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Origami-based design holds promise for developing materials whose mechanical properties are
tuned by crease patterns introduced to thin sheets. Although there has been heuristic developments
in constructing patterns with desirable qualities, the bridge between origami and physics has yet to
be fully developed. To truly consider origami structures as a class of materials, methods akin to
solid mechanics need to be developed to understand their long-wavelength behavior. We introduce
here a lattice theory for examining the mechanics of origami tessellations in terms of the topology of
their crease pattern and the relationship between the folds at each vertex. This formulation provides
a general method for associating mechanical properties with periodic folded structures, and allows
for a concrete connection between more conventional materials and the mechanical metamaterials
constructed using origami-based design.

While for hundreds of years origami has existed as an
artistic endeavor, recent decades have seen the applica-
tion of folding thin materials to the fields of architecture,
engineering, and material science [1–7]. Controlled ac-
tuation of thin materials via patterned folds has led to
a variety of self-assembly strategies in polymer gels [8]
and shape-memory materials [4], as well elastocapillary
self-assembly [9], leading to the design of a new category
of shape-transformable materials inspired by origami de-
sign. The origami repertoire itself, buoyed by advances
in the mathematics of folding and the burgeoning field
of computational geometry [10], is no longer limited to
designs of animals and children’s toys that dominate the
art in popular consciousness, but now includes tessella-
tions, corrugations, and other non-representational struc-
tures whose mechanical properties are of interest from a
scientific perspective. These properties originate from
the confluence of geometry and mechanical constraints
that are an intrinsic part of origami, and ultimately allow
for the construction of mechanical meta-materials using
origami-based design [1–4, 6, 11–13]. In this paper we
formulate a general theory for periodic lattices of folds in
thin materials, and combine the language of traditional
lattice solid mechanics with the geometric theory under-
lying origami.

A distinct characteristic of all thin materials is that
geometric constraints dominate the mechanical response
of the structure. Because of this strong coupling between
shape and mechanics, it is far more likely for a thin sheet
to deform by bending without stretching. Strategically
weakening a material with a crease or fold, and thus low-
ering the energetic cost of stretching, allows complex de-
formations and re-ordering of the material for negligible
elastic energy cost. This vanishing energy cost, espe-
cially combined with increased control over micro- and
nanoscopic material systems, indicates the great promise
for structures whose characteristics depend primarily on
geometry, rather than material composition.

By patterning creases, hinges, or folds into an other-
wise flat sheet (be it composed of paper, metal or poly-
mer gel), the bulk material is imbued with an effective
mechanical response. In contrast to conventional com-

posites engineering, wherein methods generally rely on
designing response based on the interaction between the
constituent parts that compose the material, origami-
based design injects novelty at the “atomic” level; even
single vertices of origami behave as engineering mech-
anisms [14], providing novel functionality such as com-
plicated bistability [15–17] and auxetic behavior [6, 11–
13]. This generic property inspires the identification of
origami tessellations with mechanical metamaterials, or a
composite whose effective properties arise from the struc-
ture of the unit cell. Although originally introduced to
guide electromagnetic waves[18], rationally designed me-
chanical metamaterials have since been developed that
control wave propagation in acoustic media [19, 20], thin
elastic sheets and curved shells[21–24], and harness elas-
tic instabilities to generate auxetic behavior [25–29].

Traditional metamaterials invoke the theory of lin-
ear response in wave systems, but currently there is no
general theory for predicting the properties of origami-
inspired designs on the basis of symmetry and structure.
In the following we propose a general framework for an-
alyzing the kinematics and mechanics of an origami tes-
sellation as a crystalline material. By treating a periodic
crease pattern, we naturally connect the geometric math-
ematics of origami to the more conventional analysis of
elasticity in solid state lattice structures. In section I we
outline the general formalism required to find the kine-
matic solutions for a single origami vertex. In section II
we discuss the general formulation for a periodic lattice,
including both the kinematics of deformation modes and
energetics for a periodic crease pattern. In section III
we examine the well-known case study of the Miura-ori
pattern. Our analysis here recovers known aspects of the
Miura-ori pattern as well as identifies key features that
have not been quantitatively discussed previously.

I. SINGLE ORIGAMI VERTEX

Many of the design strategies for self-folding materials
involves a single fold, an array of non-intersecting folds,
or an array of folds that intersect only at the boundary



2

Block@8a = p ê 3<,
ContourPlot3D@EnergyLandscape@a, fp, fm, e, p ê 2, p ê 2 - 0.3, 2.7, 5, .1D,
8fp, p, 2 p - 0.001<, 8fm, p, 2 p - 0.001<, 8e, 0, 2 p<,
BaseStyle Ø 8FontSize Ø 18<, ColorFunction Ø "Autumn",
PlotLegends Ø BarLegend@Automatic, All, LabelStyle Ø 8FontSize Ø 18<D,
Contours Ø 8Automatic, 50<DD

$Aborted

H*Need Tessellatica to do this part*L

In[2060]:= sectorangles = 880 °, 70. °, 30. °, 60. °, 90 °, 30. °<;
8gm2, gm6< = 880. °, 40. °<;
vtobj = MakeYoshimuraVertex@sectorangles, 8gm2, gm6<D;

Show@Vertex3DFoldedFormGraphics3D@vtobj, DihedralAngleLabels Ø
HStyle@Ò, Italic, 26D & êü 8"f1" , "f2", "f3", "f4" , "f5", "f6"<L,

SectorAngleLabels Ø HStyle@Ò, Italic, 26D & êü 8"a1", "a2", "a3", "a4" , "a5", "a6"<L,
RealSphereRadius Ø 0.5D ê. OrigamiStyle@WhiteSideColor Ø GreenDD

Out[2063]=

GeneralMSV.nb     9

b)

↵1
↵2

↵3

↵4

↵5
↵6

f1

f2

f3

f4

f5

f6

a) c)

↵2

↵3

↵4

↵5

f1

f2

f3

f4

f5

f6 `2

`3

`4

`1 = ↵1`5 = ↵6

A B C

FIG. 1. (color online) (A) Graph for a single vertex. This degree six vertex has its graph determined by the six sector angles
αi. Each crease has a dihedral angle fi associated with it. In the flat case every fi = π, or equivalently, every fold angle is
identically zero, since the fold angle is defined as the supplement of the dihedral angle. (B) By assigning fold angles to each
crease, a 3D embedding of the vertex (i.e. the folded form of the origami) is fully determined. Every face must rotate rigidly
about the defined creases, and the sector angles must remain constant. There is a limited set of fold angles that will solve these
conditions. (C) Schematic projection of the curve of intersection between the unit sphere and the folded form origami. For an
N -degree vertex this projection generates a spherical N -gon. To proceed, the N -gon is divided into N -2 spherical triangles and
the interior angles (i.e. the fi) follow as a result of applying the rules of spherical trigonometry. All three dimensional origami
structures are visualized using Tessellatica, a freely available online package for Mathematica [30].

of the material [9, 31–34]. From a formal standpoint, we
define a fold as a straight line demarcating the bound-
ary between two flat sheets of unbendable, unstretchable
material. These sheets, in isolation, are allowed to ro-
tate around the fold, so that the structure behaves me-
chanically like a simple hinge. If the fold is produced
by plastically deforming a piece of material, rather than
functioning as a hinge the fold has a preferred angle, and
is more precisely called a crease. Herein we shall use the
terms interchangeably, since the kinematic motions of a
fold and the energetics involved for a crease can be de-
scribed separately. An important, and arguably defining,
characteristic of an origami structure is that it requires
that more than one fold meet at a vertex. While each fold
individually allows for unrestricted rigid body rotation of
a sheet, geometrical constraints arise when several folds
coincide at a vertex. These constraints are what provide
origami structures with their mechanical novelty, and ul-
timately are why deployable structures and mechanical
metamaterials display exotic and tunable properties.

A vertex of degree N is defined as a point where N
straight creases meet. Figure 1A shows the crease pat-
tern for a schematic 6-degree vertex, with sectors defined
by planar angles αi. The three-dimensional folded form
of this vertex is found by supplying fold angles to each of
the creases, subject to the constraints mentioned previ-
ously [35, 36]. This procedure is an exercise in spherical
trigonometry.

One way to visualize the constraints is to surround
each vertex with a sphere and consider the intersection
between it and the surface (Fig. 1B). In this construction,
the side lengths of the spherical polygon are the angles

between adjacent folds, which must remain fixed, and
the dihedral fold angles are the internal angles of the
polygon on the sphere. Since an N -sided polygon has
N −3 continuous degrees of freedom, each vertex does as
well. These N − 3 degrees of freedom can be thought of,
for example, as the angles between a fixed fold and the
remaining non-adjacent folds.

Starting with a general vertex containing dihedral an-
gles fi, we use spherical trigonometry to calculate these
angles in terms of the N -3 degrees of freedom. To calcu-
late f1 we partition the angle into sectors by subdivid-
ing the spherical N -gon into N − 2 triangles (Fig. 1C).
We label the angles that lead from f1 to fi as `i, where
`1 = α1 and `N−1 = αN are sector angles. All the angles
αi are spherical polygon edges, and since origami struc-
tures allow only isometric deformations, these angles are
constant. The `i are the angles subtended by drawing a
geodesic on the encapsulating sphere from f1 to fi; ex-
pressions for relating the `i to the fold angles fi are found
by using the spherical law of cosines around the vertex
[35]:
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f1 =

N−2∑
i=1

cos−1

[
cosαi+1 − cos `i+1 cos `i

sin `i+1 sin `i

]
, (1)

f2 = cos−1

[
cos `2 − cosα1 cosα2

sinα1 sinα2

]
, (2)

fN = cos−1

[
cos `N−2 − cosαN−1 cosαN

sinαN−1 sinαN

]
, (3)

fi = cos−1

[
cos `i−2 − cosαi−1 cos `i−1

sin `i−1 sinαi−1

]
+ (4)

cos−1

[
cos `i − cosαi cos `i−1

sin `i−1 sinαi

]
.

These expressions are essentially all that is required
to determine the folding of a single vertex, although the
associated solutions are generically multi-valued. These
results imply that there are multiple branches of config-
uration space for any given spherical polygon.

To specify the internal state of each vertex we define
an N−3 component vector s. Given the internal state of
a vertex, all N of the dihedral fold angles are determined,
which we collect in the vector f(s). In practice, compu-
tations are vastly simplified by choosing the appropriate
degrees of freedom; for example, for a degree 6 vertex of
the type displayed in Fig. 1, we choose s = {`3, f2, f6},
and the fold vector is given by f = {f1, f2, f3, f4, f5, f6}.

II. GENERAL LATTICE THEORY

To determine the mechanical properties of an origami
tessellation we begin by examining how many vertices
are connected together in a crease pattern. When con-
structing a real piece of origami, artists and designers
specify “mountain” and “valley” creases in the pattern
to encode instructions for how the structure will fold. In
our formulation we will treat the crease pattern as a sim-
ple connected graph, where each unique crease is an edge
that connects two vertices to one another.

A. Kinematically allowed deformations

In addition to the origami constraints discussed above
for a single vertex, joining multiple vertices together gen-
erates further constraints on the folds. Consider a crease
pattern that consists of P vertices. Each vertex vp,
with p ∈ {1, ..., P} has Np folds, collected in the vec-
tor fp = (fp1 f

p
2 · · · f

p
Np

)T . If we collect all the folds into

the vector F , given by
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FIG. 2. (color online) (A) Two degree four vertices with la-
beled folds. (B) the graph for the crease pattern consisting of
these two vertices contains a single crease that is shared by
both vertices. In this case the constraint equation DF = 0
simply becomes the scalar relationship f1

1 = f2
3 .
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, (5)

then we have the following constraint equation for the
folds:

DF = 0, (6)

where D is a sparse rectangular matrix that enforces the
condition that if two vertices vq, vp are adjacent, and two
folds Fi,Fj connect vq, vp, then Fi = Fj (see Fig. 2 for
an example). This constraint enforces the connectivity
of the graph, since each unique crease clearly must have
a compatible fold angle associated with the vertices that
connect it. Each row of D corresponds to a fold connect-
ing a pair of vertices in the origami tessellation while
each column corresponds to a component of F . Analysis
of this construction is the essence of origami mechanics,
and lies at the heart of the difficulty in determining gen-
eral properties of tessellations and corrugations. Finding
the null vectors of D amounts to finding all of the possi-
ble solutions for the fold angles, and thus all of the kine-
matically allowed motions of the rigid origami. While
computational methods have been developed for simu-
lating the kinematics of origami and linkage structures
[2, 6, 11, 12], there has been no general analytical study
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that seeks to identify mechanical properties based solely
on the crease and fold patterns.

The functions F(s) are, in general, nonlinear. To pro-
ceed analytically, we expand s about a state s0 that solves
the constraint equations. That is, if F(s0) = F0 then
DF0 ≡ 0. A trivial choice for s0 has every entry iden-
tically equal to π, indicating that the piece of origami
is unfolded. The more common, and more interesting,
scenario involves a folded state where the values of the
internal vector s0 are known. Assuming that such a state
exists, we write s = s0 +δs, with δs a small perturbation,
and then have

DJδs ≡ Rδs = 0, (7)

where the Jacobian of the fold angles for each vertex
J ≡ ∂F/∂s|s0 is a block diagonal matrix defining the
small deviations from the “ground state” s0, and R is a
rigidity matrix that informs on the infinitesimal isomet-
ric deformations of the origami structure [37, 38]. This
formulation is convenient since it separates the effects
of the crease pattern topology (contained entirely in D)
from the constrained motion of a single vertex (contained
entirely in J). We can thus solve for each of these matri-
ces individually.

To find D, we first exploit the periodicity of the lattice
to decompose the vector F and matrix D in a Fourier
basis, such that F =

∑
n,m e

iq·xFq + c.c.. Here q is a
two-dimensional wave-vector and x = na1 + ma2 is the
2D position vector of the fundamental unit cell on the
crease pattern lattice, where (n,m) indexes this position
in terms of the lattice vectors a1,2. Since F ≈ Jδs and
J is independent of the lattice position, we also have
δs =

∑
n,m e

iq·xδsq + c.c., where Fq = Jδsq. In this
representation the constraints given in Eq. 6 are

D(q)Fq = D(q)Jδsq = 0 (8)

Now, instead of a matrix operation over all the ver-
tices, the size of D(q) is vastly simplified. For a pattern
with p distinct vertices per unit cell, each of degree Np,
D(q) is a (

∑p
i=1 (Ni/2)×

∑p
i=1Ni) matrix. In Fourier

space, D(q) is the complex-valued constraint matrix for
the graph of the unit cell vertices and folds. Specifically,
each fold of the unit cell is represented by a row in D(q)
having only two nonzero entries. Those entries all have
the form ±eiq·a1 ,±eiq·a2 ,±1, depending on whether the
fold connects to an adjacent unit cell along a1,2 or is
internal to the unit cell.

The formulation in terms of the matrix R(q) is com-
pletely general for any origami tessellation. The rect-
angular matrix D(q) carries all of the topological infor-
mation regarding the fold network, while the Jacobian J
carries the information about the type of vertex that has
been specified. J will be block diagonal with one block
for each vertex of a unit cell, but does not depend on q
for a regular tessellation.

B. Origami energetics

While the R matrix determines the kinematically iso-
metric deformation to leading order, these constraints
are generally not the end of the story for real materi-
als. Creases in folded paper, thermoresponsive gels with
programmed folding angles, and elastocapillary hinges
all balance energetic considerations with geometric con-
straints. In many cases these creases and hinges act as
torsional springs, while the bending of faces have addi-
tional elastic energy content [7, 39, 40].

The energy associated with the entire structure may
be written, to quadratic order in the dihedral vectors, as

E =
1

2
(F −F0)

T A (F −F0) , (9)

where A is a general stiffness matrix and F0 is a ref-
erence fold angle. For linear response this is the most
generic form for the energy. In the simplest of cases A
is constant over the lattice and diagonal with respect to
F ; this models each crease as a torsional spring with
uniform spring constant [7, 13, 40]. Small amplitude re-
sponse is found by examining the origami structure near
the ground state, that is, when F = F0. When the
energy is expanded about the ground state E0 we find

E = E0 +
1

2
δsTJTAJδs, (10)

or in the Fourier decomposition,

E =
LW

2

∑
q

δs†qMδsq, (11)

where L is the length of the tessellation in the a1 direc-
tion, W is the width in the a2 direction, andM = JTAJ
is a matrix operator that is independent of wavenumber.
Since the nullspace of R(q) will determine the modes of
deformation, the solution to this problem lies in finding
the kinematically allowed deformations, and then any en-
ergetic description will simply involve a change of basis
to a system of deformations that diagonalize the operator
M.

III. MIURA-ORI

As an example of this formulation, we consider inho-
mogeneous deformations of a particular origami meta-
material, the Miura-ori. First introduced as a framework
for a deployable surface, the design appears often in na-
ture, from plant leaves [41] to animal viscera [42]. Ad-
ditionally, theoretical calculations and experiments have
suggested the Miura-ori as a canonical, origami-based,
auxetic metamaterial [6, 7, 11–13]. Its ubiquity may
be related to its simplicity: the Miura-ori is determined
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FIG. 3. (color online) (A) While the crease pattern of a
Miura-ori generally introduces only four folds per vertex, the
bending of faces acts to allow two extra folds per vertex, so
the crease pattern we consider is a triangulated lattice. At
each vertex the dihedral angles contained in f are determined
by specifying the state vector s and satisfying the geometric
constraints. (B) Single vertex origami with enclosing sphere
to visualize the constraints between f and s.

from a single crease angle α and the mountain/valley
assignments of the pattern shown in Fig. 3. Conven-
tional origami mathematics considers that each Miura-
ori vertex is degree four, and thus there is only one de-
gree of freedom. However, casual experimentation with
a real Miura-ori quickly demonstrates that it has far
more than one degree of freedom, indicating an array
of “soft modes” enabled by the bending of the individual
faces. This breakdown of the assumptions of mathemat-
ical origami is well known, and there are many crease
patterns that are mathematically impossible to fold that
can in fact be done with little effort [43]. To incorpo-
rate these extra degrees of freedom into Miura-ori, we
assume that there are two extra folds per vertex to ac-
count for face bending. While in the extreme case of
the creases being perfectly rigid these extra folds would
actually take the form of stretching ridges [44], many
real applications involve fabrication processes that will

allow the face to be well approximated as perfect bend-
ing. Each unit cell in the tessellation has four six-valent
vertices (Fig. 3) so there are 12 degrees of freedom per
unit cell. In this example the fold vector for the ith vertex
is given by f i = (θi+, φ

i
+, β

i
+, θ

i
−, β

i
−, φ

i
−)T , and the vector

F = (f1 f2 f3 f4)T . There are three degrees of freedom
per vertex that define the internal state s, which we pa-
rameterize using three angles: ε, the angle between folds
labeled θ± in Fig. 3, and the angles φ± representing the
bending of the faces. Using the geometric relationships
between the angles [35], we find the general nonlinear re-
lationship for a single vertex, and then expand about the
ground state s0 = {ε+δε, π+δφ+, π+δφ−} to find the ma-
trix J; here ε ∈ [π−2α, π+2α]. This expansion naturally
follows from assuming that the faces are nearly flat and
that the Miura-ori has been folded into the standard con-
figuration. The Jacobian J = diag

(
J0 −J0 J0 −J0

)
is a 24×12 diagonal block matrix formed from four iden-
tical blocks,

J0 =


A C C
0 1 0
B C 0
−A 0 0
B 0 C
0 0 1

 (12)

where

A = cosα csc(ε/2)/

√
sin2(ε/2)− cos2 α, (13)

B = sin(ε/2)/

√
sin2(ε/2)− cos2 α, (14)

C = csc(α/2)/2. (15)

To calculate the constraint matrix, we note that there
are 12 unique folds per unit cell so that D(q) is a 12×24
rectangular matrix. It has a row for each bond in Fig.
4 with two nonzero columns indicating which folds of
each vertex are interconnected. For internal folds the
constraint matrix has a value of ±1, while folds that leave
the unit cell have a phase factor associated with it. The
full matrix is given by:
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FIG. 4. (color online) (A) Miura-ori, without the assignment of mountain/valley folds, has a simple directed graph structure
with a unit cell composed of four vertices. By tessellating these four vertices the entire pattern emerges. Note that the
tessellation is rectangular, with lattice vectors a1 = ax̂ and a2 = bŷ. (B) Each vertex has six folds, labelled in the fashion
shown here. (C) In Fourier space, translations associated with connecting these folds together throughout the tessellation
merely amounts to a phase factor associated with the appropriate wave number and lattice vector. Left: Translating in the x
direction. Middle: Translating in the y direction. Right: Connecting the extra folds involves a diagonal translation across the
unit cell. Note that the five internal folds have a phase factor identically equal to one.
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DT (q) =



1 0 0 0 0 0 0 0 0 0 0 0

0 e
iqy
2 0 0 0 0 0 0 0 0 0 0

0 0 e
iqy
2 0 0 0 0 0 0 0 0 0

0 0 0 −e−
iqx
2 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 e
iqx
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 e
iqx
2 +

iqy
2 0 0 0 0 0

0 0 0 0 0 0 0 e
iqy
2 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 e
iq
2 0 0

0 0 0 0 0 0 0 0 0 0 −e−
iq
2 0

0 0 0 0 0 0 −e−
iqx
2 −

iqy
2 0 0 0 0 0

0 0 −e−
iqy
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −e−
iqx
2 0 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 −e−
iqy
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −e−
iqy
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 e
iqx
2 0

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0



(16)

A. Bulk deformation

The combination D(q)J is square such that Eq. (7) has
a nontrivial solution whenever det [D(q)J] = 0. We non-
dimensionalize the wavenumber by the physical lengths
of the lattice vectors such that qx → qxa and qy → qyb,
and the resulting dispersion relation is

cos2 α

sin4(ε0/2)
sin2(qx/2) + sin2(qy/2) = 0. (17)

The only real solution to this equation is q = 0, indi-
cating that an infinite origami tessellation does not admit
spatially inhomogeneous solutions; only uniform defor-
mations are allowed. The nullspace of R is three dimen-
sional here, corresponding to three uniform deformation
modes of the Miura-ori. These zero modes are given by
the vectors Ψi:

ΨI =



1
0
0
1
0
0
1
0
0
1
0
0



, ΨII =



0
−1
1
0
−1
1
0
−1
1
0
−1
1



, ΨIII =



−2CA
1
1
0
1
1
−2CA

1
1
0
1
1


(18)

These infinitesimal deformations of the unit cell corre-
spond to a uniform contraction, a twisting mode, and a
saddle-like deformation, respectively (see Fig. 5).

To describe the kinematics of deformation, all we re-
quire are the null vectors of the constraint equations, but
for examining energy associated with the creases we need
to calculate the eigenvalues of the matrixM = JTAJ. In
general, it is not unreasonable to assume that a creased
and folded Miura-ori will have a crease stiffness k that
is approximately equal for all patterned creases, but the
energy scale for bending of the faces will depend on the
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FIG. 5. (color online) Shapes and energy eigenvalues for the three uniform modes for ε = π/2 and α = π/3. (A) The three
uniform null vectors correspond to a uniform mode (I), a twisting mode (II), and a saddle mode (III). These are identical to
the modes determined numerically in previous studies [6, 12]. (B) Eigenvalues associated with each of the three bulk modes as
a function of face stiffness Γ. Note that over a wide range the softest mode is the twisting mode (II), since it involves purely
face bending.

material properties of the structure [7]. The energy for
bending can be treated as an effective torsional spring
constant kb, and thus the energy can be written in terms
of the ratio kb/k ≡ Γ. Non-dimensionalizing the energy
by kLxLy, we find the energy eigenvalues λ in terms of
the null vectors. Decomposing the internal variable de-
formation δs =

∑
i aiψi, where ψi = Ψi/|Ψi| is the nor-

malized null vector with i ∈ {I, II, III}, we write Eq.
11 as

E =
LxLy

2
aTMa, (19)

a =

 aI
aII
aIII

 , (20)

M =

 ψTIMψI ψTIMψII ψTIMψIII
ψTIIMψI ψTIIMψII ψTIIMψIII
ψTIIIMψI ψTIIIMψII ψTIIIMψIII

 . (21)

Each matrix element of M represents overlaps between
the null vectors ψi and the energy matrix M; only in
exceptional circumstances will M be diagonal in the null
basis. In general it is given by

M =

 2
(
A2 +B2

)
0

√
2(A−B)BC√
C2+A2

0 C2 + Γ 0
√

2(A−B)BC√
C2+A2

0
ΓA2+(3A2−2BA+2B2)C2

A2+C2


(22)

An example for when M is diagonal is given by α =
π/3, ε = π/2 (see Fig. 5), for which M becomes:

M =

 8 0 0
0 1 + Γ 0
0 0 2

3 (3 + Γ)

 (23)

Note that the for this particular combination of pa-
rameters the uniform expansion mode has a flat stiffness
over all ranges of Γ since there is no face bending for
this deformation. In the regime where face bending is
relatively inexpensive (Γ� 1), the out of plane deforma-
tion modes are correspondingly softer than the uniform
deformation. These results are in agreement with previ-
ous numerical research done on the structural mechanics
of Miura-ori [6, 11, 12]. Should other values of (α, ε) be
chosen, the energy matrix is not necessarily diagonal, and
thus eigensolutions mix the null vectors.

B. Inhomogeneous deformation

For a finite tessellation, the deformation is fundamen-
tally different, since some folds reach the boundary and,
consequently, do not yield constraints. Since the tessella-
tion mechanics are determined by the allowable deforma-
tions, which are determined by the constraint equations,
the presence of free boundaries allows much more flexi-
bility, and the Miura-ori develops additional degrees of
freedom. These localized “edge states” are reminiscent
of evanescent waves in electromagnetism, boundary lay-
ers in elastic lattices [45], and Rayleigh surface waves
[46]. Letting qx ≡ q (where q is real), Eq. (17) yields
qy = ±iκ(q), where deformations decay away from the
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FIG. 6. (color online) Experimental observations of deformation localization in an 8 × 8 Miura-ori tessellation. (A) An
undeformed Miura-ori shows a regular periodic pattern. Under (B) small deformations, (C) large deformations, and (D) in the
presence of a “pop-through defect” (PTD) [7], the lattice distorts to accommodate the induced strain. (E) Qualitatively, the
amount of deformation localization can be easily seen by a simple image subtraction between the deformed and undeformed
state. (F) Measuring strain along the horizontal axis as a function of unit cell position n relative to the location of the
disturbance shows a rapid decay for all three scenarios (points). For small and large amplitudes, the decays can be readily
fit to an exponential function with decay length ` (red/upper and black/lower lines), whereas for a PTD, the decay length
can be estimated to within 100%. Because the PTD induces an extensional distortion rather than a compression, the strain is
oppositely signed. (Inset) Plotting the decay length against an approximate measure of the distortion wave vector q shows the
larger wave vector decays much more rapidly than the shorter wave vectors. Within errorbars, this measurement is consistent
with an inverse relationship between decay length and wave vector. The solid line is the theoretical prediction from Eq. 24 for
ε = π/2 and α = π/3.

boundaries of constant y with a length scale ` ≡ 1/κ(q),
with

`(q) =
1

2| sinh−1[ cosα sin(q/2)
sin2 ε/2

]|
. (24)

This localization length is readily observed in defor-
mation experiments on Miura-ori sheets (see Fig. 6).
Using laser-cut sheets of paper, an 8 × 8 Miura-ori is
constructed by folding the whole sheet using a planar
angle of α = π/3 into the ground state given by ε = π/2
(Fig. 6A). Inhomogeneous deformations are created us-
ing both an external indenter to apply a displacement
(Fig. 6B,C) and by placing reversible “pop-through de-
fects” (Fig. 6D) [7]. The strain γn at each unit cell
n is measured such that γn = ∆wn/w̄, where ∆ww is
the change in width of the nth cell and w̄ is the average
width for an undisturbed cell. As shown in Fig.6, the
strain decays exponentially away from the indenter with
a decay length that is consistent (within error) with our
theoretical predictions.

To examine these deformation modes more quantita-
tively, we return to the “dispersion relation” given by
Eq. 17. There are two possible solutions to Eq. 17,
corresponding to different decay directions, and thus the

null space of R corresponding to each of these branches
is two dimensional. We decompose δs(x) into a sum of
upward (in y) decaying and downward decaying modes,

δs = eiqx
( [
u1χ1e

−k(q)y + u2χ2e
−k(q)y

]
+ (25)[

d1η1e
k(q)y + d2η2e

k(q)y
] )

+ c.c.

The vectors χ1,2 correspond to the upward decaying
modes, while η1,2 the downward decaying modes. Note
that, since the values of the angles must be real, η1,2(q) =
χ̄1,2(−q). In the long-wavelength limit, i.e. q � 1, we
have:
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χ1 =



−CAq+CB(q−2i)
AB
0
2q

−CAq+CB(q+2i)
AB
0
0

CAq−CB(q−2i)
AB
0
0

CAq+CB(q+2i)
AB
0
2q



, χ2 =



− 2C
A

0
0
− 2C

A
−2iq

0
− 2C

A
−2iq

0
− 2C

A
0
0



(26)

The nullspace, and thus the number of elementary ex-
citations, for a finite-sized Miura-ori is actually different
than for the limit q → 0. While this may seem counter-
intuitive, the nature of the null vectors is inherently chi-
ral, as indicated by the decomposition into upward and
downward decaying solutions. At q = 0, the dimension-
ality of the nullspace is smaller because there is no dis-
tinction between handedness for uniform deformation.

C. Miura-ori’s “soft modes”

The vectors χ1,2 govern the kinematic deformations of
Miura-ori, giving the possible solutions to the constraint
equations. For a tessellation with an associated torsional
spring energy at each crease, the energy density per mode
may be written in Fourier space as

E =
LxLy

2
c†(q)H(q)c(q), (27)

where

c(q) =

 u1(q)
u2(q)
d1(q)
d2(q)

 , (28)

and H is the 2× 2 Hermitian block matrix ,

H =

(
H0 H1

H†1 H†0

)
. (29)

The two independent blocks of H are given by

H0 =

(
χ†1Mχ1 χ†1Mχ2

χ†2Mχ1 χ†2Mχ2

)
. (30)

and

H1 =

(
χ†1Mη1 χ†1Mη2

χ†2Mη1 χ†2Mη2

)
. (31)

For finite wavenumber there are four modes of defor-
mation. Typical eigenvalues of H(q) are shown in Fig.

7. The largest two eigenvalues are typically associated
with changing ε, since there is an energetic cost even for
very small Γ. The typically smallest two eigenvalues cor-
respond to twisting mode and a fourth mode that has no
analogue in the zero wavenumber case. This mode has
a qualitative shape that is similar to the twisting mode,
and an energy that vanishes as q → 0, much like an
acoustic mode in a crystal. Previous analyses of inhomo-
geneous deformations have not found this mode, which
we identify here as arising from the breaking of contin-
uous symmetry when a boundary is added to one side
of the tessellation. The acoustic mode corresponds to
an antisymmetric combination of upward and downward
decaying modes; consequently, as q becomes smaller, the
change in fold angles associated with the combination
cancel, and only three modes appear at q = 0.

The modes that are softest depend not only on the
stiffness of face bending, but on the ground state defined
by ε0 (see Fig. 7). This stiffness dependence is in ac-
cord with the previously predicted anisotropic in-plane
stiffness response [6, 13]. Additionally, since our analysis
allows for arbitrary size and wavenumber, we are able to
capture the response of the previously unidentified acous-
tic mode.

IV. DISCUSSION

While there has been numerical analysis of tessellations
in the past, our theoretical formulation provides several
key insights into the design and understanding of origami
mechanics. We not only analytically calculate expres-
sions for first-order inhomogeneous deformations, but we
find an additional acoustic mode of deformation that has
not been identified using numerics. Moreover, we have
found an analytical expression for a decay length that
arises in Miura-ori, and identify that these “soft modes”
are edge states that cannot occur in an infinite tessel-
lation. Indeed, the appearance of a single decay length
and the ability to fully quantify the deformation modes
using a single wavenumber indicates that the boundaries
of Miura-ori fully define the deformation state. We can
directly conclude from this that, unlike normal solids, the
the number of degrees of freedom scale with the perime-
ter of a finite tessellation, rather than the area. This
result suggests that there are surface boundary states
that can be used to probe the full deformation of the
material, and hints at the connection between our work
at recent studies on topological mechanics [38]. In fact,
our mathematical formalism shares many parallels with
the topological mechanics of linkages [47–49], as well as
the more conventional literature concerning topological
insulators and semimetals [50–52]. It remains to be seen
exactly how the symmetry and topology of the crease
pattern affect the nature of chiral modes in origami, but
there is evidence to suggest that even slight modifications
of the crease pattern symmetry may lead to preferentially
directed chiral states.
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FIG. 7. (color online) Eigenvalues and mode shapes as a function of wavenumber for a given Γ. (A) Left: Mode structure for
i) Γ = 0.1, ii) Γ = 1, and iii)Γ = 10, with ε = π/2 and α = π/3. At long wavelengths the saddle mode I is the stiffest for a
wide range of q, since it involves both bending of the faces and deformation of the angles away from the reference state. Right:
Mode structure for i) Γ = 0.1, ii) Γ = 1, and iii) Γ = 10, with ε = π/2 and α = 9π/20. (B) Visualization of the basic modes
for q = π/6.

A great deal of this analysis can be carried through to
other origami fold patterns. What is less clear, however,
is how the number of degrees of freedom – the null space
of R(q) – changes for different fold patterns. At the
outset it may seem coincidental that the matrix R(q) is
square. In fact, this behavior is likely more generic. In
particular, the Miura-ori – with additional folds across
the faces – is composed of triangular sub-units. In any
triangulated origami fold pattern, vertices will tend to
have, on average, six folds. Hence, for V vertices (with
V very large), we have 3V unique folds, and 3V degrees
of freedom per vertex. Consequently, R(q) will be a 3V ×
3V square matrix for sufficiently large V .

Finally, a great advantage to this approach is the abil-
ity to separate the topological nature of the crease pat-

tern from the geometry of the vertex. The ability to iso-
late mechanical deformations or elementary excitations
in exotic materials is of great interest in quantum con-
densed matter [38], amorphous solids [53–55], and com-
plex fluids [56]. Our theoretical framework for origami
tessellations bridges the gap between the origami me-
chanics literature and a theory of origami meta-materials
by identifying the constraint-based nature of the folding
mechanisms and applying well-known methods of analy-
sis from solid state physics and lattice mechanics.
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[4] E. Hawkes, B. An, N. Benbernou, H. Tanaka, S. Kim,
E. Demaine, D. Rus, and R. Wood, Proc. Natl. Acad.
Sci. U.S.A. 107, 12441 (2010).

[5] M. A. Dias, L. H. Dudte, L. Mahadevan, and C. D.
Santangelo, Phys. Rev. Lett. 109, 114301 (2012).

[6] M. Schenk and S. D. Guest, Proc. Natl. Acad. Sci. U.S.A.
110, 3276 (2013).

[7] J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward,
T. Hull, C. D. Santangelo, and I. Cohen, Science 345,



12

647 (2014).
[8] J.-H. Na, A. A. Evans, J. Bae, M. C. Chiappelli, C. D.

Santangelo, R. J. Lang, T. C. Hull, and R. C. Hayward,
Adv. Mater. (2014).

[9] C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and
C. N. Baroud, Phys. Rev. Lett. 98, 156103 (2007).

[10] J. Solomon, E. Vouga, M. Wardetzky, and E. Grinspun,
in Computer Graphics Forum, Vol. 31 (Wiley Online Li-
brary, 2012) pp. 1567–1576.

[11] M. Schenk and S. Guest, Folded shell structures, Ph.D.
thesis, PhD thesis (Univ of Cambridge, Cambridge,
United Kingdom) (2011).

[12] M. Schenk and S. D. Guest, Origami 5, 291 (2011).
[13] Z. Wei, Z. Guo, L. Dudte, H. Liang, and L. Mahadevan,

Phys. Rev. Lett. 110, 215501 (2013).
[14] K. Abdul-Sater, F. Irlinger, and T. C. Lueth, J. Mech.

Robot. 5, 031005 (2013).
[15] S. Waitukaitis, R. Menaut, B. G.-g. Chen, and M. van

Hecke, Phys. Rev. Lett. 114, 055503 (2015).
[16] B. H. Hanna, J. M. Lund, R. J. Lang, S. P. Magleby, and

L. L. Howell, Smart Mater. Struct. 23, 094009 (2014).
[17] N. P. Bende, A. A. Evans, S. Innes-Gold, L. A. Marin,

I. Cohen, R. C. Hayward, and C. D. Santangelo, arXiv
preprint arXiv:1410.7038 (2014).

[18] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,
1780 (2006).

[19] M. Kadic, T. Bückmann, N. Stenger, M. Thiel, and
M. Wegener, Appl. Phys. Lett. 100, 191901 (2012).

[20] S. Brule, E. Javelaud, S. Enoch, and S. Guenneau, Phys.
Rev. Lett. 112, 133901 (2014).

[21] M. Farhat, S. Guenneau, and S. Enoch, Phys. Rev. Lett.
103, 024301 (2009).

[22] N. Stenger, M. Wilhelm, and M. Wegener, Phys. Rev.
Lett. 108, 014301 (2012).

[23] J. Shim, S. Shan, A. Košmrlj, S. H. Kang, E. R. Chen,
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