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A lattice Boltzmann model for two partially miscible fluids is developed. By partially miscible,
we mean that although there is a definite interfacial region separating the two fluids with a surface
tension force acting at all points of the transition region, each fluid can nonetheless accept molecules
from the other fluid up to a set solubility limit. We allow each fluid to diffuse into the other
with the solubility and diffusivity in each fluid being input parameters. The approach is to define
two regions within the fluid. One interfacial region having finite width, across which most of the
concentration change occurs, and in which a surface tension force and color separation step are
allowed for. And one miscible fluid region where the concentration of the binary fluids follows an
advection-diffusion equation and the mixture as a whole obeys the Navier-Stokes incompressible
flow equations. Numerical examples are presented in which the algorithm produces results that
are quantitatively compared to exact analytical results as well as qualitatively examined for their
reasonableness. The model has the ability to simulate how bubbles of one fluid flow through another
while dissolving their contents as well as to a range of practical invasion problems such as injecting
supercritical CO2 into a porous material saturated with water for sequestration purposes.

PACS numbers: 47.56.+r, 47.55.dd, 47.11.-j

I. INTRODUCTION

Two fluids that come into contact to create an inter-
face with a surface tension can also partially mix due to
molecules diffusing from one fluid into the other across
the interface. Such diffusive mixing occurs until both flu-
ids are at their solubility limit with regard to molecules
from the other fluid. A range of theories and simulation
methods have been developed to study such partially mis-
cible fluid systems systems (see e.g., [1–9]).

Of note are methods based on the Cahn-Hilliard (or
Landau) free energy [10, 11]. This free energy con-
tains a key term of the form −k∇c̃ · ∇c̃/2 that was first
introduced by van der Waals [2] as being responsible
for a finite-thickness transition layer between the flu-
ids and for surface tension. Here, k is a constant and
c̃ = (ρB − ρR)/ρ is the local order parameter (or color
field) for the phase separation. The color field is set
by the mass densities ρB and ρR of each fluid compo-
nent, and the total fluid density ρ. Minimization of the
Cahn-Hilliard free energy produces a chemical potential
µ = −ac̃+ bc̃3 − k∇2c̃, where a, b and k are taken to be
positive. The gradient of this chemical potential pro-
duces a flux that enters into the conservation law con-
trolling the composition of the fluid. The term involving
parameter a allows for normal solute diffusion, the term
involving b creates the phase separation and corresponds
to an “anti-diffusion”, while the term involving k pro-
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vides stability and gives finite thickness to the transition
layer. The parameters a, b and k in the Cahn-Hilliard free
energy independently set the surface tension, solubility
and interface width. By adding a cubic order-parameter
term to the free energy (which corresponds to a quadratic
order-parameter term in the above µ), non-symmetric
solubilities in the two phases can be allowed for. Min-
imization of the free energy also gives a fluid pressure
tensor at any place where either the color or density has
a gradient and that adds to the viscous stresses in the
Navier-Stokes equations to account for surface tension.

Swift et al. [4] (see also [9, 12]) develop a lattice Boltz-
mann algorithm that connects to a Cahn-Hilliard style of
free energy and allows the associated phase separation,
solute transport and fluid flow to emerge in the macro-
scopic limit. Nadiga and Zaleski [5] also use a Cahn-
Hilliard thermodynamic foundation to perform finite-
difference modeling of the associated macroscopic flow
and density variations of a liquid-vapor two-phase fluid.

In the present work, we develop an alternative lat-
tice Boltzmann algorithm that is not tied to the Cahn-
Hilliard formalism. This approach uses four input pa-
rameters to control the phase separation. These parame-
ters set the two solubilities of each phase, the interfacial
thickness and the surface tension. The model represents
a relatively minor, but nonetheless non-trivial, change to
many existing lattice Boltzmann models for either purely
immiscible flow (see e.g. [13, 14] and references therein)
or purely miscible advective diffusion (see e.g. [15–18]).
It corresponds to a well-defined physics of phase sepa-
ration that is quite analogous to how the Cahn-Hilliard
approach creates phase separation through anti-diffusion.
However, by working with a finite-width transition layer
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between the bulk phases, we only need to calculate the
color field and the gradient of the color field at nodes in
a limited region, in and around the transition layer. This
region is always a smaller fraction of the total nodes being
modeled. In contrast, a Cahn-Hilliard approach requires
the color, the gradient of the color and the Laplacian of
color to be calculated at every fluid node in the system.

Although many lattice Boltzmann models have treated
binary fluids that are totally miscible with no phase sep-
aration at equilibrium (e.g. [15–18]), there appear to
be only two other studies not based on a Cahn-Hilliard
free energy approach that treat problems of binary flu-
ids that are only partially miscible. Walsh and Saar [19]
present an interpolated Boltzmann boundary condition
at the fluid-fluid interface that allows for surface-reaction
kinetics in a two component system. Specifically, the dis-
solution of one fluid into another is modeled as a first-
order chemical reaction occurring at the fluid-fluid inter-
face with particles from a pure fluid on one side of the
interface being transferred as solute into the binary fluid
on the other side until an equilibrium concentration is
attained at the interface. Treating both sides of the in-
terface as binary fluids having different concentrations of
the two species involved would require modification of the
model. Chen and Zhang [20] use a similar first-order re-
action at the interface between two fluids; however, their
treatment does not allow the interface position to relo-
cate as mass passes across the interface from one fluid to
the other and thus does not appear capable of modeling
bubble evaporation.

One motivation for the present study is the dynam-
ics that occurs when supercritical CO2 is injected into
a porous material initially saturated with water. Such
modeling has pertinence to geological sequestration of
CO2. At a temperature of 313 K and a pressure of 7 MPa,
initially pure supercritical CO2 and pure water diffuse
into each other up to a solubility of about 5% (scCO2

into water) and 2% (water into scCO2). In the present
modeling, we aim to capture the partial mixing and flow
of the two fluids without including the changing surface
tension [21, 22] or the density changes observed when
these fluids mix.

Our approach is to require the concentrations of the
two fluids immediately adjacent to the fluid-fluid inter-
facial region to always be at their solubility limit with
respect to solute from the other fluid. The interface re-
gion is controlled to be several lattice sites or more in
thickness and is modeled using a modified and altered
form of the d’Ortona et al. [23] approach, and Latva-
Kokko and Rothman [24] approach to color separation.
This approach allows for both normal diffusion across the
interface and an anti-diffusion that creates phase separa-
tion. Surface tension is treated using the Brackbill et al.
[25] approach of modeling surface tension as a volume
force acting on the total fluid movement throughout the
interfacial region. Outside the interface region, the bi-
nary fluid is purely miscible (no color separation step)
with concentration obeying the advection-diffusion equa-

tion with the fixed concentrations at the edges of the
interface region acting as effective boundary conditions.
Fluid mass of either type may pass in either direction
across the interface and the interface is allowed to freely
displace during the diffusion and flow dynamics.

II. GOVERNING CONTINUUM EQUATIONS

We consider the mixing and flow dynamics of an
isothermal binary fluid with composition dependent
properties. The state of the fluid mixture may be de-
scribed in terms of the mass density of the mixture
ρ(x, t), velocity field u(x, t), the pressure p(x, t), and the
concentration ϕ(x, t) of one of the two fluids present. The
concentration is here defined as the mass density of one
component to the total mass density. Using the Ein-
stein summation convention, where Latin indices denote
Cartesian spatial components, the mass conservation and
the momentum conservation equations may respectively
be written in component form as

∂tρ+ ∂i(ρui) = 0, (1)

ρ (∂tui + uj∂jui) = −∂ip+ Fi + ∂jτij , (2)

where Fi denotes the components of any applied volume
force and

τij = ρν

[

∂iuj + ∂jui −
2

d
∂kukδij

]

+ ξ∂kukδij (3)

expresses the components of the viscous stress tensor for
a d-dimensional system. Here, ν and ξ are, respectively,
the kinematic shear viscosity and the bulk (or volume)
viscosity of the fluid, and δij is the Kronecker delta. The
kinematic shear viscosity ν would typically depend on
the variable composition of the fluid mixture. Finally,
an equation of state is required to describe the relation
between the concentration and mass density and the pres-
sure; i.e., p(ρ, ϕ).
For our isothermal system, the evolution of the con-

centration distribution through the fluid, due to diffusion
and advection, is described by the equation [26]

ρ(∂tϕ+ ui∂iϕ) =∂i(D0ρ∂iϕ), (4)

where D0 is the diffusion coefficient of the fluid mixture
and where we have disregarded any possible pressure gra-
dient inside the divergence as negligibly small.
At low-Mach numbers, defined by |u|/c ≪ 1 where c is

the speed of sound, compressional changes in the density
may be neglected, and the combined fluids are required
to satisfy the incompressible Navier-Stokes equations,

∂iui =0, (5)

ρ (∂tui + uj∂jui) =− ∂ip+ Fi + ρν∂j∂jui, (6)

and the advection-diffusion equation,

∂tϕ+ ui∂iϕ =∂i(D0∂iϕ). (7)
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III. MODEL DESCRIPTION

We consider two viscous fluids, blue and red, that pos-
sess an interfacial tension where they come into contact.
Instead of being completely immiscible, the fluids are al-
lowed to partially mix until they reach an equilibrium
state where the concentration of blue fluid is α1 in the
mainly blue phase and α2 in the mainly red phase. To
reach this equilibrium state, the two fluids diffuse into
each other with diffusivities DB and DR, where DB is
the diffusivity of blue particles in the mainly red phase
and DR is the diffusivity of red particles in the mainly
blue phase.
Here, a lattice Boltzmann method is developed that

incorporates these features into the flow modeling. To
do this, we divide the algorithm into two parts. One
part describes the advection-diffusion process away from
the interface between the two phases, and one part de-
scribes the behavior within a finite interface region and
incorporates a phase-separation process and an interfa-
cial tension.
The algorithm involves the distribution function of the

combined fluids fα(x, t) and the distribution function for
the blue fluid gα(x, t), at lattice positions x and time t,
where the index α denotes the various directions in which
the neighboring lattice sites are located.
Let us first focus on the total distribution, fα(x, t). In-

troducing a lattice constant ∆x and a time discretization
∆t, this function evolves according to the lattice Boltz-
mann equation (LBE),

fα(x+ cα∆t, t+∆t) = fα(x, t) + Ων
α(x, t) + ∆fF

α (x, t),
(8)

where ∆fF
α (x, t) is the volume force term and Ων

α(x, t)
is the collision operator. We use here the BGK collision
operator

Ων
α(x, t) = λν [fα(x, t)− f eq

α (ρ,u)], (9)

where −∆t/λν is the relaxation time and f eq
α is the equi-

librium distribution. By choosing an equilibrium distri-
bution of the form

f eq
α (ρ,u) = wαρ

(

1 +
cαiui

c2S
+

Qαijuiuj

2c4S

)

, (10)

where wα are the lattice weights in the various directions
and cS is a constant related to the lattice structure, the
correct hydrodynamical equations may be recovered in
the long-wavelength limit. Here,

Qαij = cαicαj − c2Sδij , (11)

cαi are the vector components of the discrete set of con-
stant velocity vectors cα, in the various lattice directions,
and ui are the vector components of the fluid velocity
u(x, t). The force term in Eq. (8) is given as [27]

∆fF
α = wα

(

1 +
λν

2

)[

cαi − ui

c2S
+

cαjuj

c4S
cαi

]

Fi∆t, (12)

where Fi are the components of the applied volume force.
Guo et al. show that this form of the force term ensures
the recovery of the correct hydrodynamical equations.
The total mass density of the fluid is given as

ρ(x, t) =
∑

α

fα(x, t) (13)

while the total mass flux of the fluid mixture is here de-
fined as

ρ(x, t)ui(x, t) =
∑

α

fα(x, t)cαi +
1

2
Fi∆t. (14)

By relating the kinematic viscosity to the relaxation pa-
rameter λ by

ν = −c2S

(

1

2
+

1

λν

)

∆t, (15)

and the pressure to the mass density through an equation
of state

p = c2Sρ, (16)

the flow equations from Eq. (1) and Eq. (2) are recovered
in the long-wavelength limit. The details of this deriva-
tion are given in Appendix A and B.
If the pure red and blue fluids have kinematic viscosi-

ties given as νR and νB, respectively, the partial mixing
being allowed for, results in the fluid having an effec-
tive viscosity νeff at each lattice point that is different
from these pure values. In our model, this is allowed for
by letting the relaxation parameter λν take on different
values for different concentration ϕ = ρB/ρ of blue fluid,
through the use of an effective viscosity model. For the
numerical modeling presented in this paper, we choose
the so-called “ideal” viscosity model [28, 29], first pro-
posed by Arrhenius , where

−c2S

(

1

2
+

1

λν

)

∆t = νeff = νϕBν
(1−ϕ)
R . (17)

Other models for νeff could of course be adopted.
In the low-Mach number regime considered here, sys-

tems where buoyancy effects are present under the influ-
ence of gravity may in this model be simulated by intro-
ducing a volume force of the form ρg(ϕ)gi, where ρg(ϕ) is
a given analytical function of the concentration and gi are
the vector components of the gravitational acceleration.
This is a valid approximation as long as the concentra-
tion dependence is negligible in the inertial acceleration
of the fluid, i.e., when |dui/dt|/gi ≪ 1.
In our lattice Boltzmann model, the interaction be-

tween the two fluids is described by the evolution of the
distribution function gα(x, t) of the blue fluid. This dis-
tribution function is related to the blue mass density as

ρB(x, t) =
∑

α

gα(x, t). (18)



4

As described in the introduction of this section, our algo-
rithm is divided into two parts: one part for the behavior
within a finite interface region (Region II), where a phase
segregation and an interfacial tension are incorporated,
and one part for the advection-diffusion process in the
bulk regions (Region I), away from the fluid-fluid inter-
face. The technical definition of the two regions will be
given shortly in Section III A. In both our regions, the
given description of the evolution of the total fluid distri-
bution fα(x, t) is valid. Only the applied forcing terms
will differ in the two regions. The evolution of the blue
fluid distribution gα(x, t) is, however, distinctive for each
separate region.

A. Region Definitions

In our Region II algorithm, a step that promotes phase
separation needs to be included. This step, which gives
the blue fluid distribution gα(x+ cα∆t, t+∆t), is in di-
rect contradiction to the diffusive process taking place in
Region I. To avoid having conflicting algorithm steps ap-
plied to a single lattice site, we define our two regions, I
and II, to be complementary sets of lattice sites. Region
II, where a so-called recoloration scheme and the interfa-
cial force are to be applied, is the transition zone between
the two fluid phases. Remember that our algorithm aims
to describe a system where the phases are allowed to dif-
fuse through the interface between them and partially
mix until they reach a concentration threshold. Thus, if
we assume that the concentration at the boundary points
immediately adjacent to the transition region are main-
tained at the solubility limits, the first condition for a
lattice site to be in this transition zone, is that the blue
fluid concentration ϕ lies in the range

α2 ≤ ϕ ≤ α1, (19)

with α2 being the equilibrium solubility of blue in mainly
red fluid and (1 − α1) being the equilibrium solubility
of red in mainly blue fluid. Both α1 and α2 are input
parameters in our algorithm.
To avoid having Region II grow as adjacent lattice

points in Region I reach the desired fluid concentration
due to the advective-diffusive mixing occurring there, it
is necessary to have a second condition that also must
be met for lattice points to be in Region II. In order to
introduce this condition we first need to define a local
color difference

c̃(x, t) =
ρB(x, t)− ρR(x, t)

ρ(x, t)
= 2ϕ(x, t)− 1, (20)

where ϕ(x, t) = ρB(x, t)/ρ(x, t) is the concentration of
blue fluid at node x. This is subsequently used to de-
fine a color gradient

n(x, t) =
1

c2S∆t

∑

α

wαc̃(x+ cα∆t, t)cα, (21)
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FIG. 1: Schematic representation of how the separate algo-
rithm regions are defined. The figure shows the concentration
profile of a circular blue bubble surrounded by red fluid.

A Taylor expansion of c̃(x+ cα∆t, t) is what allows n to
be identified as the color gradient ∇c̃. We know that the
absolute value of this color gradient has its peak in the
middle of the interfacial zone between the two fluids and
that it decreases rapidly away from it. We also know
that, during the advective-diffusive process, it can also
be non-zero, but small, away from the interfacial zone.
We use this to construct the second condition that must
be met in Region II. Namely, the absolute value of the
color gradient

|n| > n̄, (22)

where n̄ is a small, but finite threshold value. It could
be chosen as n̄ = ǫ[c̃]/ℓ, with ℓ being an estimate of the
interface width, [c̃] = 2(α1 − α2) being the total jump in
the color difference across an interface, and ǫ being a
small number such as 10−2. Introducing such a thresh-
old leads to a very small deviation between the intended
saturation levels, given by α1 and α2, and the obtained
equilibrium concentrations. The value used for n̄ in our
simulations, results in a deviation amounting to less than
0.001% of the intended solubility levels.
Region I, where the diffusive scheme is used, is then

simply the complementary set of lattice sites to that of
Region II. Figure 1 shows a schematic representation of
where the two separate algorithm regions apply in a sys-
tem composed of a circular blue fluid bubble surrounded
by red fluid.
Now, having properly defined the separate regions, let

us again direct our focus towards the evolution steps of
gα(x, t) in the two regions.

B. Region I

In Region I, our model aims to have the two fluids
experience an advective-diffusive mixing.

Similarly to the total fluid distribution fα, the blue
distribution gα follows an LBE

gα(x+ cα∆t, t+∆t) = gα(x, t) + ΩD
α (x, t) + ∆gFα (x, t).

(23)
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Here,

ΩD
α = λD[gα(x, t)− geqα (ρB,u)], (24)

where λD is related to the diffusivity of the blue fluid by

D0 = −c2S

(

1

2
+

1

λD

)

∆t (25)

and

∆gFα (x, t) = wα

(

1 +
λD

2

)

1

c2S
cαiFiϕ∆t. (26)

In the force term, we have introduced the concentration,
ϕ = ρB/ρ, of the blue fluid component. In Appendix C,
we show that this form of the force term ensures recovery
of the desired form of the advection-diffusion equation
without any unwanted terms in the continuum limit. The
equilibrium distribution for the blue fluid is given as

geqα (ρB,u) = wαρB

(

1 +
cαiui

c2S
+

Qαijuiuj

2c4S

)

, (27)

where Qαij is given by Eq. (11). This leads to the blue
fluid density obeying the advection-diffusion equation
of Eq. (4) in the long-wavelength limit without having
any unwanted terms. We should point out that this is
achieved, in addition to introducing the forcing term, by
relating the distribution function gα in a non-standard
way to the mass density ρB, rather than directly to the
concentration ϕ (see Appendix C).
A similar argument to what holds for the viscosities,

also holds for how the diffusivity of blue particles changes
with concentration. In the low-Mach number limit being
treated, where the total density is effectively constant
from a diffusion perspective (the density variations re-
sponsible for pressure variations come in at the first or-
der of the Mach number and may thus be ignored in the
advection-diffusion), the mutual diffusivity of red parti-
cles through blue is the same as blue through red at any
given point in the system. An effective diffusivity model
for D0 equivalent to the Arrhenius model of viscosity
could be proposed. However, if modeling the diffusive
mixing of supercritical CO2 and water, the solubilities
would be set to roughly α2 = 0.05 and (1− α1) = 0.02.
This means there is very little dependence of the diffusiv-
ity on the concentration on either side of the interface.
In any such case involving low solubilities, it is appro-
priate to define a constant diffusivity of DR for how red
particles diffuse in the blue fluid at infinite dilution and
DB for how blue diffuses in red at infinite dilution. The
diffusion relaxation parameter λD is then selected using

−c2S

(

1

2
+

1

λD

)

∆t =

{

DB if ϕ < 1
2 (α1 + α2)

DR if ϕ > 1
2 (α1 + α2)

, (28)

where (α1 + α2)/2 defines the mid-point of the interfacial
region. Another effective diffusivity model might be more
appropriate if the solubilities α2 and (1− α1) are larger.
Note here that the evolution of the blue fluid distri-

bution gα couples to the combined fluid distribution fα
through the velocity field u(x, t) and, in a secondary way,
through the effective viscosity model.

C. Region II

In Region II, our model needs to incorporate phase sep-
aration, as well as an interfacial tension, between the two
fluids. This entails the use of an algorithm for immiscible
fluids. When applying such an algorithm it is important
to have an immiscible model where spurious interface cur-
rents [30, 31] are kept small, so as to reduce subsequent
errors in the advection of the soluble fluid close to the
fluid-fluid interface. Accordingly, we have used a model
similar to those presented by Wu et al. [32] and Walsh
and Saar [19]. These models use the gradient-based recol-
oration scheme originally proposed by d’Ortona et al. [23]
and later slightly changed by Latva-Kokko and Rothman
[24]. They also use a continuum volume force proposed
by Brackbill et al. [25] for the modeling of an interfacial
tension. To allow for dissolution across the interface, we
modify the recoloration step proposed by Latva-Kokko
and Rothman [24].
The interfacial tension is implemented as a volume

force [25]

FIT(x, t) = σκ(x, t)
n

[c̃]
, (29)

where n = ∇c̃ is given by Eq. (21), σ is the interfacial
tension, and [c̃] is the overall jump in the color c̃ across
the interfacial region. The interface curvature κ is given
as

κ = −∇ ·
(

n

|n|

)

(30)

= − 1

|n|

(

∇ · n− n

|n| · ∇|n|
)

. (31)

Though Eq. (30) and Eq. (31) are analytically identical,
Brackbill et al. [25] show that a finite-difference approx-
imation to Eq. (30) has the interface curvature peaking
near the edges of the interfacial region, while a finite-
difference approximation to Eq. (31) produces a κ that is
maximum nearer the center the interfacial region, where
also the color gradient is maximum. In our model, we nu-
merically determine the curvature using Eq. (31), since
this leads to better results in practice. Advantages with
this volume force implementation of surface tension in-
clude having reduced interfacial spurious currents, hav-
ing a continuous pressure change across the fluid-fluid
interface [32], as well as having the interfacial tension be
given directly as an input parameter. We note in pass-
ing that if n ·FIT/|n| is integrated across the transition
layer, the result is the pressure change across the inter-
face also known as the capillary pressure.
The evolution of the blue distribution function is here

given as

gα(x+ cα∆t, t+∆t) =ϕfα(x, t) +
ϕ∆t

2c2S
wαcαjFj

+ βhϕρwα

cαini

|cα||n|
, (32)
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where β is a unitless parameter which sets the interface
width [24], and ni are the vector components of the color
gradient n. Typically, β ≤ 1 to avoid the occurrence of
of negative particle distributions. We have here also in-
troduced a unitless window function hϕ that is zero at
the boundary between Regions I and II and that peaks in
the middle of Region II with a value of 1/4. It is defined

hϕ =
(α1 − ϕ)(ϕ − α2)

(α1 − α2)2
, (33)

which is non-negative throughout Region II where
α2 < ϕ < α1. This modification to recoloration results
in a blue concentration equal to α1 on one side of the
transition zone, and α2 on the other. In the recoloration
scheme of Latva-Kokko and Rothman [24] hϕ = ϕ(1 − ϕ)
which corresponds to perfect immiscibility in our scheme
with α1 = 1 and α2 = 0.
By itself, the first term on the right-hand side of

Eq. (32) results in the blue concentration obeying the
standard advection-diffusion equation with a diffusivity
of c2S∆t/2. The third term in Eq. (32) is responsible for
keeping red and blue separated across the interface zone
by creating an effective “anti diffusion”. The second term
is included to avoid an undesirable force dependence aris-
ing in the continuum limit of this model. The details of
the continuum dynamics obtained in the long-wavelength
limit using this algorithm are given in Appendix D. In
Appendix E, we have used the results found for this con-
tinuum limit of Region II to give an analytical estimate
for the width of the fluid-fluid interface zone.
Through normal diffusion being opposed by anti-

diffusion, the above algorithm achieves phase separation
in a way analogous to that of the Cahn-Hilliard approach
[10, 11]. However, because we use the window function
of Eq. (33) to gradually turn off the anti-diffusion at the
limits of the finite-width transition layer, we do not need
to incorporate a Laplacian of the color field into the ef-
fective chemical potential as is required to obtain stable
results in the Cahn-Hilliard approach.
The goal for the modeling of blue concentration in Re-

gion II is that blue particles can advance from high to
low concentrations while maintaining the color separa-
tion once equilibrium is attained. Throughout this pro-
cess, surface tension needs to be allowed to develop with
interface curvature. The above model, with the compet-
ing diffusive and anti-diffusive fluxes and the volumetric
interfacial force, accomplishes all of these requirements.

IV. NUMERICAL SIMULATIONS

We now implement the above scheme numerically using
a D2Q9 lattice. Lattice velocities and the corresponding
lattice weights are presented in Table I. In this model
c2S = 1/3.
In a first example, an interface moves due to diffusion

alone (no flow). An analytical solution is available in this
case to compare to the numerical results. In a second

TABLE I: Lattice weights and velocities for the D2Q9 lattice.

Lattice Direction cα (∆x/∆t) wα

α = 0 (0, 0) 4/9

α = 1, . . . , 4 (±1, 0), (0,±1) 1/9

α = 5, . . . , 8 (±1,±1), (∓1,±1) 1/36

example, a bubble of one fluid is allowed to dissolve into
the other, up to the solubility limit. In the final examples,
we consider how flow and diffusion compete in controlling
the concentrations in front of an interface moving due to
flow.

In the simulations, we have put the initial particle mass
density ρ, lattice constant ∆x, and timestep ∆t to unity.
For simplicity, the kinematic viscosity of both fluids are
set to ν = 0.1 in all our simulations. In addition, we have
put the color gradient threshold n̄ = 2 · 10−3.

A. 1D diffusion problem with a freely moving
interface

A feature of the LB model developed in this paper is
that it allows one phase to diffuse into the other which
results in a movement of the interface position even in
the absence of flow. There are few exact analytical re-
sults that involve a freely moving interface, because spec-
ifying boundary conditions on an interface, whose po-
sition must also be determined as part of the problem,
makes the problem non-linear. Fortunately, a simple one-
dimensional case does have exact analytical solutions.

Consider an infinite plane interface between the red
and blue fluids with a normal in the x direction. Initially,
at t = 0, the interface separating pure blue (x > 0) from
pure red (x < 0) is at x = 0. Blue is then allowed to
diffuse into red (while red is not allowed to enter blue),
which causes the interface position x = s(t) to advance
in the +x direction starting from it’s initial position of
s(0) = 0. The plane x = 0 is maintained as pure red for
all time. We need to determine how the concentration
ϕ(x, t) of blue in red is evolving in the binary-fluid region
0 < x < s(t) and determine s(t).

The concentration ϕ(x, t) in this case satisfies the
diffusion equation, ∂ϕ/∂t = D0∂

2ϕ/∂x2, and is sub-
ject to the two boundary conditions ϕ(x = s(t), t) = α2

and ϕ(x = 0, t) = 0. The condition that allows the un-
known interface position s(t) to be determined is that
the diffusive flux of blue particles out of the interface
jx = −ρ−D0 ∂ϕ/∂x|x=s(t) is balanced by the interface

movement ρB+ds(t)/dt. Here, the interface is taken as
a step with ρ− the total mass density on the s− side of
the interface and ρB+ the blue mass density on the s+
side of the interface. In this zero Mach number problem,
density is constant so that ρ− = ρB+ = ρ and ρB− = α2ρ.
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FIG. 2: Interface position s, where ϕ = α2 = 0.02, as a func-
tion of time t. The position and time are, respectively, mea-
sured in terms of the lattice constant ∆x and the time dis-
cretization ∆t. Open symbols show the numerical results,
while black lines represent the analytical solutions. We have
used linear interpolation to estimate subgrid positions of the
interface.

The interface movement equation is then

ds

dt
= D0

∂ϕ

∂x

∣

∣

∣

∣

x=s(t)

(34)

and is subject to the initial condition that s(0) = 0.
The above is known as a Stefan problem [33] and has

a general solution ϕ(x, t) = A+B erf
(

x/
√
4D0t

)

where

A and B are constants, and erfu = (2/
√
π)

∫ u

0
e−w2

dw is
the error function. Clearly, A = 0 from ϕ(x = 0, t) = 0.
And to satisfy the boundary condition on x = s(t) we
must have both s(t) = ζ

√
4D0t, where ζ is an unknown

constant, andB = α2/erfζ. The constant ζ is determined
from the interface movement of Eq. (34)

ds

dt
=

2ζD0√
4D0t

= α2
2D0√
4πD0t

exp(−ζ2)

erfζ
. (35)

Bringing it together, we have the exact solutions

ϕ(x, t) = α2

erf
(

x/
√
4D0t

)

erfζ
and s(t) = ζ

√

4D0t, (36)

where ζ is the positive root of

α2√
π

exp(−ζ2)

ζ erfζ
− 1 = 0. (37)

Due to the monotonic nature of Eq. (37), there is a single
positive root that can be determined using any preferred
numerical root finder; we find that ζ = 0.0997.
For the lattice Boltzmann modeling of the above, the

system is initialized with ρ(x, 0) = 1.0, u(x, 0) = 0, and
ρB(x, 0) = ρ(x, 0). In addition, we have the boundary
conditions ρB(0, t) = 0 and ρB(Lx, t) = ρ(Lx, 0), where
Lx = 100 is the system length (the interface position
lies within 0 < s(t) < Lx). We have included a periodic
y direction, which makes the simulations 1-dimensional
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FIG. 3: Concentration profiles for D0 = 0.1 and α2 = 0.02 as
a function of position. Open circles represent the numerical
results. Solid black lines show the analytical solution. Vertical
dashed lines indicate, from the left, the position of the fluid
interface at times t = [57.0 · 103, 226 · 103, 505 · 103, 900 · 103],
respectively. The horizontal dashed line marks the saturation
concentration α2.

in nature. We have set the interfacial tension to be
σ = 10−4 in lattice units, but since the interface will re-
main flat throughout the simulations this does not have
any influence on the results. We have used β = 1 in the
recoloration step of Eq. (32) to ensure a thin interface
region. In the initial stages of the simulations, the equi-
libration of the emergent interface between the two fluid
phases will result in some deviations from the position
predicted from the analytical results. This is a tran-
sient effect that is not part of the diffusive process be-
ing treated. To minimize this initial deviation we chose
in this comparison a conservative solubility of α2 = 0.02.
In the simulations we identify the position x = s(t) of
the interface as being where ϕ = α2. Figure 2 shows this
position as a function of time for three different diffusiv-
ities. We see that there are some deviations in the posi-
tions initially but that the agreement is generally good.
In Figure 3, the concentration profiles to the left of the
moving interface at four different times are displayed.
The profiles retrieved from the simulations are observed
to be close to those given by the analytical solution.

B. Bubble Evaporation

To demonstrate how our algorithm equilibrates at the
desired solubility levels in a closed system, we consider an
evaporating bubble located in the center of a circularly
confined system. The diameter of this system is in the
simulations set to 100 lattice units. Initially, the bubble
consists of pure blue fluid (ϕ = 1.0) and the surrounding
phase is pure red fluid (ϕ = 0). The bubble will evaporate
until the concentration levels in the two phases equal the
solubility levels given by α1 and α2. In the simulations,
the interface is initially allowed to equilibrate for a time
t0 before the evaporation process is started.
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FIG. 4: Concentration profiles of a blue fluid bubble at
different times during evaporation. The concentrations
ϕ are given as functions of position measured in terms
of the lattice constant ∆x. In this simulation the solu-
bility levels are given by α1 = 0.95 and α2 = 0.02. The
bubble radius was here initiated to be r0 = 20 lattice
units. The concentration profiles are plotted at timesteps
t′= t−t0=[0.0, 1.0 · 103, 1.0 · 104, 5.0 · 104, 1.0 · 105, 5.0 · 105],
where t0 = 104 was the initiation time for the evaporation
process. To better see the behavior of the diffusion process
taking place, two separate regions of the concentration
profiles have been cut out and magnified. The initial and
final concentration profiles are shown in solid lines.

Figures 4 and 5 show the concentration profiles for two
evaporation processes where the solubility levels differ
considerably. For the sake of comparison, both simu-
lations use the diffusivities DB = 0.01 and DR = 0.0025
and the interfacial tension is set to σ = 10−4 (all in lat-
tice units). Figure 4 shows a dissolution process where
the solubility levels are set to α1 = 0.95 and α2 = 0.02.
This system exhibits similar solubility levels to those of
pure water (blue) in a cell of pure supercritical CO2 (red)
at a temperature of 313 K and a pressure of 7 MPa.
Figures 5 and 6 present a system with considerably

larger solubility levels. Here, α1 = 0.8 and α2 = 0.2. Be-
cause of these large solubility levels, a radical decrease in
the bubble radius is observed. From Fig. 6, we see that
the pressure increases as expected as the bubble radius
decreases during evaporation. With these large solubility
levels, the transition from diffusion inside of Region II to
outside in Region I can be abrupt, leading to noisy re-
sults, if the transition width is too small. To smooth out
the transition, we used a value of β = 0.5 to produce the
results presented in Figs. 5 and 6, as opposed to β = 0.8
in Fig. 4.

C. Péclet number dependent invasion processes

The main motivation for developing this algorithm was
to gain the ability to simulate partial dissolution of fluids
during transport in porous media. We will here look at
some examples of such processes.
We start off with studying dissolution of a single menis-
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FIG. 5: Concentration profiles of an evaporating blue fluid
bubble at different times as functions of position. Here,
α1 = 0.8 and α2 = 0.2, and the initial bubble radius r0 = 25
lattice units. The concentration profiles are plotted for the
same timesteps as in Fig. 4. The initial and final concentra-
tion profiles are as in Fig. 4 represented by solid lines.
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FIG. 6: Pressure profiles of an evaporating bubble as func-
tions of position. This figure shows the same system as Fig. 5
and the profiles plotted are at the same timesteps as in Figs. 4
and 5. The pressure difference ∆p is the difference between
the measured pressure at position x and the pressure mea-
sured at a point outside the bubble, far away from the inter-
face region between the two phases. The pressure is given in
lattice units.

cus advancing due to flow in a straight channel, be-
fore presenting a similar process occurring in a two-
dimensional porous medium with a number of menisci
present.

Let us define our coordinate system so that the x axis
is parallel with the flow direction, while the y axis is in
the perpendicular direction. In the y direction, the sys-
tem is confined by solid walls. These are simulated by
using a simple bounce back rule that replaces the regular
interaction equations at the wall sites [13]. The wetting
property of the walls is modeled by modifying the color
gradient f at sites next to wall sites [34]. Here, the neigh-
boring color difference c̃(x+ cα∆t, t) at wall sites is given
by c̃wall = − cos θw where θw is the static contact angle.
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FIG. 7: (Color online) Snapshot of an invading fluid being
injected from the left side of a straight channel, while it par-
tially dissolves in a defending fluid. The figure shows the in-
vading fluid concentration at t = 7.5 · 104 with Pe = 3 · 10−1

and Ca = 10−2 (Jx = 10−4, σ = 10−3, and D0 = 10−2). The
color (grey) scale is a linear scale showing the invading fluid
concentration ϕ. The thin white line represents the interface
between the two fluids.

If θw = 0, the invading fluid is perfectly non-wetting. If
θw = 180, the invading fluid perfectly wets the solid sur-
face.
However, if the fluid diffusing into the other phase is

not perfectly non-wetting, care must be taken. Beyond a
certain value for the wetting angle, the equilibrium con-
centration of the diffusing phase next to a wall site can
attain values between α1 and α2. This means that sites
next to a wall can have an absolute value of the color
gradient |n| > n̄ in a region away from the intended in-
terface region. This has the effect to distort the spatial
shape of Region II and subsequently to give unphysical
behavior in regions close to wall sites. By treating sites
next to wall sites separately from the other fluid sites,
and introducing a modified concentration criterion for
those sites, preliminary results show that this distortion
of Region II can be eliminated. In this paper we will not
explore this behavior, and will simply limit our examples
to a perfectly non-wetting diffusing fluid phase.
Injection of an invading fluid into a system, initially

filled with a defending fluid, is modeled by letting the
system boundaries perpendicular to the flow be periodic
to the total fluid distribution fi, but with the additional
requirement that all incoming populations on the injec-
tion side are blue while all incoming populations at the
opposite boundary are red. At the recoloration bound-
aries, the local color gradient is set to zero to avoid any
phase separation and surface tension effects.
The injection of fluid is driven at a constant rate. This

invasion rate is maintained by a uniform volume force
Fx(t) acting in the x direction [35]. Using a global flux-
controlling volume force rather than applying a constant
flux boundary condition minimizes the effects of the in-
herent compressibility in our LB algorithm. The volume
force Fx(t) varies in time as

∂Fx(t)

∂t
= KP [J0 − Jx(t)]−KD

∂Jx(t)

∂t
. (38)

Here J0 is the desired mass flux density in the x di-
rection and Jx(t) is the mean mass flux density mea-
sured in the system at time t. The positive tuning pa-

FIG. 8: (Color online) Snapshot of the invading fluid con-
centration ϕ at t = 1.5 · 105 with Pe = 3 and Ca = 10−2

(Jx = 10−4, σ = 10−3, and D0 = 10−3). See Fig. 7 for fur-
ther description.

FIG. 9: (Color online) Snapshot of the invading fluid con-
centration ϕ at t = 3.0 · 104 with Pe = 30 and Ca = 10−1

(Jx = 10−3, σ = 10−3, and D0 = 10−3). The capillary num-
ber was increased by increasing the rate of injection. See
Fig. 7 for further description.

rameters, KP and KD, determine the response of the
body force. In the simulation, these are set to Kp = 1.0
and KD = 0.4. In the simulations we set the interface
thickness parameter to β = 1.0, the solubility levels to
α1 = 1.0 and α2 = 0.05, and the contact angle to θw = 0.
The behavior for this type of system is controlled by

the values of the two key dimensionless numbers; the
Péclet number Pe and the capillary number Ca. The
capillary number may be defined as the ratio of viscous
shear stress to capillary pressure and is given by

Ca =
Jxν

σ
, (39)

where Jx is the mass flux density (Jx/ρ is the average
fluid velocity). The Péclet number is the ratio of flow
speed to diffusion speed and is given by

Pe =
Jxl

ρD0
, (40)

where l is the characteristic length over which diffusion
occurs, which we take to be the channel width in the set
of channel flow simulations and the average pore throat
width in the porous medium simulations.
We next turn to dissolution across a single meniscus

advancing due to flow in a straight channel with a length
Lx = 120 and a height Ly = 30 measured in lattice units.
In Figs. 7, 8, and 9, the flow begins at t = 0 with the fluid
interface at position x = 20. When Pe < 1, the diffusion
advances more rapidly than the meniscus and the concen-
tration in front of the meniscus will behave as shown in
Fig. 7. When Pe > 1, the diffusion front remains closer to
the meniscus as in Fig. 8. In both of these examples, the
capillary number Ca is small enough that capillary forces
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FIG. 10: (Color online) For a capillary number Ca = 10−2, two invasion processes, where partial fluid dissolution occur, are
compared at different times. In both processes, an invading fluid is, while being injected from the left side of a porous medium,
dissolving into the defending fluid. The porous structure is shown as white areas outlined in black. Each column shows one
experiment where the images are ordered, from the top, by increasing time. The two pictures in each row depict the same
instants in time. The invasion structure, i.e. the pure invading fluid, is presented in blue (dark grey), extending from the left
side of the system. The invading fluid dissolved in the defending one is represented by a linear color (grey) scale given below
the last image in each column. The darkest shade represents 0.5 ≥ ϕ ≥ α2 = 0.05, while the lightest shade represents ϕ = 0.
The left column shows the structure evolution of an invasion process characterized by Pe = 7 · 10−1 (Jx = 10−3, ν = 10−1,
σ = 10−2, and D0 = 10−2). In the right column, a similar process with Pe = 7 · 10−2 (Jx = 10−3, ν = 10−1, σ = 10−2, and
D0 = 10−1) is presented.
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maintain the shape of the meniscus even as it moves down
the channel at the rate of injection. The Péclet number
Pe was here changed by changing the diffusivity. Finally,
in Fig. 9, Ca is increased by increasing the injection rate
with the result that the shape of the meniscus is now al-
tered by viscous shearing. The viscous shear forces are
able during the invasion to distort the form of the menis-
cus from its equilibrium shape causing it to continuously
stretch in the flow direction. The greater flow velocity
down the center of the channel also results in the en-
hanced advection of concentration observed. A finger of
advected concentration advancement begins to develop
in the center of the channel due to the enhanced fluid
velocity there. All of this is as qualitatively expected.
Finally, we perform invasion simulations for a two-

dimensional inert porous medium. Here, the medium is
made up of approximately 30× 15 randomly distributed
circular discs (see Fig. 10) on a lattice of 400× 200 grid
points. The invading fluid is injected into the porous
medium initially filled with a defending fluid. While be-
ing injected, the invading fluid is allowed to mix with the
defending fluid up to a solubility limit of α2 = 0.05. The
wetting properties of the porous medium are again mod-
eled by the bounce back rule described earlier with a con-
tact angle of θw = 0. We perform two simulations with a
fixed injection rate and interface tension, maintaining the
same capillary number Ca = 10−2 for both simulations.
The only difference between the two are the diffusivity
of the invading phase in the defending one. Figure 10
shows a comparison of the initial invasion process in the
two simulations. The left column of the figure shows the
time evolution of a process where Pe = 7 · 10−1, while
in the right column the Pe = 7 · 10−2. The most obvious
difference between the two simulations is the width of the
diffusion front. Since the solubility limit α2 of the invad-
ing phase in the defending one is relatively low, there are
limited changes in the invasion structure do to the dif-
ferences in diffusivity. However, it is possible to see signs
of the higher rate of dissolution, as is expected, in the
invasion structure of the process having a lower Péclet
number. This is easiest to see when comparing the two
bottom panels of Fig. 10. Since the invading fluid is be-
ing injected into the porous material at the same constant
rate in the two simulations, there should at a given time
be the same amount of invading fluid in both systems
so long as no injected fluid has reached the outlet. Due
to the higher dissolution rate in the process depicted in
the right column in Fig. 10, the average position of the
invasion front at a given time is observed to lag slightly
behind that of the process shown in left column.

V. CONCLUSION

A lattice Boltzmann method has been introduced that
allows for diffusive mixing between the two fluids dur-
ing two-phase flow. Numerical examples of bubble evap-
oration and how concentration profiles in flowing fluids

depend on Péclet number and capillary number were pre-
sented. The algorithm is directly applicable to problems
such as how flowing bubbles dissolve their contents into
the surrounding fluid and how one fluid invades another
in porous media.
The essence of the algorithm is to define two regions

in the fluid system: (1) a finite-width interfacial region
separating the fluids in which both color separation and
surface tension are allowed for, and (2) all other regions in
which the binary fluids behave as being perfectly miscible
with concentrations governed by the advection-diffusion
equation. The location of the interfacial region is de-
fined by giving the concentration level of one of the flu-
ids at the boundary as fixed inputs. These concentration
levels at the boundary between the two regions define
the equilibrium solubility level in each fluid. It was not
found necessary to perform special interpolation between
node points to define the precise position of the concen-
tration surfaces at the limits of the interfacial region.
However, it was observed that as the solubility levels in-
creased to above around 10%, the transition of diffusion
from the interfacial zone to the miscible zone could be
too abrupt if the transition zone was too narrow. The
result was anomalous (noisy) concentration values near
the edge of the interfacial region. This numerical arti-
fact was avoided by simply decreasing the parameter β
in the recoloration step which has the effect to widen, and
therefore smoothen, the transition between the regions.
In the paper the algorithm was used to simulate a sim-

ple analytically solvable problem, before applying it to
situations of bubble evaporation and situations of inva-
sion processes where dissolution occurs.
Future research involving this algorithm could be to

allow for the surface tension and possibly contact angle
to change as the fluids diffusively equilibrate.

Appendix A: Chapman-Enskog Expansion of the
Lattice Boltzmann Equation

Having an LBE

jα(x+ cα∆t, t+∆t)− jα(x, t) =

λ[jα(x, t) − jeqα (x, t)] + ∆jFα (x, t), (A1)

where jα ∈ {fα, gα} and λ ∈ {λν , λD}, performing a
Chapman-Enskog expansion will retrieve the desired con-
tinuum dynamics equations presented in Eqs. (1)-(4).
This may be done by introducing an expansion param-

eter ε such that

jα =

∞
∑

n=0

εnj(n)α , (A2)

∂t =

∞
∑

n=1

εn∂tn, and ∂i =

∞
∑

n=1

εn∂in. (A3)
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The parameter ε is often taken to be proportional to the
Knudsen number which is here the ratio of the lattice
spacing to a characteristic macroscopic length scale.
The Taylor series

jα(x + cα∆t, t+∆t) =

∞
∑

m=0

(∆t)m

m!
Dm

α jα(x, t) (A4)

gives, through second order in ∆t, the following hierarchy
of LBEs at increasing orders of ε:

O(ε0) : j(0)α = jeqα , (A5)

O(ε1) : ∆tDα1j
(0)
α = λj(1)α +∆jF (1)

α , (A6)

O(ε2) : ∂t2j
(0)
α =

λ

∆t
j(2)α

−Dα1

[(

1 +
λ

2

)

j(1)α +
1

2
∆jF (1)

α

]

, (A7)

where we have adopted a Chapman-Enskog multi-
scale expansion where ∂t = ε∂t1 + ε2∂t2 +O(ε3) and
∂i = ε∂i1 +O(ε2). In addition, we have used that

∆jFα = ε∆j
F (1)
α and defined

Dα =
∞
∑

n=1

εnDαn ≡
∞
∑

n=1

εn(∂tn + cαi∂in). (A8)

This derivative should not to be confused with the macro-
scopic material derivative Dt ≡ (∂t + ui∂i).
In the following we will also need that

∑

α

wα = 1, (A9)

∑

α

wαcαicαj = c2Sδij , (A10)

∑

α

wαcαicαjcαkcαl = c4S(δijδkl + δikδjl + δilδjk),

(A11)

while the similar sums over an odd number of the velocity
vectors ci are equal to zero.
Using these equations and properties, we will in Ap-

pendices B-D

Appendix B: Derivation of the Navier-Stokes
Equations

The distribution function of the combined fluids fα
obeys in both Region I and Region II an LBE of the form
presented in Appendix A. If we now replace the generic
distribution jα with the one of the combined fluids, a
direct sum of Eq. (A5) over all lattice directions combined
with Eq. (10) yields

∑

α

f (0)
α = ρ, (B1)

so that
∑

α

f (n)
α = 0, for n ≥ 1. (B2)

Similarly, a weighted sum of Eq. (A5) using cαi as weights
leads to

∑

α

f (0)
α cαi = ρui. (B3)

Combined with Fi = εFi1 and the definition
ρui =

∑

α fαcαi +∆tFi/2, this gives us that
∑

α

f (1)
α cαi = −∆tFi1/2 (B4)

and
∑

f (n)
α cαi = 0, for n ≥ 2. (B5)

We will further need the two additional results
∑

α

f (0)
α cαicαj = c2Sρδij + ρuiuj, (B6)

∑

α

f (0)
α cαicαjcαk = c2Sρ(δijuk + δikuj + δjkui). (B7)

A direct sum of Eq. (A6) over all the lattice directions,
combined with Eq. (12), yields

∂t1ρ+ ∂j1(ρuj) = 0. (B8)

A weighted sum of Eq. (A6) using cαi as weight leads to

∂t1(ρui) + ∂j1(c
2
Sρδij + ρuiuj) = Fi1, (B9)

where we again have used Eq. (12). Identifying p = ρc2S
as the pressure, which is consistent with cS being
the speed of sound, shows that the previous equation
may be considered a form of Euler’s Equation where
c2Sρδij + ρuiuj is identified as the component form of the

inviscid momentum flux tensor Π
(0)
ij .

The direct sum of Eq. (A7) gives

∂t2ρ = 0, (B10)

while the weighted sum of Eq. (A7) using cαi as weight
yields

∂t2(ρui) = −∂j1
∑

i

[(

1 +
λν

2

)

f (1)
α +

1

2
∆fF (1)

α

]

cαicαj .

(B11)

By using Eq. (A6) to express f
(1)
α , combined with

Eq. (B6) and Eq. (B7), this equation may be rewritten
as

∂t2(ρui) = −∂j1

{(

1

λν

+
1

2

)

c2S∆t

[

∂i1(ρuj) + ∂j1(ρui)

+ ∂t1

(

ρuiuj

c2S

)]

− 1

λν

∑

α

∆fF (1)
α cαicαj

}

. (B12)
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Employing again the expression for ∆fF
α from Eq. (12),

combined with the continuity equation from Eq. (B8) and
Euler’s equation from Eq. (B9), we have that

∂t2(ρui) = ∂j1

{

ρν

[

∂i1uj + ∂j1ui

+
∂k1(ρuiujuk)

ρc2S

]}

, (B13)

where we also have defined ν ≡ −(1/λν + 1/2)c2S∆t. If
we neglect the last unwanted O(u3) term we have ob-
tained exactly the expression we have been seeking. Ob-
serve that the force term, ∆fF

α introduced by Guo et al.,
results in no unwanted body force terms in the contin-
uum equations. Bringing the above equations together
through O(ε2), using that ∂t = ε∂t1 + ε2∂t2 +O(ε3) and
∂i = ε∂i1 +O(ε2), gives

∂tρ+ ∂i(ρui) =0, (B14)

ρ (∂tui + uj∂jui) =− ∂ip+ Fi

+∂j{ρν[∂iuj + ∂jui +O(u3)]}+O(ε2), (B15)

which are the Navier-Stokes equations we wanted to re-
trieve. On comparison to Eq. (2) combined with Eq. (3),
we see that in this LB model the bulk viscosity would, in
a d-dimensional system, be directly related to the shear
viscosity as ξ = 2ρν/d.

Appendix C: Derivation of the Advection-Diffusion
Equation

In Region I, the zone away from the fluid-fluid inter-
face, the distribution function for one of the fluid com-
ponents gα (here denoted as the blue fluid component)
obeys an LBE of the form presented in Appendix A. If
we replace the generic jα with the distribution function
gα, a direct sum of Eq. (A5) over all lattice directions
combined with Eq. (27) gives

∑

α

g(0)α = ρB, (C1)

and therefore

∑

α

g(n)α = 0, for n ≥ 1. (C2)

Further, one also has

∑

α

g(0)α cαi = ρBui. (C3)

A direct sum of Eq. (A6) for gα over the lattice direc-
tions α, combined with Eq. (26), yields

∂t1ρB + ∂j1(ρBuj) = 0, (C4)

while a direct sum of Eq. (A7) for gα gives

∂t2ρB =−
∑

α

Dα1

[(

1

λD

+
1

2

)

(

∆tDα1g
(0)
α −∆gF (1)

α

)

]

− 1

2

∑

α

Dα1∆gF (1)
α . (C5)

Through inserting the expression for g
(0)
α = geqα from

Eq. (27) and using Eq. (26), Eq. (C4), Eq. (B8), Eq. (B9),
and that ρB = ϕρ, we obtain after some algebra

∂t2ρB = −∂i1

[(

1

λD

+
1

2

)

c2S∆tρ∂i1ϕ

+

(

1

λD

+
1

2

)

ϕ∆tFi1 −
1

λD

∑

α

∆gF (1)
α cαi

]

= −∂i1

[(

1

λD

+
1

2

)

c2S∆tρ∂i1ϕ

]

. (C6)

Bringing it together through O(ε2), using that
∂t = ε∂t1 + ε2∂t2 and ∂i = ε∂i1, gives

∂tρB + ∂i(ρBui) = ∂i(D0ρ∂iϕ), (C7)

whereD0 is the diffusion coefficient of blue particles given
by

D0 = −
(

1

λD

+
1

2

)

c2S∆t. (C8)

By using the conservation of mass given by Eq. (B14) and
the definition ρB = ϕρ, some final rearrangement gives
the advection-diffusion equation in exactly the desired
form

ρ(∂tϕ+ ui∂iϕ) =∂i(D0ρ∂iϕ). (C9)

This result through O(ε2) has no extra unwanted error
terms to this order.

Appendix D: Continuum Limit of the Phase
Separation Dynamics at the Fluid-Fluid Interface

(Region II)

In the phase separation zone of Region II we have, for
the blue fluid distribution, that

gα(x+ cα∆t, t+∆t) =ϕfα(x, t) +
ϕ∆t

2c2S
wαcαjFj

+ βhϕρwα

cαini

|cα||n|
, (D1)

where ni are the vector components of the color gradient
n.
Using the expansions of Eqs. (A2)-(A4), through sec-

ond order in ∆t, the following hierarchy of equations at
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increasing orders of ε emerge:

O(ε0) : g(0)α = ϕf (0)
α + βhϕρwα

cαini

|cα||n|
, (D2)

O(ε1) : g(1)α +∆tDα1g
(0)
α = ϕf (1)

α +
ϕ∆t

2c2S
wαcαjFj1,

(D3)

O(ε2) : g(2)α +∆t∂t2g
(0)
α =

−∆tDα1g
(1)
α +

1

2
(∆t)2D2

α1g
(0)
α + ϕf (2)

α .

(D4)

In the following we will, in addition to Eq. (A9) and
Eq. (A10), need that

∑

α

wα

cαicαj
|cα|

= cSγδij . (D5)

The equivalent sums over odd numbers of cα are zero
(even if normalized by |cα|). The parameter γ is partic-
ular to the D2Q9 model and comes out as

γ =

√
3(4 +

√
2)

18
= 0.5209829. (D6)

A direct sum of Eq. (D2) over all lattice directions,
combined with Eq. (B1) and Eq. (B2), establishes that

∑

α

g(0)α = ϕρ (D7)

and
∑

α

g(n)α = 0, for n ≥ 1. (D8)

Weighted sums of Eq. (D2), using cαi and cαicαj as
weights, lead to

∑

α

g(0)α cαi = ϕρui + βρcSγhϕ

ni

|n| (D9)

and
∑

α

g(0)α cαicαj = ϕρc2Sδij + ϕρuiuj, (D10)

respectively. Higher-order moments will not be required
to obtain results through O(ε2).
With the above established, the hierarchy of equations

can be summed to produce the corresponding continuum
laws. A direct sum over all lattice directions of Eq. (D3)
yields

∂t1(ϕρ) + ∂i1(ϕρui) = −∂i1

(

βcSγρhϕ

ni

|n|

)

. (D11)

Here, βcSγρhϕni/|n| corresponds to the vector compo-
nents of an “anti-diffusive” flux of blue particles from
low blue concentrations to high blue concentrations.
The amplitude of this anti-diffusive flux is set by the

control parameter β. The window function hϕ main-
tains the limits of Region II at the set blue concentra-
tions of α1 and α2. It’s shape is also key to produc-
ing the anti-diffusion. Once the differential operator of
Eq. (D11) is distributed on the right-hand side, a term
−βcSγρ|∇ϕ|(∂hϕ/∂ϕ) acts to increase blue on the high
blue-concentration side of Region II and reduces blue
on the low-concentration side because ∂hϕ/∂ϕ is neg-
ative on the high blue-concentration side and positive on
the low-concentration side. We also obtain another term
βcSγρhϕκ, where κ

−1 is the radius of curvature given by
Eq. (30). In cases where the radius of curvature becomes
infinite (a flat interfacial region), this term is zero. For
finite curvature, whether this term is increasing or de-
creasing blue concentration will depend on the sign of the
curvature (e.g., whether the blue fluid is wetting or non-
wetting.). In addition a third term −βcSγhϕ(ni/|n|)∂iρ
is obtained. This term is negative everywhere in Re-
gion II.

A direct sum of Eq. (D4), using Eq. (D8), gives

∂t2(ϕρ) = −∂i1
∑

α

cαig
(1)
α

−1

2
∆t

∑

α

(∂t1 + cαi∂i1)
2 g(0)α (D12)

= ∆t∂i1

(

ρc2S
2

∂i1ϕ

)

−∆t (∂i1ui − ∂t1 + ui∂i1) ∂j1

(

βcSγhϕρ
nj

|n|

)

(D13)

Going from Eq. (D12) to Eq. (D13) requires using nearly
all the above results as well as the continuity equation
from Eq. (B8) and Euler’s equation from Eq. (B9).

Bringing it all together with ∂t = ε∂t1 + ε2∂t2 and
∂i = ε∂i1, and using mass conservation ∂tρ+ ∂i(ρui) = 0
gives

ρ (∂tϕ+ ui∂iϕ) =
∆tc2S
2

∂i

(

ρ∂iϕ− 2βγρhϕni

cS∆t|n|

)

−∆t (∂iui − ∂t + ui∂i) ∂j

(

βcSγhϕρ
nj

|n|

)

. (D14)

This is the final continuum statement, made without ap-
proximation other than the O(ε3) truncation errors, for
how blue fluid particles are conserved in the LB model
of Region II. The key physics is contained in the balance
of the fluxes inside the divergence of the first term on
the right-hand side. The spatial distribution of ϕ across
Region II adjusts itself so that either blue is fluxing from
high to low concentrations or so that the diffusion and
anti-diffusion are in exact balance in a manner that main-
tains the color separation across the transition zone.
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TABLE II: Width of Region II with ϕ1num and ϕ2num be-
ing the numerical concentrations just within Region I, Wana

the analytical width of Eq. (E5) and Wnum the numerically
observed width.

n̄ β α1 α2 ϕ1num ϕ2num Wana Wnum

10−2 1.0 1.0 0.01 0.9991295 0.0101996 5.70 6

10−3 1.0 1.0 0.01 0.9999582 0.0100090 8.23 8

10−4 1.0 1.0 0.01 0.9999981 0.0100090 10.75 9

10−2 1.0 1.0 0.10 0.9996064 0.1000005 5.18 5

10−3 1.0 1.0 0.10 1.0000005 0.1000000 7.48 7

10−4 1.0 1.0 0.10 1.0000005 0.1000000 9.78 7

10−3 0.8 1.0 0.01 0.9997631 0.0100946 9.07 10

10−3 0.6 1.0 0.01 0.9989784 0.0105631 11.62 12

10−3 0.4 1.0 0.01 0.9986830 0.0109073 16.41 18

Appendix E: Width of the Fluid-Fluid Interface
(Region II)

We may, from an analytical argument, estimate the
width of Region II in a stationary state where there is no
net flux from Region II into Region I. From Eq. (D14), we
observe that at the limits of Region II where hϕ → 0, the
anti-diffusive flux vanishes so that |∇ϕ| → 0, as the limits
are approached. The effect is that ϕ only asymptotically
approaches the limit values of α1 and α2 and, in this
sense, the width of Region II would become infinite in
the continuum limit if we had not introduced the second
thresholding condition, |n| > n̂ in Eq. (22). Here n̄ is a
small, but finite number.
To obtain an analytical expression for the width of the

interface region, Eq. (D14) can be used in the stationary
state to estimate that, at the limits of Region II, the
function hϕ takes the value

hϕ

∣

∣

|n|=n̄
=

cS∆t

2βγ
n̄ (E1)

instead of the original hϕ = 0. Using the quadratic form
of hϕ given in Eq. (33) and solving Eq. (E1) for the values
of ϕ at the limits gives

ϕ1 = α1 −
(α1 − α2)cS∆t

2βγ
n̄ (E2)

ϕ2 = α2 +
(α1 − α2)cS∆t

2βγ
n̄ (E3)

to leading order in the small number n̄. The width W of
the region is obtained by integrating the stationary bal-
ance between the diffusive and anti-diffusive fluxes given
in Eq. (D14) to obtain

∫ ϕ1

ϕ2

dϕ

hϕ

=
2βγ

cS∆t

∫ W

0

dx. (E4)

Carrying out the integral and using Eq. (E2) and
Eq. (E3) gives

W =
cS∆t(α1 − α2)

βγ
ln

(

2βγ

cS∆t n̄

)

(E5)

to leading order in n̄. Table II compares this analytical
estimate of the width of the interface to the width mea-
sured numerically using the two Region II criteria given
by Eq. (19) and Eq. (22). Numerically, the finite resolu-
tion of the system causes the interface width to become
less dependent on n̄ as the thresholding value decreases.
In practice, to make the interface wider, one must lower
the value of β as seen in the table.
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