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We report on finite-sized-induced transitions to synchrony in a population of phase oscillators cou-
pled via a nonlinear mean field, which microscopically is equivalent to a hypernetwork organization
of interactions. Using a self-consistent approach and direct numerical simulations, we argue that a
transition to synchrony occurs only for finite-size ensembles, and disappears in the thermodynamic
limit. For all considered setups, that include purely deterministic oscillators with or without het-
erogeneity in natural oscillatory frequencies, and an ensemble of noise-driven identical oscillators,
we establish scaling relations describing the order parameter as a function of the coupling constant
and the system size.
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Collective synchronization phenomena are abundant in
complex nonlinear systems, and onset of synchrony can
be typically treated as a nonequilibrium phase transi-
tion. The Kuramoto model [1] of globally coupled phase
oscillators is the simplest paradigmatic system, where
this transition can be explored nearly in full details [2],
also a relation to equilibrium transitions is well stud-
ied [3]. This model is universally applicable for ensembles
of weakly coupled oscillators, possessing harmonic phase
sensitivity (like, e.g., Josephson junctions [4]). In many
cases one, however, needs to go beyond such a simple
setup, allowing for couplings that include higher harmon-
ics, this is relevant for electrochemical oscillators [5] and
ϕ-Josephson junctions [6]. Moreover, as suggested in [7]
and experimentally realized in [8], coupling terms can be
nonlinear functions of the order parameters (mean fields).

In this letter we describe nontrivial properties of the
synchronization transition in a model with simple non-
linear coupling, where the coupling is at the second har-
monics of the phase, but is proportional to the the square
of the Kuramoto order parameter. We will show that
such an interaction on a microscopic level represents a
fully connected hypernetwork. By performing the anal-
ysis in the thermodynamic limit, we will demonstrate,
that for deterministic ensembles the asynchronous state
with a uniform distribution of the phases never loses sta-
bility; for noisy oscillators it is possible to show that
such an asynchropnous state is the only stationary solu-
tion. Nevertheless, direct numerical simulations of finite
pupulations yield partially synchronous regimes. These
regimes can be called finite-size-induced one; the main
goal of this paper is to clarify their nature. Our main
tool is the analysis of scaling of partial synchrony with the
system size. We will establish scaling properties of this
finite-size-induced transition for different setups: identi-
cal purely deterministic oscillators, identical noisy oscil-
lators, and deterministic non-identical ensemble (the lat-

ter setup is mostly close to the Kuramoto model). From
these scaling properties it follows, that in the thermodi-
namic limit the characteristic value of the observed order
parameter tends to zero, while the critical value of the
coupling strength at which partial synchrony is observed,
diverges. Thus, this transition to synchrony can be called
finite-size-induced one.
Let us start with formulation of general phase equa-

tions for an ensemble of nonlinear oscillators coupled via
mean fields. In the limit of weak coupling (or weak ex-
ternal forcing), the dynamics of each oscillator can be
described by its phase φ(t) via the phase response func-
tion S(φ):

φ̇ = Ω+ ω + S(φ)F,

here Ω stands for the population mean natural frequency
and ω is an individual deviation from the mean. The
term F is an overall force produced by mean field cou-
pling, i.e. it is a general function of mean fields (Daido
order parameters [9]) Zk = 〈eikφ〉 (here 〈〉 means aver-
aging over the ensemble) which can be represented as an
expansion F =

∑

k,m hk,m(Zk)
m (where hk,m are con-

stants). Next, let us introduce a slowly varying phase
ϕ(t) = φ(t)−Ωt and the corresponding slow order param-
eters Z̄k = 〈eikϕ〉 = Zke

−ikΩt. Using a Fourier represen-
tation of the phase response function S(φ) =

∑

n sne
−inφ

we get the following general equation for the slow phase:

ϕ̇ = ω +
∑

n,k,m

sne
−inϕhk,mZ̄m

k ei(km−n)Ωt. (1)

Performing an averaging of the equation (1) over the fast
time scale Ω−1 is equivalent to keeping only terms on
the r.h.s. that do not contain explicit time dependence
∼ eijΩt, i.e. we have to set n = km:

ϕ̇ = ω +
∑

k,m

skme−ikmϕhk,mZ̄m
k . (2)
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This is the general form of the phase equation derived
for a weakly coupled oscillatory ensemble with generi-
cally nonlinear (due to terms with m > 1) mean-field
interaction (cf. [7]). Recall that the simplest case where
n = k = m = ±1 gives us the term ∼ Z̄1e

−iϕ, and (2) re-
duces to the standard Kuramoto-Sakaguchi model [10].
Considering further terms with n = km = ±2, we get
a generalized bi-harmonic coupling ∼ s1h1,1Z̄1e

−iϕ +
(s2h2,1Z̄2+s2h1,2Z̄

2
1 )e

−i2ϕ on the r.h.s of the system (2).
The case where the bi-harmonic coupling depends lin-
early on the order parameters (h1,2 = 0) was extensively
studied in Refs. [11].

In this letter we focus on the effects produced by purely
nonlinear second-harmonic coupling s1 = h2,1 = 0 (see
[12] for the analysis of linear second-harmonic coupling
s1 = h1,2 = 0) and show that it is responsible for finite-
size induced transitions to synchrony with nontrivial scal-
ing on the ensemble size. We will demonstrate that while
synchrony disappears in the thermodynamic limit, it is
observed for finite ensembles. Thus, throughout this pa-
per we consider the following model, where also external
noise is taken into account for completeness:

ϕ̇k = ωk + εR2 sin(2Θ− 2ϕk) +
√
Dηk(t), k = 1, ..., N.

(3)

Here we denote ReiΘ = Z̄1 = N−1
∑N

k=1 e
iϕk , N is

the size of population, and the noise is Gaussian delta-
correlated 〈ηk(t)ηm(t−t0)〉 = δkmδ(t−t0). Qualitatively,
nontrivial features of this model can be understood as
follows. Because the interaction is proportional to the
second harmonics of the phase ∼ sin 2ϕ, it supports for-
mation of two clusters, with phase difference π. However,
the coupling term is determined by the order parameter
R which vanishes if two symmetric clusters are formed
and is non-zero only due to asymmetry of the clusters.
This asymmetry, as we shall demonstrate below, is due
to finite-size fluctuations at the initial stage when the
clusters are formed from the disorder.

Before proceed with the main analysis, we discuss
physical relevance of the model (3). First, the purely
second-harmonic coupling (s1 = 0) appears when the
force acts on nearly harmonic oscillators parametrically
(a typical example here are mechanical pendula sus-
pended on a vertically oscillating common beam). An-
other situation where the second harmonic in S(φ) dom-
inates is that of period-doubled oscillations. Notewor-
thy, due to nonlinear coupling model (3) represents a
hypernetwork [13] of oscillators. Indeed, substituting
the expression for the mean field in (3), one can see
that the microscopic coupling terms can be written as
∼ sin(ϕl + ϕm − 2ϕk). This means that effective inter-
actions are not pairwise (as in the standard Kuramoto
model and its numerous generalizations) but via triplets;
this is exactly the definition of a hypernetwork coupling
structure.

Furthermore, it is worth discussing the rôle of different
order parameters in the problem. The order parameter
Z̄1 governs the force acting on the oscillators and is there-

fore of major importance. Because this force contains the
second harmonics only (∼ sin 2ϕk), the appearing order
is of “nematic” type and corresponds to large absolute
values of the order parameter Z̄2; at these states the
order parameter R = |Z̄1| may be small. In the disor-
dered, asynchronous states both order parameters Z̄1,2

are small.
Linear stability analysis of a disordered state (R = 0)

in model (3) is straightforward, beacuse coupling is non-
linear in R and thus does not contribute. The solution is
the same as for the Kuramoto model with vanishing cou-
pling [14]: the disordered state is either neutrally (with-
out noise D = 0), or asymptotically stable. Thus, all
the transitions described below are due to nonlinear and
finite-size effects.
We start with the simplest case where all oscillators

have identical frequencies (ωk = 0) and are not affected
by noise (D = 0). In this case, for any ReiΘ = const 6= 0
there are two stable positions for the phases: ϕ1 = Θ
and ϕ2 = Θ + π. Any distribution (n1, n2) with n1 >
N/2 oscillators in the first state is possible, with order
parameter

R = 2n1/N − 1 . (4)

Only the symmetric distribution with n1 = N/2 is not a
solution, because the mean field vanishes. Therefore, in
the thermodynamic limit N → ∞, the stationary two-
cluster distributions can be written as

ρ(ϕ) = Sδ(ϕ−Θ) + (1− S)δ(ϕ−Θ+ π), (5)

with an arbitrary indicator constant S ∈
(

1
2 , 1

]

, the order
parameter is R = 2S − 1 and Θ is arbitrary.
A nontrivial question here is: which of possible syn-

chronous states establishes if one starts from a fully dis-
ordered initial configuration with uniformly distributed
initial phases 0 ≤ ϕk < 2π. Numerically obtained distri-
butions of the final states, for different sizes N , are shown
in Fig 1(a). Here the order parameter R can attain only
discrete values according to (4), and p are probabilities
of these states. Remarkably, these distributions collapse
perfectly after rescaling R → R

√
N , p → p

√
N , as is

shown in Fig. 1(b). This means that the stationary or-
der parameter scales as R ∼ N−1/2, i.e. it disappears
in the thermodynamic limit. To this scaling corresponds
also the scaling of the characteristic transient time from
initial disorder to a final synchronous configuration: as
one can see from (3), this time is ∼ R−2 ∼ N , what is
confirmed by numerics (not shown).
Next, we consider the case when the oscillators have

different natural frequencies ωk and are not affected
by noise D = 0. We assume a Gaussian distribution

g(ω) = (2π)−1/2e−ω2/2 (without loss of generality the
width of the distribution is set to 1 and the mean fre-
quency to 0). First, following Refs. [11], we find sta-
tionary solutions in the thermodynamical limit by virtue
of a self-consistent scheme. We will see, that although
the analysis of the thermodynamic limit does not pro-
vide a transition to partial synchrony, it allows us to find
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FIG. 1. (color online) The histograms of the two-cluster states
which result from the disordered initial conditions R ≈ 0, for
different ensemble sizes from N = 10 to N = 1000. Panel (b)

shows scaling p ∼ N−1/2F (RN1/2); dashed line is a fitting

curve F (x) = 5.2x3 exp[−1.45x3/2]. Theoretical derivation of
this scaling relation remains an unsolved problem.

states close to that observed in simulations of finite sys-
tems. For the sake of brevity of presentation we restrict
to symmetric, non-rotating solutions only, then without
loss of generality one can set Θ = 0. For such states the
conditional distribution density ρ(ϕ|ω) is stationary, and
the order parameter can be defined as follows:

R =

∫∫

dω dϕ g(ω)ρ(ϕ|ω) cosϕ. (6)

It is convenient to introduce an auxiliary parameter
A = εR2 (the overall amplitude of the coupling func-
tion) and the rescaled frequency x = ω/A. It easy to
see from (3) that all the oscillators can be divided into
those locked by the mean field (|x| < 1) and the un-
locked (rotating) ones (|x| > 1). The distribution of the
latter ones is inversely proportional to the phase velocity
ρu(ϕ|x) = C|A(x − sin(2ϕ))|−1 (here C is a normaliza-
tion constant) and, because of the symmetry, it does not
contribute to the order parameter in (6). The distribu-
tion of the locked oscillators ρL(ϕ|x) is in fact the same
as in (5), but frequency-dependent:

ρL(ϕ|x) = S(x)δ(ϕ − Φ) + (1− S(x))δ(ϕ − Φ− π)
(7)

where Φ(x) = arcsin(x)/2. Similar to the case of iden-
tical oscillators, the indicator function S(x) is arbitrary
(due to assumed symmetry we restrict ourselves to the
case S(x) = S(−x), asymmetric functions lead gener-
ally to rotating solutions), it describes redistribution of
oscillators between two stable branches ϕ = Φ(x) and
ϕ = Φ(x) + π. Below we consider the simplest case of
constant indicator function S(x) = σ ∈

(

1
2 , 1]. In order

to get the final closed self-consistent scheme, we need to
substitute the distribution function (7) into the defini-
tion of the order parameter (6). This yields the order
parameter R as a function of the coupling constant ε in
a parametric (in dependence on auxillary parameter A)
analytic form:

R = A(2σ − 1)H(A), ε = AR−2,

H(A) =

∫ π

4

−

π

4

2 cosϕ cos 2ϕg(A sin 2ϕ)dϕ.
(8)

Figure 2(a) illustrates stationary solutions R(ε) at differ-
ent indicator constants σ. The black curves denote the
main solution at σ = 1. At a critical coupling εc ≈ 2.17
two branches, stable (black solid) and unstable (dashed
line) arise (stability is determined by direct finite-size nu-
merical simulations). Note that these lines are separated
from the disordered solution R = 0, although R ∼ ε−1

as ε → ∞ at the unstable branch. Solutions for σ < 1
can be easily found from the rescaling of the main depen-
dence (at σ = 1) according to (8). So, the curves R(ε)
at σ < 1 have qualitatively similar structure, however,
they are shifted to larger values of ε for smaller values of
σ (see dotted red lines in Fig. 2(a)). In particular, the

critical points scale as Rc(σ) = Rc(0)
(

εc(1)
εc(σ)

)1/2

. This

blue bold line in Fig. 2(a) together with the black solid
line at σ = 1 define the region of possible synchronous
solutions, characterized by different indicator constants
σ.

It is worth mentioning that the incoherent solution
R = 0 exists at any value of coupling ε and it is al-
ways stable in the thermodynamical limit. However, in
the finite-size simulations of the system (3), we found
that the incoherent state has a finite lifetime: after a
long transient a synchronous state from the described
above solution family (i.e. between the blue bold and
black solid curves in Fig. 2(a)) sets on, and this state
remains further stable. Blue markers in the Fig. 2(a) de-
note averaged value of R obtained from direct numerical
simulations of (3) with N = 200. The averaging was per-
formed over ∼ 1000 distinct simulation runs (until final
time Tmax = 106) with disordered initial conditions. The
final state to which the system jumps from the incoher-
ence is not always the same and has a deviation range
depicted by the gray area in Fig. 2(a).

A more detailed description of the final synchronous
state is presented in the Fig. 2(b). Here the top panel
shows dependence of the phases ϕ on the internal fre-
quency ω. The area in the center clearly shows two stable
branches of locked oscillators. Outside this area one can
see the clouds of points, which depict unlocked oscilla-
tors. The unlocked phases rotate in relation to the mean
field phase, and, therefore, constitute an asynchronous
part of the ensemble. The bottom panel shows statistics
of the function S(ω), which is calculated in the range
ω ∈ [−2, 2] where oscillators are typically locked to the
mean field. The function has certain profile depicted in
the bottom panel of the Fig. 2(b). As one can see, the dis-
tribution of locked oscillators over the branches remains
close to a constant value in the center of the ω range,
however, it drops significantly close to the boundaries of
the coherent region.

The averaged lifetime T of the incoherent state drasti-
cally increases with decrease of coupling constant ε, what
is shown in the inset of Fig. 2(a). Thus, below ε ≈ 7 it
is impossible to collect any reasonable statistics with a
finite simulation time Tmax = 106. However, even for rel-
atively small values of ε, the transition from the incoher-
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FIG. 2. (color online) (a) Black solid and dashed curves: so-
lution of the self-consistent equations (8) for σ = 1. Blue bold
curve - the bifurcation line where two branches of synchronous
solutions appear for different σ. Blue markers: mean value
of R obtained from direct numerical simulation of (3) with
N = 200 and initial conditions in the incoherent state. Dot-
ted red lines denote solution of self-consistent equation (8)
for σ = 0.94 and σ = 0.82. The inset show the averaged
lifetime T of the incoherent state for the finite-size ensemble.
(b) The top panel shows coordinates of phase ϕ as a function
of internal frequency ω in the stationary synchronous state
(the data is shown for 1000 different simulations at ε = 15,
N = 200). The bottom panel depicts function S(ω) in the
range where the oscillators are locked and form two distinct
stable branches. The black solid curve stands for averaged
values of S(ω), the gray area denotes the standard deviation,
and the red markers depict one particular realization. In or-
der to calculate S(ω), the range ω ∈ [−2, 2] was split into
m subintervals. In each subinterval we calculate the ratio of
oscillators, located at different branches. For averaged black
curve we use m = 20, for red curve m = 10. (c) The de-
pendence of the averaged lifetime T of the incoherent state
is shown for different system sizes N . The inset depicts the
averaged value of order parameter R obtained from finite-size
finite-time (Tmax = 106) simulations of the system (3).

ent state is possible, what is shown by the blue markers
to the left of they gray colored area.

It is instructive to characterize this finite-size induced
transition to synchrony in dependence on the system
size N . The dependence of averaged lifetime T on the
rescaled coupling ε/N , plotted in the Fig. 2(c), demon-
strates a nice collapse of data points. This scaling fol-
lows from the fact that the characteristic amplitude of
the coupling term is εR2 and R ∼ N−1/2 in the disor-
dered state. Furthermore, in the inset of the Fig. 2(c) we
show a rescaled order parameter, obtained at the end of
a fixed integration time Tmax; one can see that it scales
as 〈R〉 ∼ N−1/2f(εN), what can be explained as follows.
For sufficiently small values of the coupling the system
always exhibits finite-size fluctuations R ∼ N−1/2 and
remains in the asynchronous state. With increase of ε,

the transition to synchronous state becomes more prob-
able what leads to an increase of the averaged final value
of R. The upper branch reflects the scaling of the lowest
border of synchronous states R ∼ ε−2 mentioned above.
Note that the critical value of coupling resulting from this
scaling is ε ∼ N , so the transition effectively disappears
in the thermodynamic limit.

Finally, we describe the finite-size-induced transitions
to synchrony in the ensemble of identical oscillators
(ωk = 0) with noise D 6= 0 (3). Without lose of general-
ity, we can take D = 1, so that the only parameters are ε
and N . In the thermodynamic limit, when N → ∞, the
system does not have any non-trivial coherent solution,
because due to the symmetry ϕ → ϕ+ π of the coupling
function, the stationary density ρ that follows from the
Fokker-Planck equation is also symmetric (in the small
noise limit it tends to (5) with S = 1/2), thus the only
stationary solution is the incoherent one with R = 0.
However, similar to the situations described above, for
small system sizes N a transition to synchronous two-
cluster configurations is observed (cf. Ref. [15]). In con-
tradistinction to the noise-free case, here also back tran-
sitions to disorder are possible due to noise, so that at
a long run the process looks like an intermittent order-
disorder dynamics.

Qualitatively, this dynamics can be understood as ef-
fect of noise on the multiplicity of synchronous states
described for the noise-free case above (cf. discussion
around Eq. (5)): due to small noise now transitions be-
tween these states (n1, n2) → (n1± 1, n2∓ 1) occur. The
transitions rates one can estimate using the Kramers’ for-
mula, they are exponentially small in the potential bar-
rier which is 2εR2 where R = |2n1/N − 1|. For small
R, the Kramers’ rate does not apply, here one can phe-
nomenologically set the transition rate to a constant. As
a result, one obtains for the order parameter R a ran-
dom walk model, which can be described by the corre-
sponding master equation. Without going into details,
which will be presented elsewhere, we present here the
main results of this statistical model. The stationary
distribution (Fig. 3(a)) shows a transition to synchrony
at εc ≈ 0.35N , so that for larger couplings we get R ≈ 1,
while below this threshold only finite-size fluctuations
around disordered state with R ∼ N−1/2 are observed.
The characteristic time scale of the time evolution from
asynchrony to synchrony is however extremely large, be-
cause the Kramers’ rate at large R is exponentially small.
Thus, direct simulations of finite ensembles, started from
a disordered state and performed over a finite time in-
terval Tmax, allow to reveal only order parameters for
which exp εR2 . Tmax, thus Rmax ∼ (lnTmax)

1/2ε−1/2.
At this stage the evolution becomes effectively “frozen”.
We illustrate this in Fig. 3(b): only for N . 15 one ob-
serves a saturation of the order parameter as predicted
by the random walk model, while for larger N , values of
order parameter close to one are never achieved during
available integration times. Of course, if one starts from
a state with R close to one, it remains practically frozen
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FIG. 3. (color online) Dependence of the order parameter
R on the rescaled coupling constant for identical oscillators
with noise. (a) Stationary state in the master equation as
described in text. The inset shows the difference between the
steady state (solid line) and the one evolving from the disor-
dered state at finite time (dashed line) for N = 20. (b) Di-
rect numerical simulations of ensemble (3) (observation time
Tmax = 106). The inset shows results for system size N = 25,
but for different initial conditions (solid line: starting from
a state with large R, dashed: starting from the disordered
state).

as well.
Summarizing, in this letter we considered a model of

oscillators, globally coupled via a nonlinear function (in
our case, square) of the Kuramoto mean field. Equiva-
lently, on the microscopic level such a coupling can be
described as a fully connected hypernetwork. While the
disordered state remains stable in the linear approxima-
tion and in the thermodynamic limit, a transition to syn-
chrony is observed due to finite-size effects: the charac-
teristic critical coupling parameter value scales typically

as ε ∼ N , also the transient time from disorder to or-
der diverges as N → ∞. For the deterministic ensembles
we demonstrated scaling properties of the transition in
form of dependence of the order parameter on the cou-
pling strength and the ensemble size. For the noisy case,
the system demonstrates effective breaking of ergodicity,
being trapped in frozen metastable states due to expo-
nentially small hopping rates. While we focused on the
purely quadratic in mean field coupling, the described
framework allows one also to consider a general combi-
nation of linear and nonlinear couplings. The approach
based on the master equation provides a framework for
a description of finite-size transitions not only in the
context of phase oscillator networks, but in other types
of mean-field coupled systems demonstrating finite-size-
induced transition [15].
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