amplitude and phase of a weakly damped oscillator
on the time scale large compared to the vibration period.
A simple microscopic model that gives such a force is the
quadratic in q coupling to a thermal bath [22]. The un-
derlying elementary process is emission or absorption of
bath excitations in a transition between next to nearest
oscillator energy levels, with the energy transfer ≈ 2~ω0.
Starting with the full Hamiltonian of the oscillator cou-

pled to a bath, one can show that, with account taken of
the processes leading to nonlinear friction, the right-hand
sides of the quantum Langevin equations for Q̇ and Ṗ ,
Eqs. (6), acquire extra terms rQ and rP , respectively,

rQ = −
1

2
Γnl{Q,Q2 + P 2}+ + 2λpΓnlQ(2n̄2 + 1) + f̂nl

Q (τ),

rP = −
1

2
Γnl{P,Q

2 + P 2}+ + 2λpΓnlP (2n̄2 + 1) + f̂nl
P (τ),

n̄2 ≡ n̄(2ω0) = n̄2/(2n̄+ 1). (15)

Here, {A,B}+ = AB + BA. The scaled nonlinear fric-
tion coefficient Γnl is related to the phenomenological co-
efficient of nonlinear friction as Γnl = (4ω2

0/3|γ|)Γ
(2),

if the phenomenological friction force is written as
−8Γ(2)ω0q

2q̇. The coupling to a bath that leads to non-
linear friction also leads to a renormalization of the pa-
rameter γ of conservative nonlinearity, which we assume
to have been done. Interestingly, the strength of the non-
linear friction is determined by the relation between the
phenomenological friction parameter Γ(2) and γ.
The quantum noise terms in Eq. (15) have the form

f̂nl
Q (τ) = Q(τ<)f̂

nl
1 (τ) + P (τ<)f̂

nl
2 (τ),

f̂nl
P (τ) = Q(τ<)f̂

nl
2 (τ) − P (τ<)f̂

nl
1 (τ), (16)

where τ< indicates that the operator has to be eval-
uated at slow time τ − ǫ with ǫ → +0. Functions
f̂nl
1,2(τ) have zero mean and are δ-correlated in slow time,

〈f̂nl
1 (τ)f̂nl

1 (τ ′)〉 = 〈f̂nl
2 (τ)f̂nl

2 (τ ′)〉 = 2λpΓnl(2n̄2 +1)δ(τ −

τ ′), whereas 〈[f̂nl
1 (τ), f̂nl

2 (τ ′)]〉 = 4iλpΓnlδ(τ − τ ′).
Equations (6) and (15) provide an example of quan-

tum Langevin equations with multiplicative noise: the

noise f̂nl
Q,P (t) depends on the dynamical variables of the

system. The time ordering in Eq. (16) shows how to
calculate averages with such a noise.
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A. Bifurcation diagram and the critical point

In the presence of nonlinear friction, the bifurcation
diagram of the oscillator in the semiclassical limit λp ≪
1 changes. It can be obtained using Eqs. (6) and (15)
and is shown in Fig. 6. It is instructive to compare this
figure with Fig. 1 that refers to the case where there is
no nonlinear friction. As in that case, stable period-two
vibrations exist in the interior of the region bounded by
the solid line and the long-dashed line. On the other side
of the solid line the zero amplitude state is stable and
there are no period-two stationary states. The relation
between µp and fp on the solid line is µp = µB1 = ±(f2

p−

1)1/2. The line terminates at µB1 = Γnl, see below.
The equation for the long-dashed line reads

fp = (Γ2
nl + 1)−1/2(µpΓnl + 1), µp ≥ Γnl. (17)

In the region between the long-dashed line (17) and the
dashed line µB2 = (f2

p − 1)1/2, µB2 ≥ Γnl, the oscillator
has three stable states: two period-two states and the
zero-amplitude state. It also has two unstable period-
two states, which merge with stable period-two states on
the line (17). In the region bounded by the lines µB1

and µB2 period-two states are the only stable states of
the oscillator. On the whole, one can picture the effect
of nonlinear friction on the bifurcation diagram as if the
vertical line in Fig. 1 was tilted and shifted along the line
µB2(fp).
The point

µp0 = (f2
p0 − 1)1/2 = Γnl (18)

is the critical point. This point is common for all three
bifurcation lines. One therefore expects to see in the
vicinity of this point a critical behavior similar to the
one in the absence of nonlinear friction.

ΜB1

ΜB2

0 1 2 3
-4

-2

0

2

4
0 1 2 3

-4

-2

0

2

4

fp

Μp

FIG. 6. The relation between the parameters of the driving
field where the number of stable vibrational states changes
in the presence of nonlinear friction. On the solid line µB1

the stable period-two states merge with the zero-amplitude
state. On the long-dashed line, Eq. (17), stable and unstable
period-two states merge together. On the dashed line µB2

the zero-amplitude state merges with the unstable period-two
states. The dashed and long-dashed lines touch at the critical
point, Eq. (18).

The analysis of fluctuations near the critical point is
reminiscent of that for Γnl = 0. One can single out a
slow variable Qnl, which is a linear combination of Q and

P . The noise f̂nl
Q,P associated with the nonlinear friction

can be disregarded, to the leading order in λp. Indeed,
its amplitude contains extra small factors proportional
to Q,P compared to the noise associated with the linear
friction. After some algebra, one then obtains for the
slow variable a quantum Langevin equation for an over-
damped particle of the form of Eq. (10) with Q replaced
by Qnl and with the potential Unl of the form

Unl(Qnl) =
1

2
A2Q

2
nl +

1

4
A4Q

4
nl +

1

6
A6Q

6
nl,

A2 =
δµ2

p

2f2
p0

− fp0δfp, A4 = −f2
p0δµp, A6 =

1

2
f6
p0,

δµp = µp − µp0, δfp = fp − fp0 − µp0δµp/fp0. (19)

As in the case of linear friction, the dynamics of the sys-
tem is profoundly asymmetric with respect to deviations
from the critical values along the µp- and fp-axes. The
coefficient A2 is quadratic in δµp but linear in δfp, and A4

is linear in δµp and independent of δfp. The fluctuational

range of δµp, which has width D1/3, largely exceeds the

fluctuational range of δfp, which has width D2/3. We
note that δfp is counted off from the value of the scaled
driving amplitude fp calculated for a given δµp along the
bifurcation line (17). In fact, this is also the case where
there is no nonlinear friction, cf. Eq. (10): there fp is
independent of µp on the analogous line, which is given
by equation fp = 1. The first-oder phase-transition line

is given by the expression δµp = 2(2f3
p0 δfp)

1/2. Overall,
the region of coexistance of three stable states is squeezed
by nonlinear friction.

VII. CONCLUSIONS

The results of this paper refer to quantum fluctuations
near the critical point of a parametric nonlinear oscilla-
tor. At this point, there merge 5 stationary vibrational
states: two stable and two unstable period-two states and
the zero-amplitude state. In the absence of nonlinear fric-
tion, the critical point lies at the threshold of parametric
excitation, in terms of the amplitude F of the driving
field. The threshold corresponds to the field frequency
ωF equal to twice the oscillator eigenfrequency ω0. The
threshold value of the field amplitude Fc is proportional
to the rate Γ of linear decay of the oscillator. In the pres-
ence of nonlinear friction, the critical point lies away from
exact resonance, and the driving amplitude is F > Fc,
see Eq. (18).
Near the critical point, the oscillator dynamics is

mapped onto the dynamics of an overdamped Brown-
ian particle. This particle is driven by quantum noise
and is confined in a symmetric potential well of the sixth
order in the particle displacement. The condition that
the quantum noise is weak means that the dimensionless
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Planck constant λp ∝ ~ is small, λp ≪ 1. In the criti-
cal region, the mean occupation number of the oscillator
is large; in other words, if one thinks of the oscillator
as a radiation mode of a cavity, the mean number of
photons in the cavity at frequency ωF /2 is large. For
n̄ = 0 (no thermal photons), at the critical point this

number is 〈a†a〉 ≈ 0.29λ
−2/3
p ≫ 1, where a† and a are

the oscillator ladder operators (the photon creation and
annihilation operators). The critical quantum fluctua-
tions are profoundly non-Gaussian. The Wigner distri-
bution is stretched along one of the quadratures, so that
〈a2 + a† 2〉 ≈ 2〈a†a〉. For finite temperatures, one should
replace λp in the above expression with λp(2n̄+ 1).

Critical quantum fluctuations are not only anoma-
lously large, but also slow. In the immediate vicinity
of the critical point the correlation time of the fluctua-
tions scales as [~(2n̄+1)]−2/3. We have found the depen-
dence of the correlation time on the frequency detuning
ωF − 2ω0 and the amplitude F of the driving field. Un-
expectedly, the dependence on the frequency detuning
turned out to be nonmonotonic.

The parameter range where anomalously large fluc-
tuations occur scales as [~(2n̄ + 1)]1/3 along the field
frequency axis and as [~(2n̄ + 1)]2/3 along the field-
amplitude axis. Outside this range and in the region
of bi- or tri-stability, the distance between the coexist-
ing stable states of the oscillator in phase space signifi-
cantly exceeds the mean-square-root fluctuations about
the states. Quantum fluctuations lead to switching be-
tween the states, but fluctuations required for the switch-
ing are comparatively large and thus rare. The switching
mechanism is quantum activation. In switching the os-
cillator goes over an effective quasienergy barrier rather
than tunneling beneath it. However, the logarithm of the
switching rate is ∝ 1/~ for low temperatures, as in the
case of tunneling.

We found simple explicit expressions for the switch-
ing rates both in the regime where the period-two states
are the only stable states of the oscillator and where the
zero-amplitude state is also stable. In the region of bista-
bility, if the frequency detuning ωF − 2ω0 corresponds to
the critical point, the switching activation energy scales

as δF 3/2 with the distance δF from the critical point
along the F -axis. This scaling applies also to the switch-
ing from period-two states in the regime of tristability for
arbitrary detuning (in the presence of nonlinear friction,
δF should be counted off from the long-dashed bifurca-
tion line in Fig. 6). However, generally the dependence
of the activation energy on δF in the regime of bistabil-
ity and the dependence on δF of the activation energy of
switching from the zero-amplitude state do not display
simple scaling.
In the region of tristability, depending on the field

parameters, either the period-two states or the zero-
amplitude state are predominantly occupied. The state
occupations are close in a narrow parameter range, the
behavior that reminds the first-order phase transition.
We note that parameter λp that characterizes the in-

tensity of the quantum noise has also a simple spectro-
scopic meaning. In the absence of strong driving, the
transition frequencies of the nonlinear oscillator (the dis-
tances between neighboring oscillator energy levels di-
vided by ~) form a ladder. The difference between neigh-
boring frequencies is λpΓ/2. Since Γ characterizes the
level broadening, depending on λp one can either spectro-
scopically resolve transitions between different neighbor-
ing energy levels (for λp ≫ 1) or the transitions cannot
be resolved and the oscillator spectroscopically is close to
a harmonic oscillator (for λp ≪ 1). Our results refer to
this second case.
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