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Abstract

The emission pattern from a classical dipole located above and oriented perpendicular to a

metallic or dielectric half-space is calculated for a dipole driven at constant amplitude. Emphasis

is placed on the fields in the metal or dielectric. It is shown that the radial Poynting vector in

the metal points inwards when the frequency of the dipole is below the surface plasmon resonance

frequency. In this case, energy actually flows out of the interface at small radii and the power

entering the metal can actually oscillate as a function of radius. The Joule heating in the metal is

also calculated for a cylindrical volume in the metal. When the metal is replaced by a dielectric

having permittivity less than that of the medium in which the dipole is immersed, it is found that

energy flows out of the interface for sufficiently large radii, a result reminiscent of the Goos-Hänchen

effect.
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I. INTRODUCTION

Sommerfeld [1] considered the problem of the emission of radio waves of a dipole radiating

above the Earth and obtained solutions for dipoles aligned either perpendicular or parallel to

the surface (taken to be planar). This problem has been studied and re-studied by numerous

authors, with different motivations. On the one hand, there have been many attempts

to evaluate the integral expressions for the fields derived by Sommerfeld, using different

techniques of complex integration [2]. On the other hand, there have been calculations

directed towards understanding the way in which the presence of a dielectric or metallic

half-space below the dipole can enhance the emission rate of the dipole [3–5]. Enhancement

can occur owing to near field effects for both dielectric and metallic half-spaces. In the case

of a metallic half-space, there can be a relatively large enhancement factor if the frequency

of the radiation is close to, but below, the surface plasmon resonance frequency [6].

Authors often calculate the integrated power flow into the surface, but not the power flow

within the media. Lokosz and Kunz [7] do give a rather detailed description of the radiation

pattern in both media for a dielectric half-space whose permittivity is larger than unity.

They show that the evanescent waves associated with the near field of the emitter can lead

to fields in the dielectric that propagate in directions that would be impossible if plane waves

were incident on the surface. Novotny [8] and Novotny and Hecht [9] discuss these radiation

patterns as well and extend the discussion to layered media [10]. However we are unaware of

detailed discussions of the differential power entering the half-space as a function of radial

coordinate. As we shall see, there are some surprises in store. For example, when the dipole

emits at a frequency slightly below the surface plasmon resonance frequency, the energy flow

into a metallic surface below the dipole can be negative, even if the integrated energy flow

into the surface is positive. Moreover, as a function of the cylindrical radial coordinate, the

energy flow into the surface can exhibit oscillations. In addition the radial energy flow inside

the metal is always inwards. In the case of a dielectric half-space, the energy flow is into

the dielectric directly below the dipole and radially outwards in the dielectric, but energy

can flow out of the dielectric at large radial distances if the dipole is located in a medium

having permittivity smaller than that of the dielectric half-space. Moreover, vortex energy

flow patterns can arise under certain circumstances. In our analysis of these features, we

derive what we believe to be new analytic asymptotic expressions for the Joule heating in
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a cylindrical volume, differential power entering the media, and radial power flow in the

media.

Although our discussion is limited to dipole emission above a dielectric or metallic half-

space, the physical principles that enter the analysis resurface in a number of related prob-

lems that form part of the vast literature devoted to the study of wave propagation in

metamaterials. For example, several authors have looked at the transmission of radiation

through sub-wavelength slits [11]. In such cases the evanescent waves near the metallic sur-

faces forming the slits can give rise to vortex field patterns in regions near the metal. The

energy flow into half-spaces or slabs of negative refraction media is also well-studied [12];

moreover, it has been shown that the energy flow about the nanostructures forming the neg-

ative refraction media can also exhibit vortex patterns [13]. There are also numerous articles

that explore the enhancement of the decay rate of classical or atomic dipoles resulting from

their interaction with nano-antennas that are positioned in the near field of the radiators

[14].

The paper is organized as follows: In Section II, the geometry and underlying assumptions

of the theory are presented. The case of a metallic half-space is studied in Sec. III and a

dielectric half-space in Sec. IV. The results are discussed in Sec. V. There is an appendix

containing details of calculations of asymptotic limits for some of the results. The validity

of Poynting’s theorem is not guaranteed in the case of complex permittivity; we show that it

works in this case when an ansatz is made that relates the imaginary part of the permittivity

to an effective conductivity of the medium. We consider only the case of a dipole aligned

perpendicular to the surface since this is sufficient to illustrate the relevant physics; the

extension to the case of a dipole aligned parallel to the surface is straightforward [15]. The

”metallic” half-space we choose differs from the one conventionally found in the literature.

Often the actual complex permittivity of the metal is used in such calculations. Since we

are interested in energy flow considerations not directly related to ohmic loss, we take the

imaginary part of the complex permittivity of the metal, ǫi, to be finite but infinitesimally

small. It will turn out that the integrated power flow into the metal, as well as the radial

power flow in the metal, is zeroth order in ǫi. In some sense, ǫi can be viewed as a radiative

decay rate, rather than an ohmic loss rate. Of course, true metals will have larger losses.

The formalism to be presented applies to such metals as well (and to metamaterials having

negative permeability and permittivity), but the present discussion focusses primarily on
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metals and dielectrics having ǫi ≪ 1 and permeability µ = 1.

II. GENERAL CONSIDERATIONS

We consider a vertical dipole having dipole moment p(t) in the z-direction located a

distance d above a dielectric or metallic half-space (Fig. 1). The dipole is assumed to be

driven at constant amplitude p and constant frequency ω, with p(t) = Re(pe−iωt). The dipole

is embedded in a half-space, z > 0, having real permittivity ǫ1 ≥ 1 and real permeability

µ1 ≥ 1. The medium in the half-space z < 0 is characterized by a complex permittivity ǫ2

and real permeability µ2. The relative permittivity ǫ is defined as

ǫ = ǫ2/ǫ1 = ǫr + iǫi, (1)

where ǫr and ǫi are real, while the relative permeability µ is defined as

µ = µ2/µ1. (2)

For most of the paper we take µ = 1; however, in the Discussion (Sec. V) we look at one

case in which µ = −1 in order to model energy flow in negative refraction media. Two

models for the permittivity are considered, one corresponding to a low-loss metal and the

other to a lossless dielectric.

In the case of a metal, we assume that

ǫr < −1 and ǫi ≪ 1. (3)

Moreover, we use the Drude model to characterize the metal. In the Drude model, the

complex permittivity ǫ2 is given by

ǫ2 = 1−
ω2
p

ω (ω + iγd)
≃ 1−

ω2
p

ω2
+ i

ω2
pγd

ω3
, (4)

where ωp is the plasma frequency and it has been assumed that γd ≪ ω. It then follows that

ǫr =
1

ǫ1

(

1−
ω2
p

ω2

)

and ǫi =
1

ǫ1

ω2
pγd

ω3
. (5)

A permittivity ǫr < −1 corresponds to an input frequency that is below the surface plasmon

resonance frequency, ωsp = ωp/
√
1 + ǫ1 [6]. At frequencies below ωsp, it is possible for the

near field of the dipole to excite surface plasmon modes in the metal. For −1 < ǫr < 0, there
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FIG. 1: Color online. A vertical dipole is located a distance d above an interface separating linear

media characterized by permittivities ǫ1 and ǫ2. The dipole is driven to emit optical radiation

having frequency ω = k1c. The cylindrical volume shown is used to calculate power flow in the

normal and radial directions.

is no surface plasmon resonance, but it is still possible to excite evanescent lateral waves in

medium 2.

It is convenient to define an effective conductivity σ by setting

ǫ2 = ǫ2r +
4πiσ

ω
(6)

or

ǫ = ǫ2/ǫ1 = ǫr +
4πiσ

ωǫ1
(7)

which implies that

σ =
ǫiωǫ1
4π

. (8)
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The conductivity leads to ”Joule heating” in the metal, but it should be noted that this

conductivity could also account for radiative losses associated with the scattering of radiation

by the metal.

To model a lossless dielectric, we take

ǫr > 0 and ǫi = 0 . (9)

In all calculations, we keep terms in the power flow that are at most first order in ǫi and

often zeroth order in ǫi.

All electromagnetic fields, as well as the Hertz vector, have the same time dependence

(e−iωt), which is suppressed throughout this paper. In cylindrical coordinates, the Hertz

vectors in media 1 and 2 are given by [1, 3], [16]

Π1(ρ̃, z̃) = ẑk1p

∫ ∞

0

u

ℓ1
J0(uρ̃)

[

e±ℓ1(z̃−d̃) + f1e
−ℓ1(z̃+d̃)

]

du = Π1(ρ̃, z̃)ẑ (10a)

Π2(ρ̃, z̃) = ẑk1p

∫ ∞

0

u

ℓ1
J0(uρ̃)e

−ℓ1d̃f2e
ℓ2z̃du = Π2(ρ̃, z̃)ẑ (10b)

where J0 is a Bessel function,

k1 =
√
ǫ1µ1ω/c (11a)

ρ̃ = k1ρ (11b)

z̃ = k1z (11c)

d̃ = k1d (11d)

ℓ1 = −i
√
1− u2 (11e)

ℓ2 = −i
√

ǫµ− u2 (11f)

f1 =
ǫℓ1 − ℓ2
ǫℓ1 + ℓ2

(11g)

f2 =
2ǫℓ1

ǫℓ1 + ℓ2
. (11h)

The + sign is taken for z < d and the − sign for z > d. The value of ℓ2 is written for µ

real and positive; for arbitrary values of µ, ℓ2 = ±i
√

ǫµ − u2 with the sign chosen such that
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Re ℓ2 > 0. The fields are given by

E1 =
1

ǫ1
∇×∇×Π1 (12a)

H1 = B1/µ1 = −i
ω

c
∇×Π1 (12b)

E2 =
1

ǫ1ǫ
∇×∇×Π2 (12c)

H2 = B2/µ2 = −i
ω

c
∇×Π2. (12d)

For the most part, we concentrate on the fields in medium 2 only. If one is interested in

the fields in medium 1, it turns out that some computational problems can be avoided by

rewriting Eq. (10a) as

Π1(ρ̃, z̃) = k1p

∫ ∞

0

u

ℓ1
J0(uρ̃)f1e

−ℓ1(z̃+d̃)du

+

k1p exp

[

i

√

ρ̃2 +
(

z̃ − d̃
)2
]

√

ρ̃2 +
(

z̃ − d̃
)2

. (13)

Note that this expression is valid for any z > 0. Although ℓ1 is a function of u, ℓ2 is a function

of ǫ, µ and u, and both f1 and f2 are functions of ǫ, µ, and u, the explicit dependence of

these functions on ǫ, µ and u is suppressed except when there is some cause for confusion.

The Hertz vectors given by Eq. (10) satisfy the boundary conditions [16]

Π1(z = 0) = Π2(z = 0); (14a)

ǫ
∂Π1(z = 0)

∂z
=

∂Π2(z = 0)

∂z
, (14b)

which guarantee that Hφ, Eρ, and Dz are continuous at the interface.

The fields in medium 2 are

E2 =
k2
1

ǫ1ǫ

[

∂2Π2

∂ρ̃∂z̃
ρ̂−

(

∂2Π2

∂ρ̃2
+

1

ρ̃

∂Π2

∂ρ̃

)

ẑ

]

(15a)

H2 = B2/µ2 = i
ω

c
k1

∂Π2

∂ρ̃
φ̂, (15b)

the time-averaged Poynting vector in medium 2, S2, is

S2 =
c

8π
Re (E2 ×H∗

2)

=
k3
1ω

8πǫ1
Re

{(−i

ǫ

)[

∂2Π2

∂ρ̃∂z̃

∂Π∗
2

∂ρ̃
ẑ+

(

∂2Π2

∂ρ̃2
+

1

ρ̃

∂Π2

∂ρ̃

)

∂Π∗
2

∂ρ̃
ρ̂

]}

, (16)
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and the time-averaged ”Joule heating” is [17]

J =
1

2
σ

∫

volume

E2·E∗
2dτ =

ǫiωǫ1
8π

∫

volume

E2·E∗
2dτ. (17)

The fields and time-averaged Poynting vector in medium 1 are given by Eqs. (15) and (16),

respectively, with Π2 replaced by Π1 and ǫ replaced by unity.

From elementary properties of Bessel functions, it follows that

∂2Π2

∂ρ̃∂z̃
= −k1p

∫ ∞

0

ℓ2u
2

ℓ1
J1(uρ̃)e

−ℓ1d̃f2e
ℓ2z̃du ≡ −k1pI1, (18a)

(

∂2Π2

∂ρ̃2
+

1

ρ̃

∂Π2

∂ρ̃

)

= −k1p

∫ ∞

0

u3

ℓ1
J0(uρ̃)e

−ℓ1d̃f2e
ℓ2z̃du ≡ −k1pI2, (18b)

∂Π∗
2

∂ρ̃
= −k1p

∫ ∞

0

u2

ℓ∗1
J1(uρ̃)e

−ℓ∗1 d̃f ∗
2 e

ℓ∗2 z̃du ≡ −k1pI3. (18c)

As a consequence,

E2 = −k3
1p

ǫ1ǫ
[I1ρ̂− I2ẑ] (19a)

H2 = B2/µ2 = −i
ω

c
k2
1pI

∗
3 φ̂, (19b)

S2 = −k5
1ωp

2

8πǫ1
Re

{(

i

ǫ

)

[I1I3ẑ+ I2I3ρ̂]

}

, (20)

and

J =
ǫiωk

6
1p

2

8πǫ1 |ǫ|2
∫

volume

(

|I1|2 + |I2|2
)

dτ. (21)

Using the above equations, one can calculate the power entering medium 2, the Joule

heating in the medium, and the radial Poynting vector. When Eq. (6) is satisfied and

medium 2 is linear and isotropic (as has been assumed), it follows that Poynting’s theorem

holds for any closed surface in medium 2; that is [17],

∮

S·da =

∫

vol

Jdτ (22)

For the fields given by Eq. (15), it is possible to prove this explicitly for a cylindrical surface

in medium 2 whose axis is along the z−axis. Poynting’s theorem can be used as a check of

the numerical accuracy of the solutions.

The general structure of Eqs. (10) allows one to draw some conclusions concerning the

nature of the fields in each medium. The parameter u in these equations is equal to (k1)ρ /k1

and would be equal to the sine of the angle of incidence for incident plane waves. In the
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case of dipole emission, u can take on values greater than unity, resulting in evanescent

”reflected” waves in medium 1. The influence of these evanescent waves on the transmitted

radiation is discussed below. However, we note here that the functions f1 and f2 exhibit

surface plasmon resonance structure as a function of u only for ǫr < −1 and µ > 0.

There is an additional feature having particular relevance for the ensuing development.

The boundary conditions on the fields at the surface require that

S1z(z = 0) = S2z(z = 0) (23a)

S1ρ(z = 0)

S2ρ(z = 0)
=

Re [ǫE2z(z = 0)H2φ(z = 0)]

Re [E2z(z = 0)H2φ(z = 0)]
(23b)

The energy flow normal to the surface is continuous , but the radial component of the

Poynting vector undergoes a jump at the interface. Moreover, if ǫr < 0 and ǫi ≪ 1, the

radial Poynting vector in medium 2 is in a direction opposite to that in medium 1.

III. METAL

In this section we consider a metal having µ = 1,

ǫr < −1; (24a)

ǫi ≪ 1, (24b)

and keep terms in the power flow that are zeroth or first order in ǫi. Although the asymptotic

results that are derived in this section are valid only in these limits, the general expressions

from which these asymptotic results are derived are valid for arbitrary µ and ǫ. When

inequalities (24) are satisfied, there is coupling of the dipole field into surface plasmon waves

[6]. Such fields are evanescent since their magnitudes decrease exponentially as a function of

the distance from the surface. However, these lateral fields propagate parallel to the surface

with amplitudes that fall off very slowly with increasing ρ̃. The limit of a perfect metal is

achieved by setting ǫr ∼ −∞ and ǫi = 0. In that limit, the problem could be solved by the

method of images.
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A. Power into medium 2

The total power entering medium 2 is given by

Pin = −2π

k2
1

∫ ∞

0

ρ̃dρ̃ S2z|z̃=0 =
2π

k2
1

k5
1p

2ω

8πǫ1

∫ ∞

0

ρ̃dρ̃ Re

{(

i

ǫ

)

I1I3

}
∣

∣

∣

∣

z̃=0

=
k3
1p

2ω

4ǫ1

∫ ∞

0

ρ̃dρ̃Re







(

i
ǫ

) ∫∞
0

ℓ2u2

ℓ1
J1(uρ̃)e

−ℓ1d̃f2du

×
∫∞
0

u′2

ℓ∗1
J1(u

′ρ̃)e−ℓ∗1d̃f ∗
2du

′







. (25)

Using
∫ ∞

0

ρ̃dρ̃Jν(uρ̃)Jν(u
′ρ̃) =

δ (u− u′)

u
, (26)

we find

Pin =
k3
1p

2ω

4ǫ1
Re

{(

i

ǫ

)
∫ ∞

0

ℓ2u
3

ℓ1ℓ∗1
e−ℓ1d̃ |f2|2 e−ℓ∗1 d̃du

}

=
k3
1p

2ω |ǫ|2
ǫ1

Re

{(

i

ǫ

)
∫ ∞

0

ℓ2u
3

|ǫℓ1 + ℓ2|2
e−(ℓ1+ℓ∗1)d̃du

}

. (27)

This integral can be evaluated numerically for arbitrary µ and ǫ. However, for µ = 1, ǫr < −1

and ǫi ≪ 1 (the limiting values considered in this section), it is shown in the appendix that,

to zeroth order in ǫi,

Pin =
k3
1p

2ωπ |ǫr|3 e−2
√

1
|ǫr |−1

d̃

ǫ1 (|ǫr| − 1)5/2 (|ǫr|+ 1)
, (28)

a result in agreement with that obtained by previous authors [3, 4]. Owing to surface plas-

mons, there can now be substantial energy flow into the medium, especially for frequencies

close to the surface plasmon resonance frequency ωsp = ωp/
√
1 + ǫ1 for which ǫr = −1.

B. Joule Heating

From Eq. (21) we can calculate the total rate of Joule heating as

J =
ǫiωk

3
1p

2

4ǫ1 |ǫ|2
∫ ∞

0

ρ̃dρ̃

∫ 0

−∞
dz̃







∣

∣

∣

∫∞
0

ℓ2u2

ℓ1
J1(uρ̃)e

−ℓ1d̃f2e
ℓ2z̃du

∣

∣

∣

2

+
∣

∣

∣

∫∞
0

u3

ℓ1
J0(uρ̃)e

−ℓ1d̃f2e
ℓ2z̃du

∣

∣

∣

2







. (29)

Using Eq. (26), we find

J =
ǫiωk

3
1p

2

4ǫ1 |ǫ|2
∫ ∞

0

du
u3

|ℓ1|2
e−(ℓ1+ℓ∗1)d̃ |f2|2

(

|ℓ2|2 + u2
)

ℓ2 + ℓ∗2
. (30)
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To zeroth order in ǫi and with µ = 1 and ǫr < −1, Eq. (30) reduces to (see appendix)

J =
k3
1p

2ωπ |ǫr|3 e−2
√

1
|ǫr|−1

d̃

ǫ1 (|ǫr| − 1)5/2 (|ǫr|+ 1)
, (31)

which is identical to Eq. (28). All the input intensity is converted to Joule heating.

C. Radial Power

We now calculate the outgoing radial field power Prad passing through the cylindrical

surface of an infinite cylinder in the lower half plane (that is, a cylinder extending from

z = 0 to z = −∞) having radius r = r̃/k1 (see Fig. 1). In other words, we calculate

Prad =
2πr̃

k2
1

∫ 0

−∞
S2ρdz̃ =

2πr̃

k2
1

k5
1p

2ω

8πǫ1

∫ 0

−∞
dz̃Re

[(−i

ǫ

)

I2I3

]

=
k3
1p

2ωr̃

4ǫ1
Re







(

− i
ǫ

) ∫∞
0

du
∫∞
0

du′ u3

ℓ1(u)
J0(ur̃)e

−ℓ1(u)d̃f2(u)

× u′2

ℓ∗1(u
′)
J1(u

′r̃)e−ℓ∗1(u
′)d̃f ∗

2 (u
′) 1

ℓ2(u)+ℓ∗2(u
′)







. (32)

It is shown in the appendix that for r̃ ≫ 1, µ = 1, ǫr < −1, and ǫi ≪ 1, Prad takes on

the asymptotic limit

Prad(asy) ∼ −k3
1p

2ωπe
−2

√

1
|ǫr|−1

d̃
e−ǫ′ir̃

ǫ1

|ǫr|3

(|ǫr| − 1)7/2 (|ǫr|+ 1)2
. (33)

As r̃ ∼ ∞, Prad ∼ 0, which is consistent with the fact that Pin = J . Equation (33) is

remarkable in two ways. First, we see that Prad(asy) is negative, implying energy flow in the

inward radial direction in the metal. Moreover, for ǫ′ir̃ < 1, the magnitude of Prad can be

significantly larger than both Pin and J . Thus it would appear that energy is not conserved.

However appearances can be deceiving.

D. Power In and Joule Heating for ρ̃ < r̃

To resolve this apparent paradox, we must calculate the Joule heating and input power

for the cylinder considered in the discussion of the radial power flow (see Fig. 1). That is,

we must show that

Pinr = Prad + Jr, (34)

where Jr is rate of Joule heating in the volume and Pinr is the net power flow into the

medium through the end caps of the volume.
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1. Joule heating

The rate of Joule heating for the volume defined by ρ̃ < r̃ and −∞ < z̃ ≤ 0 (this is the

volume enclosed by the surface used to calculate Prad) is given by

Jr =
ǫiωk

3
1p

2

4ǫ1 |ǫ|2
∫ r̃

0

ρ̃dρ̃

∫ 0

−∞
dz̃







∣

∣

∣

∫∞
0

ℓ2u2

ℓ1
J1(uρ̃)e

−ℓ1d̃f2e
ℓ2z̃du

∣

∣

∣

2

+
∣

∣

∣

∫∞
0

u3

ℓ1
J0(uρ̃)e

−ℓ1d̃f2e
ℓ2z̃du

∣

∣

∣

2







. (35)

The integrals over ρ̃ can be done analytically since

a(u, u′, r̃) =

∫ r̃

0

ρ̃dρ̃J1(uρ̃)J1(u
′ρ̃) = r̃

u′J0(u
′r̃)J1(ur̃)− uJ0(ur̃)J1(u

′r̃)

u2 − u′2 (36a)

b(u, u′, r̃) =

∫ r̃

0

ρ̃dρ̃J0(uρ̃)J0(u
′ρ̃) = r̃

uJ0(u
′r̃)J1(ur̃)− u′J0(ur̃)J1(u

′r̃)

u2 − u′2 . (36b)

Therefore,

Jr =
ǫiωk

3
1p

2

ǫ1











∫∞
0

du
∫∞
0

du′ ℓ2(u)[ℓ2(u′)]∗u2u′2e−ℓ1(u)d̃e−ℓ∗1(u
′)d̃a(u,u′,r̃)

[ǫℓ1(u)+ℓ2(u)][ǫℓ1(u′)+ℓ2(u′)]∗[ℓ2(u)+ℓ∗2(u
′)]

+
∫∞
0

du
∫∞
0

du′ u3u′3e−ℓ1(u)d̃e−ℓ∗1(u
′)d̃b(u,u′,r̃)

[ǫℓ1(u)+ℓ2(u)][ǫℓ1(u′)+ℓ2(u′)]∗[ℓ2(u)+ℓ∗2(u
′)]











. (37)

These integrals can be evaluated numerically. When µ = 1, ǫr < −1 and ǫi ≪ 1, the

major contributions come from u ≈ u′ ≈ u0, where

u0 =
√

ǫr/ (1 + ǫr). (38)

As expected, Jr < J . No surprise. In the limit of large r̃ (see appendix),

Jr(asy) ∼
πωk3

1p
2

ǫ1

|ǫr|3 e−2
√

1
|ǫr |−1

d̃

(|ǫr| − 1)5/2 (|ǫr|+ 1)

(

1− e−ǫ′ir̃
)

, (39)

where

ǫ′i = ǫi/[|ǫr|1/2 (|ǫr| − 1)3/2]. (40)

As must be the case, Jr < J .

2. Power in

The power flowing into the top cap (z = 0) of the cylindrical surface having radius

r = r̃/k1 is given by

Pinr = −2π

k2
1

∫ r̃

0

ρ̃dρ̃ S2z|z̃=0

=
k3
1p

2ω

ǫ1
Re

{

iǫ∗
∫ ∞

0

du

∫ ∞

0

du′ ℓ2(u)u
2u′2e−ℓ1(u)d̃e−ℓ∗1(u

′)d̃a(u, u′, r̃)

[ǫℓ1(u) + ℓ2(u)] [ǫℓ1(u′) + ℓ2(u′)]∗

}

. (41)
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Since the fields are evanescent, no energy flows out of the bottom cap at z = −∞. The

integrals in Eq. (41) can be done numerically, with the major contributions coming from

u ≈ u′ ≈ u0. The result turns out to be somewhat surprising since, for ǫ′ir̃ . 1 the integral is

negative! As we shall see, the fact that Pinr < 0 for ǫ′ir̃ . 1 can be attributed to a relatively

large energy flow out of the surface for r̃ . 1. In some sense, the power flowing radially

inwards in the metal exits the surface at small radii. In this manner energy conservation is

restored, as expressed by Eq. (34).

Numerical evaluation of the integrals in Eq. (41) can become somewhat unreliable for

very large r̃. For r̃ > 10, one can use

Pinr(asy) = Prad(asy) + Jr(asy)

=
πωk3

1p
2

ǫ1

|ǫr|3 e−2
√

1
|ǫr |−1

d̃

(|ǫr| − 1)5/2 (|ǫr|+ 1)

[

(

1− e−ǫ′ir
)

− e−ǫ′ir

(

|ǫr|2 − 1
)

]

(42)

with minimal error.

To see the dependence of the energy flow direction on r̃, we can calculate the power

flowing inwards through a circular ring having radius r̃ and thickness dr̃. The differential

power flowing into this ring is given by

dPinr

dr̃
= −2πr̃

k2
1

S2z|z̃=0 =
k3
1p

2ωr̃

ǫ1
Re







(iǫ∗)
∫∞
0

ℓ2u2J1(uρ̃)e−ℓ1d̃du
ǫℓ1+ℓ2

×
∫∞
0

u′2J1(u′ρ̃)e−ℓ∗1 d̃du′

[ǫℓ1+ℓ2]
∗







, (43)

which can be evaluated numerically. Since the result is the product of two integrals rather

than a double integral, the numerical evaluation does not present any problems. For r̃ > 10,

the asymptotic result

dPinr(asy)

dr̃
=

dPrad(asy)

dr̃
+

dJr(asy)

dr̃

=
πǫiωk

3
1p

2

ǫ1

|ǫr|9/2 e−2
√

1
|ǫr |−1

d̃
e−ǫir̃/(

√−ǫr(|ǫr |−1)3/2)

(|ǫr| − 1)5 (|ǫr|+ 1)2
(44)

agrees with the numerical result to within 1%. The expression for dPinr(asy)/dr̃, valid for

large values of r̃, is positive and decreases monotonically with increasing r̃.
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E. Numerical results

We now present some graphs for Pinr , Prad, and dPinr/dr̃ . In all cases we use exact

integral expressions (correct to any order in ǫi) and take µ = 1,

ǫ = ǫr + iǫi = −1.1 + 0.001i (45)

d̃ = 0.5 (46)

which implies that

u0 = 3.32 ǫ′i = 0.0316. (47)

In the Drude model, the value of ǫr = −1.1 corresponds to a frequency ω = 0.69ωp slightly

below the surface plasmon resonance frequency ω = ωp/
√
2 for ǫ1 = 1. For the chosen value

of d̃ the integrals converge rapidly for large values of u or u′ since the integrands vary as

e−ud̃ or e−u′d̃ in this limit. However for large r̃, the integrands oscillate rapidly and a check

of energy conservation indicates that there are numerical errors. For r̃ > 40, one can use

Eq. (42). With the chosen parameters,

Pin = J = 159P0, (48)

where

P0 =
ωk3

1p
2

6ǫ1
(49)

is the total power radiated by a dipole into the lower half plane in a uniform medium having

permittivity ǫ1.

A plot of Pinr/P0 vs r̃ is given in Fig. 2. Recall that Pinr is the net power flowing into

the cap of a circular surface having radius r̃ whose axis is the z−axis. We see that Pinr

is negative for r̃ . 60, but eventually approaches the asymptotic value for the total power

Pin entering the surface given by Eq. (48). There is a large enhancement factor in the

transmitted energy [Pinr(∞)/P0 ≫ 1] owing to the fact that the oscillation frequency of the

dipole is close to, but below, the surface plasmon resonance frequency. In Fig. 3, −Prad/P0

is plotted as a function of r̃ (recall the −Prad is the power flowing radially inwards through

the cylindrical surface of an infinite cylinder in the lower half plane having radius r = r̃/k1).

As predicted, the radial flow is always inwards.

In Fig. 4, a graph of
dPinr

dr̃
/P0 is shown as a function of r̃ (recall that

dPinr

dr̃
dr̃ is the power

flowing into a circular ring on the surface having radius r̃ and thickness dr̃). The differential

14



Ε = -1.1+ 0.001 i
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-800
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Pinr�P0

FIG. 2: Color online. Pinr/P0 vs r̃ for ǫ = −1.1 + 0.001i (solid curve); The dashed line represents

the total power entering the interface, Pinr(∞)/P0. In this and all other figures, µ = 1, unless

noted otherwise.

Ε = -1.1+ 0.001 i

0 50 100
r�0

250

500

750

-Prad�P0

FIG. 3: Color online. -Prad/P0 vs r̃ for ǫ = −1.1 + 0.001i . The power flow is radially inwards in

the metal.
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Ε = -1.1+ 0.001 i
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dPinr

d r�
�P0

FIG. 4: Color online. Differential power flow entering the interface in a ring having radius r̃ and

thickness dr̃ for ǫ = −1.1 + 0.001i. At small r̃ the power flow is out of the metal.

power flowing into this ring starts at zero, grows negatively, reaches a minimum and then

turns positive. Oscillations are seen for positive values of r̃ in the blow-up shown in Fig.

5. The asymptotic solution [Eq. (44)] is superimposed on the graph in Fig. 5. It fails to

produce the oscillations; instead it seems to track the average value of the oscillations. The

physical origin of the oscillations is not clear to us, but similar oscillations occur for the

surface charge density. The oscillations are a near field effect that are present when surface

plasmon modes are excited by the driving field.

IV. DIELECTRIC

We now consider the limit of a lossless dielectric in which ǫ is real and greater than zero

and µ = 1. In this limit there is no Joule heating and all the power entering the dielectric

either propagates downwards through the dielectric or parallel to the interface in the form

of lateral waves. The formalism is the same as in the case for ǫr < −1, but the values of the

integrals differ. We consider two limits, ǫ > 1 and 0 < ǫ < 1.
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dPinr

d r�
�P0

FIG. 5: Color online. A blow-up of Fig. 4 showing oscillations. The dashed curve is the asymptotic

form given in Eq. (44).

For plane waves incident on an interface with ǫ > 1, the maximum angle of refraction is

θ2max = sin−1
(

1/
√
ǫ
)

. (50)

On the other hand, for plane waves incident on an interface with 0 < ǫ < 1, there is total

internal reflection for angles of incidence greater than

θ1c = sin−1
√
ǫ. (51)

In neither case is it possible to have Sz > 0 at z = 0.

A. ǫ > 1

1. Power into and out of medium 2

As before, the total power into medium 2 is given by

Pin =
k3
1p

2ωǫ

ǫ1
Re

{

i

∫ ∞

0

ℓ2u
3

|ǫℓ1 + ℓ2|2
e−(ℓ1+ℓ∗1)d̃du

}

. (52)
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If we take ǫ > 1, the integrand is purely real for u >
√
ǫ. Thus we can set

Pin =
k3
1p

2ω

ǫ1
Re

{

iǫ

∫

√
ǫ

0

ℓ2u
3

|ǫℓ1 + ℓ2|2
e−(ℓ1+ℓ∗1)d̃du

}

≡ k3
1p

2ω

ǫ1
Iin (53)

Moreover, for u < 1, both ℓ1 and ℓ2 are purely imaginary, while for 1 < u <
√
ǫ, ℓ1 is purely

real and ℓ2 is purely imaginary. Thus

Iin = Re

{

iǫ

∫

√
ǫ

0

ℓ2u
3

|ǫℓ1 + ℓ2|2
e−(ℓ1+ℓ∗1)d̃du

}

= ǫ

∫ 1

0

u3
√
ǫ− u2

(

ǫ
√
1− u2 +

√
ǫ− u2

)2du

+ ǫ

∫

√
ǫ

1

u3
√
ǫ− u2

(ǫ− 1) [u2 (ǫ+ 1)− ǫ]
e−2

√
u2−1d̃du. (54)

The first term is independent of d̃ and represents waves propagating into the medium, while

the second term can be thought of as refraction of the near field in medium 1 into propagating

waves in medium 2. This is a near field effect and results in an enhancement of the power

transmitted to the dielectric [7].

To get the power propagating in the medium at any z̃, we must add a factor e−(ℓ2+ℓ∗2)z̃

into each integrand, but since ℓ2 is purely imaginary, it follows that

I(z̃) = Iin; z̃ < 0; (55)

the power passing through an infinite xy−plane in medium 2 is independent of z̃. A graph

of Pin/P0 vs d̃ is shown as the solid curve in Fig. 6 for ǫ = 1.4. The contribution from the

second integral dominates for d̃ < 1.

2. Radial Power

As before, the power passing radially outwards through a cylinder (that is, through the

cylindrical surface of a cylinder whose axis coincides with the z−axis and whose end caps

are located at z = 0 and z = −Z/k1 < 0) in the lower half plane having radius r = r̃/k1 is

Prad(r̃, Z) = −k3
1p

2ωr̃

ǫ1
Re







iǫ
∫∞
0

du
∫∞
0

du′u3J0(ur̃)e
−ℓ1(u)d̃ 1

ǫℓ1(u)+ℓ2(u)

×u′2J1(u
′r̃)e−ℓ∗1(u

′)d̃ 1
[ǫℓ1(u′)+ℓ2(u′)]∗

1−exp{−[ℓ2(u)+ℓ∗2(u
′)]Z}

ℓ2(u)+ℓ∗2(u
′)







. (56)

The integral can be evaluated numerically. In this case the radial flow is outwards and

simply represents the radial component of the Poynting vector associated with propagation
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FIG. 6: Color online. Total power flow entering the interface Pin/P0 as a function of d̃ for ǫ = 1.4

(solid curve) and ǫ = 0.7 (dashed line). The increased power flow for small d̃ and ǫ = 1.4 results

from near field coupling to propagating modes in the dielectric.

downwards in medium 2, in contrast to the ǫr < −1 case where the inwards radial flow

corresponds to lateral, evanescent waves.

3. Power in medium 2 for ρ̃ < r̃

The power Pr propagating in medium 2 through a circular surface having radius r = r̃/k1,

centered and normal to the z−axis at z̃ = −Z is given by

Pr(r̃, z̃ = −Z) =
k3
1p

2ω

ǫ1
Re

{

iǫ

∫ ∞

0

du

∫ ∞

0

du′ ℓ2(u)u
2u′2e−ℓ1(u)d̃e−ℓ∗1(u

′)d̃a(u, u′, r̃)e−ℓ2(u)Ze−ℓ2(u′)Z

[ǫℓ1(u) + ℓ2(u)] [ǫℓ1(u′) + ℓ2(u′)]∗

}

,

(57)

which implies that the net power flowing into the cylinder through the end caps is

δPinr(r̃, Z) = Pr(r̃, 0)− Pr(r̃,−Z)

=
k3
1p

2ω

ǫ1
Re







iǫ
∫∞
0

du
∫∞
0

du′ ℓ2(u)u2u′2e−ℓ1(u)d̃e−ℓ∗1(u
′)d̃a(u,u′,r̃)

[ǫℓ1(u)+ℓ2(u)][ǫℓ1(u′)+ℓ2(u′)]∗

× [1− exp {− [ℓ2(u) + ℓ∗2(u
′)]Z}]







. (58)
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FIG. 7: Color online. Pinr/P0 vs r̃ for ǫ = 4.

From Poynting’s theorem it follows that

δPinr(r̃, Z) = Prad(r̃, Z), (59)

since there is no Joule heating.

In Fig. 7, we plot Pinr(r̃)/P0 = Pr(r̃, 0)/P0 as a function of r̃ for ǫ = 1.4 and d̃ = 0.5.

Although there is nowhere near the enhancement of the radiation in the ǫ ≈ −1 case, there

is still some enhancement since Pinr(∞)/P0 > 1, owing to near field refraction. In contrast

to the ǫ ≈ −1 case, Pinr is never negative and increases with increasing r̃.

B. 0 < ǫ < 1

1. Power into and out of medium 2

As before, the total power into the medium is given by

Pin =
k3
1p

2ωǫ

ǫ1
Re

{

i

∫

√
ǫ

0

ℓ2u
3

|ǫℓ1 + ℓ2|2
e−(ℓ1+ℓ∗1)d̃du

}

. (60)
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However since ǫ < 1, both ℓ1 and ℓ2 are purely imaginary and

Iin = I(z̃) = Re

{

i

∫

√
ǫ

0

ℓ2u
3

|ǫℓ1 + ℓ2|2
e−(ℓ1+ℓ∗1)d̃du

}

=

∫

√
ǫ

0

u3
√
ǫ− u2

(

ǫ
√
1− u2 +

√
ǫ− u2

)2du (61)

The power is independent of d̃; there is no refraction of the near field in medium 1 into

propagating waves in medium 2. A graph of Iin vs d̃ is shown as the dashed line in Fig. 6

for ǫ = 0.7. In this case there is no enhancement of the transmitted power owing to near-field

refraction. The discussion of radial power and power into and out of medium 2 is similar to

the ǫ > 1 case, but there are some differences.

In Fig. 8, we plot Pinr/P0 for ǫ = 0.7 and d̃ = 0.5. An interesting feature emerges for

r̃ & 4. Since the slope of the graph is negative, energy is flowing out of the medium for

r̃ & 1. This is somewhat reminiscent of the Goos-Hänchen effect in which totally internally

reflected waves penetrate into a medium having lower optical density and re-emerge with

some displacement. In this case there are evanescent waves in the dielectric corresponding

to total internal reflection of the radiation emitted by the dipole.

V. SUMMARY

We have looked at power flow in the problem of a dipole radiating above a metallic or

dielectric half-space in the limit that the imaginary part of the permittivity of the metal or

dielectric is much less than unity. In particular, we have tried to emphasize the somewhat

unexpected results that were obtained for the metallic half-space when the dipole’s emission

frequency is close to but below the surface plasmon resonance frequency, corresponding to

the real part of the permittivity slightly less than −1. For a dielectric with ǫ > 1, there is

an enhancement of power flow owing to the fact that the near field of the dipole can couple

to propagating modes, but no surprises insofar as the direction of energy flow. On the other

hand, for 0 < ǫ < 1, there can be flow out of the dielectric for sufficiently large radii, a result

reminiscent of the Goos-Hänchen effect.

Perhaps the best summary is represented by the series of graphs (Figs. 9-14) showing the

Poynting vector (in arbitrary units) as a function of r̃ and z̃ for a dipole located at d̃ = 0.5.

Figure 9 corresponds to a dipole emitting in free space, where the Poynting vector points
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FIG. 8: Color online. Pinr/P0 vs r̃ for ǫ = 0.7. Note the the slope is negative for r̃ & 4, idicating

that power is exiting medium 2 at such radii.

radially outwards from the dipole. In this and all other figures in this section, the results

are scaled by a factor

s =

[

ρ̃2 +
(

z̃ − d̃
)2
]2

ρ̃2
. (62)

With this scaling factor the magnitude of the Poynting vector for a dipole radiating in free

space is constant [18].

The case of a metal with ǫ = −1.1+0.001i is illustrated in Fig. 10. It is seen that most of

the energy is converted into lateral, evanescent waves that propagate radially outwards above

the interface and radially inwards below the interface. There is a normal flow of energy into

medium 2 for large ρ̃, but this not easily seen since the radial component of the Poynting

vector is much larger than the z component at such points. Figure 11 shows analogous

results for ǫ = −0.9, a value that in the Drude model that corresponds to a frequency in

the gap of the dispersion curves between the surface plasmon and plasma frequencies. For

this value of ǫ, a plane wave impinging on the interface at any angle of incidence would be

totally reflected, but there would be lateral waves in medium 2 for an angle of incidence
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FIG. 9: Color online. Components of the Poynting vector (in arbitrary units) for a dipole radiating

in vacuum. The results are scaled such that the magnitude of the Poynting vector is constant at

all points. The position of the dipole is indicated by the double-arrow.

other than zero. In the case of the dipole emitter, the net (integrated) energy flow into the

surface vanishes, but there can be interesting flow patterns into and out of the the surface

at different radii, such as that shown in Fig. 11. The magnitude of the Poynting vector

in this and subsequent figures is thousands of times smaller than those in Fig. 10. If ǫ

is increased to a value such that −0.525 . ǫ < 0, the direction of the vortex flow seen in

Fig. 11 changes direction; that is, power exits rather than enters the metal near ρ̃ = 0.

For ǫ ∼ 0, the amplitude of the lateral waves approaches zero (see below). The case of a

dielectric having ǫ = 4 is shown in Fig. 12. For this value of ǫ, the maximum angle of

refraction for incident plane waves is 30◦; for the dipole emitter, the near field is converted

to waves in medium 2 that propagate with angles of refraction greater than this value. The

feature we described as reminiscent of that seen in the Goos-Hänchen effect is seen in Fig.

13 for ǫ = 0.7. There are evanescent waves in the dielectric leading to power flow out of the

dielectric for ρ̃ & 4. Finally, in Fig. 14, we model a medium having negative refraction by

taking ǫ = −1.1+0.001i and µ = −1. The features of negative refraction are readily observed

in the figure as rays propagate into medium 2 but with ”negative” angles of refraction for

1.5 . ρ̃ < 3.
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FIG. 10: Color online. Components of the Poynting vector (in arbitrary units) for ǫ = −1.1+ .001i.

The results are scaled as in Fig. 9.
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FIG. 11: Color online. Components of the Poynting vector (in arbitrary units) for ǫ = −0.9. The

results are scaled as in Fig. 9.
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FIG. 12: Color online. Components of the Poynting vector (in arbitrary units) for ǫ = 4. The

results are scaled as in Fig. 9.
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FIG. 13: Color online. Components of the Poynting vector (in arbitrary units) for ǫ = 0.7. The

results are scaled as in Fig. 9.
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FIG. 14: Color online. Components of the Poynting vector (in arbitrary units) for ǫ = −1.1+0.001i

and µ = −1. The results are scaled as in Fig. 9.

All the calculations have been carried out for a dipole driven at constant amplitude and

for 0 ≤ ǫi ≪ 1. It is not too difficult to understand the role played by loss in medium 2 as the

value of ǫi is increased. If there is no contribution from surface plasmons, the dominant effect

of increased loss is an increase in the rate of Joule heating. As such, the power transmitted

into the medium increases with increasing ǫi (up to a value of ǫi of order 1 to 10, after which

it decreases); the increased power is dissipated as Joule heat. On the other hand, for ǫr < −1

and µ > 0, the change in transmitted power is controlled by two competing mechanisms.

On the one hand there is an increase in the transmitted power with increasing ǫi owing to

Joule heating, but there is a decrease in transmitted power resulting from the fact that the

surface plasmon contribution decreases with increasing ǫi. As a consequence, for frequencies

slightly below the surface plasmon resonance frequency, the transmitted power decreases

with increasing ǫi; however as the frequency is reduced such that ǫr . 1.3, the increase in

Joule heating is dominant and the transmitted power increases with increasing ǫi. For a real

metal such as silver and a dipole radiating at optical frequencies, the incident field frequency

is well below the surface plasmon resonance frequency, such that ǫ ≈ −17 + 0.5i; in this

limit Pin/P0 = 4.0; moreover, the value of Sρ just above the metal is roughly 17 times its

26



value just below the surface, owing to the boundary condition given in Eq. (23b).

An interesting situation occurs for −1 < ǫr < 0. In this case there is no net transmitted

power for ǫi = 0, so the net transmitted power increases with increasing ǫi as a result of

Joule heating. In addition, the radial component of the time-averaged Poynting vector

near the surface can be amplified significantly for small values of ǫi if ρ̃ < 1. Setting

E1z(z = 0)H∗
1φ(z = 0) = A+ iB, we find from Eq. (23b) that

S1ρ(z = 0)

S2ρ(z = 0)
= ǫr − ǫi

B

A
(63)

If |B/A| ≫ 1, the second term in this expression can be important, even if ǫi ≪ 1. For

−1 < ǫr < 0, the Poynting vector no longer falls off exponentially with increasing depth in

the medium, going over to power law dependence as ǫ ∼ 0.

The limit ǫ ∼ 0 corresponds to a zero index material [19]. In the Drude model, ǫ ∼ 0

if ω = ωp and there are no losses. For the vertical dipole considered in this paper, if

ǫ = 0, all the results are independent of µ. In this limit, the magnetic field (and the

Poynting vector) in the metal vanishes. Since H = 0 in the metal, the curl of the electric

field vanishes in the metal. As such, the electric field which penetrates into the metal

has the characteristics of a static, conservative field and falls off asymptotically as z̃−3,

rather than with the characteristic exponential fall-off of evanescent waves. The situation is

somewhat analogous to that encountered in the scattering of a matter wave by a potential

step when the energy of the particle is slightly below the step height. In that case the wave

function penetrates far into the classically forbidden region, but the probability current

density vanishes in the classically forbidden region. If we had considered a horizontal dipole

with ǫ = µ = 0, we would have found that the curl of E and H both vanish in the medium,

but the Poynting vector no longer vanishes since both E and H are non-zero in the medium

(in contrast to both B and D, which do vanish). Although the integrated flow of energy

into the medium equals zero, the z−component of the Poynting vector at the surface is not

equal to zero, but is a function of ρ and φ. The fields fall off asymptotically as either z̃−2 or

z̃−3.

To see how the decay properties of an atom are modified by the surface, it would be

better to look at the dynamics of the decay process for a dipole prepared with some initial

displacement or velocity. This is a more difficult problem than that of the dipole driven

at constant amplitude, but might be tractable if retardation effects are neglected insofar as
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they affect the amplitude of the dipole during its decay. In the case of a metal we could

expect a large enhancement of the decay rate of the dipole if it can couple to surface plasmon

modes.
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VI. APPENDIX: ASYMPTOTIC EVALUATION OF VARIOUS INTEGRALS

A. Pin and J for µ = 1, ǫr < −1 and ǫi ≪ 1

If we take µ = 1, ǫi = 0 and ǫr < −1, the integrand in Eq. (27) for Pin is purely real

(recall that ℓ2 = −i
√
ǫ− u2 =

√

u2 + |ǫr| in this limit), but the integral diverges; as a

consequence, the entire expression for Pin is ill-defined. However, for an infinitesimal value

of ǫi, the integral no longer diverges and the integrand has a sharp maximum at

ℓ2(u0) = −ǫℓ1(u0) (64)

or

u0 =

√

ǫr
ǫr + 1

. (65)

The region of integration about u = u0 provides the dominant contribution to Pin and this

contribution is zeroth order in ǫi. Thus, the expression for Pin can be approximated as

Pin ∼ k3
1p

2ωǫ2r
ǫ1

Re







(

ie−2ℓ1(u0)d̃

ǫ

)

∫ ∞

0

ℓ2 (ǫ, u0)u
3
0

|K(ǫr, u0)|2
[

∣

∣(u− u0)
2 + (ǫ′i/2)

∣

∣

2
]du







, (66)

where

K(ǫ, u) =
u√

u2 − ǫ
+

ǫu√
u2 − 1

, (67)

up = u0 − iǫ′i/2, (68)

and (to order ǫi)

ǫ′i = ǫi/[|ǫr|1/2 (|ǫr| − 1)3/2] (69)

By extending the integral to −∞, one obtains

Pin ∼ k3
1p

2ωǫ2re
−2ℓ1(u0)d̃

ǫ1

2π

ǫ′i
Re

{(

i

ǫ

)

ℓ2 (ǫ, u0)u
3
0

|K(ǫr, u0)|2
}

. (70)

We now use the fact that

ℓ2 (ǫ, u0) =

√

ǫ2

ǫ+ 1
; ǫ = ǫr + iǫi (71)

and

K(ǫr, u0) ≡ K(u0) = −
(

|ǫr|2 − 1
)

√

|ǫr|
. (72)
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to arrive at

Pin ∼ k3
1p

2ωπ |ǫr|3 e−2
√

1
|ǫr |−1

d̃

ǫ1 (|ǫr| − 1)5/2 (|ǫr|+ 1)
. (73)

Following the same procedure used above to calculate Pin, the Joule heating J given by Eq.

(30) is evaluated as

J =
ǫiωk

3
1p

24 |ǫ|2

4ǫ1 |ǫ|2
e−2ℓ1(u0)d̃u3

0

(

|ℓ2(u0)|2 + u2
0

)

2ℓ2(ǫ, u0)K(u0)2
π

(ǫ′i/2)

=
k3
1p

2ωπ |ǫr|3 e−2
√

1
|ǫr|−1

d̃

ǫ1 (|ǫr| − 1)5/2 (|ǫr|+ 1)
. (74)

B. Prad, and Jr for µ = 1, ǫr < −1, ǫi ≪ 1, and r̃ ≫ 1

To evaluate Eq. (32) for Prad in the limit that u0r̃ ≫ 1, we can replace the Bessel

functions appearing in Eq. (32) by their asymptotic forms for large argument and keep only

the outgoing waves (Hankel functions of the first kind) if u0r̃ ≫ 1. (the two forms of the

integrals give about the same results - the contributions from u ≪ 1 differ since the use of

outgoing Hankel functions is not justified in that case, but the corrections from this region

are small). Thus, for u0r̃ ≫ 1, we can set

Prad(asy) ∼
k3
1p

2ω

4ǫ1

(

2

4π

)

Re







(

− i
ǫ

) ∫∞
0

du
∫∞
0

du′ u5/2

ℓ1(u)
ei(r̃u−π/4)e−ℓ1(u)d̃f2(u)

× u′3/2

ℓ∗1(u
′)
e−ℓ∗1(u

′)d̃f ∗
2 (u

′)e−i(r̃u′−3π/4) 1
ℓ2(u)+ℓ∗2(u

′)







, (75)

where ”asy” stands for ”asymptotic.” We now evaluate all factors, except the exponentials

in ρ̃, at u = u0 or u′ = u0. In this manner we obtain

Prad(asy) ∼
k3
1p

2ω

4ǫ1

(

2

4π

)

4ǫru
4
0e

−2ℓ1(u0)d̃

2ℓ2(ǫr, u0)K2(u0)

∣

∣

∣

∣

∫ ∞

0

du
eir̃u

u− u0 − iǫ′i/2

∣

∣

∣

∣

2

. (76)

Finally by extending the integral to −∞, we arrive at

Prad(asy) ∼
k3
1p

2ω

4ǫ1

(

2

4π

)

4ǫru
4
0e

−2ℓ1(u0)d̃

2ℓ2(ǫr, u0)K2(u0)
4π2e−ǫ′ir̃

= −k3
1p

2ωπe
−2

√

1
|ǫr |−1

d̃
e−ǫ′ir̃

ǫ1

|ǫr|3

(|ǫr| − 1)7/2 (|ǫr|+ 1)2
. (77)

The integrals in Eq. (37) have their major contributions for u ≈ u′ ≈ u0. In the limit

of large r̃, we can use Eq. (26) to obtain an asymptotic expansion, as we did for the radial
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power. Even though small values of ρ̃ enter the integration, their contribution is relatively

small for large r̃. Evaluating integrals in Eq. (37) as we did for the radial term, we find

Jr(asy) ∼
ǫiωk

3
1p

2

ǫ1

∫ r̃

0

ρ̃dρ̃

∫ 0

−∞
dz̃

(

2

4π

)

u3
0e

−2ℓ1(u0)d̃e2ℓ2(ǫr ,u0)z̃

K2(u0)

×
[

ℓ2(ǫr, u0)
2 + u2

0

]

∣

∣

∣

∣

∫ ∞

−∞
du

eir̃u

u− u0 − iǫ′i/2

∣

∣

∣

∣

2

=
ωk3

1p
2

ǫ1

πu3
0e

−2ℓ1(u0)d̃e2ℓ2(ǫr ,u0)z̃

ℓ2(ǫr, u0)K2(u0) (ǫ
′
i/ǫi)

[

ℓ2(ǫr, u0)
2 + u2

0

]

(

1− e−ǫ′ir
)

=
πωk3

1p
2

ǫ1

|ǫr|3 e−2
√

1
|ǫr |−1

d̃

(|ǫr| − 1)5/2 (|ǫr|+ 1)

(

1− e−ǫ′ir̃
)

. (78)

31



[1] A. Sommerfeld, Partial Differential Equations in Physics, (Academic Press, New York, 1949),

Chap. 6.

[2] See, for example; A. Baños, Dipole Radiation in the Presence of a Conducting Half-Space

(Pergamon Press, Oxford,1966), and references therein; R. W. P. King, M. Owens, and T. T.

Wu, Lateral Electromagnetic Waves (Springer-Verlag, New York, 1992), and references therein;

D. Margetis and T. T. Wu, J. Math. Phys. 42, 713-745 (2001), and references therein; B. Ung

and Y. Sheng, B. Ung and Y. Sheng, Optics Express, 16, 9073-9086 (2008).

[3] R. R. Chance, A. Prock, and R. Silbey, in Advances in Chemical Physics, edited by I. Prigogine

and S. A. Rice (Wiley, New York, 1978) Vol. 37, pps 1-65.

[4] G. W. Ford and W. H. Weber, Phys. Reps. 113, 195-287.

[5] See also, for example, H. Morawitz and M. R. Philpott, Phys. Rev. B 10, 4863-4868 (1974);

J. E. Sipe, Surface Science 105, 489-504 (1981); J. M. Wylie an J. E. Sipe, Phys. Rev. A 30,

1185-1193 (1984); W. L. Barnes, J. Mod. Opt. 45, 661-699 (1998), and references therein.

[6] See, for example, J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, Rep. Prog.

Phys. 70, 1-87 (2007), and references therein.

[7] W. Lukosz and R. E. Kunz, J. Opt. Soc. Amer. 67, 1607-1615 (1977); ibid. 1615-1619.

[8] L. Novotny, J. Opt. Soc. Amer. A 14, 91-104 (1997). (1977)

[9] L. Novotny and B. Hecht, ”Principles of Nano-Optics,” (Cambridge Univ. Press, New York,

2006) Chap. 10.

[10] After this paper was submitted, an article appeared [H. F. Arnoldus and M. J. Berg, J. Mod.

Opt. 62, 244 (2015)] in which the energy flow was calculated for emission from a dipole located

above a dielectric slab (the slab has interfaces with two dielectrics, one of which contains the

dipole). The permittivities are all taken to be real, so there are no contributions from surface

plasmons; however, when the permittivity of the slab is less than that of the medium in which

the dipole is located, patterns similar to those shown in Fig. 13 are found and a vortex pattern

in the slab can also occur. PRB would like to thank M. Revsen for pointing out this reference.

[11] See for example, P. N. Stavrinou and L. Solymar, Opts. Comm. 206, 217 (2002); H. F.

Schouten, T. D. Vissar, D. Lenstra, and H. Blok, Phys. Rev. E 67, 036608 (2003); H. F.

Schouten, T. D. Vissar, and D. Lenstra, J. Opt. B: Semiclass. Opt. 6, S404 (2004); J. Wuen-

32



schell and H. K. Kim, Opt. Exp. 14, 10000 (2006).

[12] See for example, V. G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968); D. R. Smith and N.

Kroll, Phys. Rev. Lett. 85, 2933 (2000); J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000); R.

W. Ziolkowski and E. Haymen, Phys. Rev. E 64, 056625 (2001); R. A. Shelby, D, R. Smith,

and S. Schultz, Science 292, 77 (2001): J. B. Pendry and D. R. Smith, Phys. Today 57, 37

(2004); R. Merlin, App. Phys. Lett. 84, 1290 (2004); J. B. Pendry, Cont. Phys. 45, 191 (2004);

A. Petrin, in Wave Propagation in Materials for Modern Applications, edited by A. Petrin

(InTech, Croatia, 2010) Chap. 7; Y. Ra’di, S. Nikmehr, and S. Hosseinzadeh, Prog. Electro.

Rsch. 116, 107 (2011); J. T. Costa, M. G. Silveirinha, and Alù, Phys. Rev. B 83, 165120
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