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Stationary solutions for the cubic nonlinear Schrödinger equation (NLS) modeling Bose-Einstein
condensates (BECs) confined in three spatial dimensions by general forms of a potential are studied
through a perturbation method and also numerically. Note that we study both repulsive and attrac-
tive BECs under similar frameworks, in order to deduce the effects of the potentials in each case.
After outlining the general framework, solutions for a collection of specific confining potentials of
physical relevance to experiments on BECs are provided in order to demonstrate the approach. We
make several observations regarding the influence of the particular potentials on the behavior of the
BECs in these cases, comparing and contrasting the qualitative behavior of the attractive and repul-
sive BECs for potentials of various strengths and forms. Finally, we consider the non-perturbative
where the potential or the amplitude of the solutions is large, obtaining various qualitative results.
When the kinetic energy term is small (relative to the nonlinearity and the confining potential),
we recover the expected Thomas-Fermi approximation for the stationary solutions. Naturally, this
also occurs in the large mass limit. Through all of these results, we are able to understand the
qualitative behavior of spherical three-dimensional BECs in weak, intermediate, or strong confining
potentials.
Keywords: 3+1 cubic nonlinear Schrödinger equation; Bose-Einstein condensate; perturbation the-
ory
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I. INTRODUCTION

We study stationary solutions to the cubic form of the
nonlinear Schrödinger equation (NLS) modeling both re-
pulsive and attractive Bose-Einstein condensates (BECs)
in three spatial dimensions under radial traps. Note that
the cubic NLS with potential has been used to model a
dilute-gas Bose-Einstein condensate (BEC) in the quasi-
one-dimensional regime [1]. The scalar potential in the
NLS can be used to model a confining potential or trap
when dealing with applications to BECs. A variety of
spatial traps have been utilized in the literature, and the
specific application will often dictate the form of the trap
employed [2]. Exact NLS solutions have been reported
for a variety of potentials, and these include the Kronig-
Penney potential [3] and the Jacobi sn potential [4] (in
the case of the 1 + 1 model). Single and multi-well po-
tentials are possible, and in the latter case the use of
appropriate multi-well potentials allows for a reasonable
model of a dilute gas Bose-Einstein condensate trapped
in a standing light wave. In turn, BECs trapped in a
standing light wave have been used to study phase coher-
ence [5], matter-wave diffraction [6], quantum logic [7],

and matter-wave transport [8]. Stationary solutions to
the one-dimensional NLS under box and periodic bound-
ary conditions were considered analytically for the repul-
sive [9] and attractive [10] cases, while BECs in a ring-
shaped trap with a nonlinear double-well potential have
also been considered [11]. PT-symmetric BEC solutions
in a δ-function double-well potential have been studied
[12]. Multiwell potentials make useful BEC traps in a
number of physical scenarios [13].

A variety of potentials are used in the literature to
study BECs, so in order to discuss these BEC solutions
in sufficient generality we should account for fairly gen-
eral potential forms in our analysis. We shall consider a
perturbation analysis of the solutions given small confin-
ing potentials that may take arbitrary forms. We shall
perturbatively construct stationary solution states for the
resulting equation under these arbitrary small potentials.
In our analysis, we will also consider radially symmetric
traps and radially symmetric solutions to the resulting
3+1 NLS equation. Physically, this assumption of radial
symmetry is supported by a number of studies. Radial
potentials (or potentials with nearly radial symmetry)
or radial traps have been used to study BECs immersed
in a Fermi sea [14], BECs in a dilute atomic vapor [15],
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BECs confined by dc electromagnets [16], vortex lattices
in BECs [17], rotating vortex lattices in BECs [18]. In-
deed, such potentials are often useful when studying ro-
tating BECs [19]. Radial potentials have also been used
for other applications, such as the study of BEC collapse
[20] and a sonic analog of gravitational black holes in
BECs [21]. In three-dimensions, this radial symmetry
means that the potentials will exhibit spherical symme-
try. Our analysis here extends our results for 1D [23, 24]
and 2D [25] BECs under general potentials. However,
owing to the fact that we now consider three spatial
dimensions, there will be some differences between the
present analysis and that which we have considered in
previous work.

Since we assume radial symmetry of the stationary so-
lutions, the cubic NLS reduces into a single nonlinear
ordinary differential equation. In one spatial dimension,
exact dark and bright soliton solutions can be found in
closed form. How ever, in three dimensions, the ordinary
differential equation involves a term 2

r
dΨ
dr . This addi-

tional first derivative in the radial variable precludes the
construction of a first integral, which complicates the so-
lution procedure, so such closed form solutions cannot
be found. This is true of the two-dimensional problem
as well [25], and in that case the perturbation solutions
can be expressed in terms of Bessel functions. For the
three-dimensional case, the solution representation will
differ, as we shall demonstrate later. One can certainly
argue the physical utility of studying 1D and 2D BECs
for certain applications, but the relevance of 3D BECs
is clear. While 1D BECs are often studied using traps
with specific cylindrical symmetry (with the BEC tightly
confined to the center of the cylinder), and 2D BECs will
correspond to flat or surface traps (giving pancake-like
structures), general 3D BECs are perhaps most relevant
to a wider variety of experimental observations as they do
not require such specific configurations. The types of 3D
BECs we study here are assumed to have spherical radial
symmetry, due to radially symmetric potentials chosen.
Therefore, these BECs tend to aggregate into a spherical
ball at the origin, with additional smaller density max-
ima occurring away from the origin in the form of shells
around this central region. These BECs are amenable to
mathematical and numerical analysis due, of course, to
their radial symmetry.

In Section II we consider properties of stationary so-
lutions in three spatial dimensions. In Section III, we
construct perturbation solutions in the case of repulsive
BECs under general potential functions, while we provide
solutions for specific confining potentials in Section IV.
Corresponding results are given for the attractive BECs
in Sections V and VI. We then obtain qualitative results
for the non-perturbative regime in Section VII. Included
are cases where the potential or the amplitude of the wave
function are large. In the limit where the kinetic energy
term is small relative to the size of the amplitude and the
potential, we recover the Thomas-Fermi approximation.
We also consider the very large mass limit. A discus-

sion and some concluding remarks are given in Section
VIII. From these various results, we gain a qualitative un-
derstanding of the influence of weak, intermediate, and
strong potentials on the behavior and structure of three-
dimensional spherical BECs. These qualitative results
are reinforced via a number of specific examples in which
we consider specific physically relevant potentials from
the literature.

II. STATIONARY SOLUTION

Let V (x) be a scalar potential function. Then, the
N + 1 cubic nonlinear Schrödinger equation (NLS) (also
referred to as the Gross-Pitaevskii model in some litera-
ture [22]) with small potential reads

i~Ψt =

(

− ~
2

2m
∇2 + ǫV (x) + g|Ψ|2

)

Ψ , (1)

where ǫ is a parameter which scales the potential func-
tion. For those unfamiliar with the notation N + 1, we
remark that the N denotes the spatial dimension, while
the +1 signifies the time dimension. When g > 0, we
have the repulsive case, while when g < 0 we have the
attractive case. General perturbation results (of the type
we seek here) were recently given for the 1 + 1 model in
[23] for the repulsive case and [24] for the attractive case.
In one spatial dimension, the repulsive case holds dark
solitons as a special solution. Similarly, the attractive
1 + 1 model will have bright solitons as a special class
of solutions [24]. In [25], solutions in the particular case
of two spatial dimensions were discussed via a form of
perturbation. In the present paper, we are interested
in expanding this work to the full physical case of three
dimensions under radial potentials. Therefore, we shall
henceforth take V (x) = V (r), where r =

√

x21 + x22 + x23
denotes the radial coordinate.
We assume the general stationary state

Ψ(x, t) =

√
2~

√

m|g|
exp

(

−sgn(g)
~

2m
it

)

ψ(x) , (2)

where ψ is a real-valued function. Then (1) is reduced to

∇2ψ = −sgn(g)ψ + ǫU(r)ψ + 2sgn(g)ψ3 , (3)

where

U(r) =
2m

~2
V (r) . (4)

Assuming that ψ is radial and small, in particular, of
the form ψ(x) =

√
ǫφ(r), the equation describing the

behavior of φ is given by

φ′′ +
2

r
φ′ = −sgn(g)φ+ ǫ

(

U(r) + 2sgn(g)φ2
)

φ . (5)

For a given form of U(r), we shall be able to solve (5) in
order to determine the behavior of the BEC wave func-
tion confined by that choice of potential U(r).
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III. PERTURBATION SOLUTIONS FOR

GENERAL POTENTIALS IN REPULSIVE BECS

We begin by examining repulsive BECs. In order to
construct perturbation solutions to (5) in this case, let
us assume an expansion of the form

φ(r) = φ0(r) + ǫφ1(r) + ǫ2φ2(r) + · · · . (6)

Under such an expansion, the stationary solution will
read

Ψ(x, t) = Ψ0(x, t) + ǫΨ1(x, t) + ǫ2Ψ2(x, t) + · · ·

=

√
2ǫ~√
mg

e−i ~

2m
t
(

φ0(r) + ǫφ1(r) + ǫ2φ2(r) + · · ·
)

.

(7)
Proceeding via the method, we determine the order-zero
equation to be

φ′′0 +
2

r
φ′0 + φ0 = 0 , (8)

with conditions φ0(0) = 1 and φ′0(0) = 0. Thus the
order-zero term φ0(r) takes the form

φ0(r) =
sin(r)

r
. (9)

Next, the order-one correction term will satisfy

φ′′1 +
2

r
φ′1 + φ1 =

(

2φ20 + U(r)
)

φ0 , (10)

along with the conditions φ1(0) = 0 and φ′1(0) = 0.
Hence, the equation for φ1 reads

φ′′1 +
2

r
φ′1 + φ1 =

(

2 sin2(r)

r2
+ U(r)

)

sin(r)

r
, (11)

and φ1 is given by

φ1(r) =
1

r

∫ r

0

sin(s)

s2

(

2 sin2(s) + U(s)s2
)

W1(r, s) ds ,

(12)
where we have defined the function

W1(r, s) = sin(r) cos(s)− sin(s) cos(r) = sin(r − s) .

Repeating the process for the order-two iteration, we
may use φ0, given in (9), to write the equation for φ2 as

φ′′2 +
2

r
φ′2 + φ2 =

(

6
sin2(r)

r2
+ U(r)

)

φ1(r) , (13)

subject to φ2(0) = 0 and φ′2(0) = 0. Therefore the order-
two solution φ2(r) reads

φ2(r) =
1

r

∫ r

0

φ1(s)

s

(

6 sin2(s) + U(s)s2
)

W1(r, s) ds .

(14)

FIG. 1: (Color online) Density profiles for several repulsive
solutions under the constant potential U(r) = λ.

IV. SOLUTIONS FOR REPULSIVE BECS IN

SPECIFIC POTENTIALS

We have obtained a second-order perturbation theory
for repulsive BECs in three dimensions given a general
potential. Now, we turn to many explicit examples of the
potential in order to demonstrate our solution approach.
Each of the potentials considered here is selected due
to physical relevance, and for each we include pertinent
citations demonstrating this relevance.

A. Constant potential

We consider first the case of a constant potential, that
is, U(r) = λ, where λ ∈ R. Note that the full repulsive
equation in (5) can not be solved exactly even when the
potential is constant. This is different from the case of
one spatial dimension, where the model is exactly solv-
able and a closed-form solution can be found. Consulting
our perturbation approximation when U takes the func-
tional form U(r) = λ, the zeroth-order term φ0 remains
as in (9) and the first-order term φ1 will be

φ1(r) =
1

r

∫ r

0

sin(s)

s2

(

2 sin2(s) + λs2
)

W1(r, s) ds .

(15)
Note that if we rewrite φ1 as two integrals, viz.

φ1(r) =
2

r

∫ r

0

sin3(s)

s2
W1(r, s) ds+

λ

r

∫ r

0

sin(s)W1(r, s) ds ,

(16)
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we can quickly solve the second integral and determine
that φ1 takes the form

φ1(r) =
2

r

∫ r

0

sin3(s)

s2
W1(r, s) ds+

λ

2r
(sin(r) − r cos(r)) .

(17)
Moreover, the first integral, though complicated, can be
written in closed form by way of special functions. To
show this, let us call the former integral in (16) I1(r),
that is,

I1(r) =
2

r

∫ r

0

sin3(s) sin(r − s)

s2
ds . (18)

Recalling the trigonometric identity

sin3(s) sin(r − s) =
1

8
(cos(r + 2s)− cos(r − 4s))

+
3

8
(cos(r − 2s)− cos(r)) ,

(19)

we observe that I1(r) takes the form

I1(r) =
1

4r

∫ r

0

cos(r + 2s)− cos(r − 4s)

s2

+
3 cos(r − 2s)− 3 cos(r)

s2
ds ,

(20)

which is the integral we wish to evaluate. Let J1(r, s) be
the anti-derivative of

cos(r + 2s)− cos(r − 4s) + 3 cos(r − 2s)− 3 cos(r)

s2

in variable s ≥ 0. Then we shall be concerned with de-
termining both the upper limit lims→r J1(r, s) and the
lower limit lims→0+ J1(r, s). The first limit is not too
complicated:

lim
s→r

J1(r, s) = J1(r, r) = 4 (Si(4r)− 2 Si(2r)) cos(r)

+ 4 (Ci(2r) − Ci(4r)) sin(r) ,
(21)

where

Si(q) =

∫ q

0

sin(t)

t
dt ,

Ci(q) = γ + ln q +

∫ q

0

cos(t)− 1

t
dt ,

and γ = 0.5772... is the common Euler-Mascheroni con-
stant. The lower limit lims→0+ J1(r, s), however, is more
challenging. We proceed by expanding J1(r, s) in a Tay-
lor series about s = 0 (which is possible because r is real),
to wit

J1(r, s) = −4 ln(2) sin(r) + O(s2) . (22)

Clearly, then,

lim
s→0+

J1(r, s) = −4 ln(2) sin(r) .

As such, J1(r, 0) is well-defined (recall s ≥ 0) and, in
particular, J1(r, 0) = −4 ln(2) sin(r). Hence, we observe
that

I1(r) =
J1(r, r)− J1(r, 0)

4r

= (Si(4r)− 2Si(2r))
cos(r)

r

+ (Ci(2r) − Ci(4r) + ln(2))
sin(r)

r
.

(23)

Since I1(r) is independent of the potential, it will appear
in the order-one term of each of the following examples.
Thus, we shall use I1(r) in place of the explicit expression
(23) wherever it simplifies notation. Having calculated
I1(r), we have that

φ1(r) =(Si(4r)− 2S1(2r))
cos(r)

r
− λ cos(r)

+

(

Ci(2r)− Ci(4r) + ln(2) +
λ

2

)

sin(r) .

(24)

In Fig. 1, we plot these solutions for a few values of λ
and ǫ. In each case, the mass gathers in high concentra-
tion near the origin. Remaining mass then gathers into
smaller density maxima occurring at intermittent values
of r, which gradually decay and vanish at finite r. We
therefore find that the initial density peak is the primary
one. Overall, the densities keep well with the unper-
turbed solution φ0 when ǫ remains small. As ǫ becomes
large, the rate of density decay decreases and the mass is
kept less tightly to the origin, that is, the mass is able to
reach larger r values. In general, we see that λ does not
influence the structure of the density; however, solutions
given a negative constant potential (λ < 0) agree more
closely with the unperturbed case, even as ǫ grows.
Physically, the results correspond to scalings of the

unconfined 3 + 1 NLS solutions. In the repulsive case,
the mass of the BEC is allocated in a central spherical
region. Small density shells enclose this region, and the
mass of these shells progressively decreases. However,
unlike in the 1+ 1 model, the secondary density maxima
do not vanish. This is due to the fact that solitons are
possible for the 1 + 1 model, and hence all of the BEC
mass can be allocated to a single wave envelope. Since
there are no such solitons in the 3 + 1 model, such a
configuration is not possible unless the potential forces
all o the mass of the BEC to be conconed strongly to
the center region. Hence, we shall see a number of cases
in which these secondary density shells exist outside the
primary region of mass centered at the origin.

B. Harmonic potential

Next let us examine repulsive BECs given a harmonic
potential defined by U(r) = λr2 with λ ∈ R. Harmonic
potentials have been used as external potentials for BECs
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FIG. 2: (Color online) Density profiles for several repulsive
solutions under the harmonic oscillator potential, which takes
the form U(r) = λr2.

in a number of studies, as they serve as a relatively accu-
rate and simple model of a parabolic trap [26]. It should
be noted that such potentials can be generalized to in-
clude time dependence [27], but this is beyond the scope
of the present paper as such generalizations can deny us
a stationary state of the kind we study here. One can
construct a perturbation theory in this case by defining
φ0 as in (9) and taking the first-order solution (12) of the
form

φ1(r) =
1

r

∫ r

0

sin(s)

s2

(

2 sin2(s) + λs4
)

W1(r, s) ds . (25)

As in the case of a constant potential, if we view φ1 as

φ1(r) = I1(r) +
λ

r

∫ r

0

s2 sin(s)W1(r, s) ds , (26)

then the latter integral can be solved in closed form. In
this way, φ1 may be more simply represented by

φ1(r) = I1(r) +
λ

12r

[(

3r − 2r3
)

cos(r) + 3
(

r2 − 1
)

sin(r)
]

.

(27)
One can view the densities associated with these solu-

tions for a few values of λ and ǫ in Fig. 2. For small ǫ,
the density plots agree rather well with the unperturbed
case. In those solutions having a negative potential (i.e.,
λ < 0), the mass clusters near the origin (into what we
see as a large, initial peak) with a slight remainder gath-
ering in subsequent, smaller peaks. At larger ǫ the rate
of decay is more gradual and mass accumulates further
across the radial domain. Nonetheless, we do not observe
any mass spreading to very large r as the total mass al-
ways remains within some finite radial value. As we con-
sider the large ǫ limit, solutions no longer agree with the

FIG. 3: (Color online) Density profiles for several repulsive
solutions under the modified harmonic oscillator potential
U(r) = λ

(

r2 + β exp
(

−r2
))

.

unperturbed solution φ0 on any interval and the density
maximum occurs at some positive r value. Note that
this difference occurs when ǫ no longer lies within the
perturbative regime (where ǫ≪ 1).
In the case where λ is positive, mass is no longer con-

served (likely signifying unstable solutions) and solutions
diverge even within the perturbative regime. Initially,
however, the density plots follow the unperturbed case
rather closely along the first density peak before diverg-
ing, suggesting that the mass is confined to the region
very near r = 0.
Physically, we see that the small BECs (ǫ << 1) are

well confined by the harmonic trap. Most of their mass
is confined to the center spherical region, with only rel-
atively small density maxima occurring for larger val-
ues of the radial coordinate. On the other hand, when
ǫ = O(1), the trap is not as effective, with relatively more
of the mass of the BEC allocated in the secondary density
shells.

C. Modified harmonic potential

Now let us consider the potential U(r) =
λ
(

r2 + β exp
(

−r2
))

. There have been a number
of modifications to the harmonic trap used in the
literature [28], and one such potential is used here for
sake of demonstration. The corresponding perturbation
solution will take the form of that in (9), (12), and (14).
We omit the computational details here and examine
the resultant densities |φ|2 in Fig. 3 given various λ, β,
and ǫ. The structure we observe is quite regular in the
context of potentials considered earlier. For solutions
with λ < 0, the mass is mostly confined near the origin
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into a primary density peak. Subsequent, smaller peaks
account for the remaining mass. As ǫ increases, we
observe an expected trend: solutions stray from the
unperturbed case, allowing the mass to spread further
radially. As seen in the case where ǫ = 0.5 and λ = −1
are fixed, an increase in β from β = −1 to β = 1
results in the central mass density contracting toward
the origin. (As seen from comparing the red dashed line
with the solid blue line.) The increase from negative to
positive β also decreases the amplitudes of the secondary
density maxima. This makes sense, as an increase in β
strengthens the confining potential. The green dashed
line shows that for large positive β (here, β = 20) the
confining effects of the potential are amplified further,
with the oscillating tail of the density plot smoothed.
On the other hand, when λ > 0, solutions behave like

those under the harmonic oscillator potential. Plots di-
verge for all ǫ, likely due to unstable solutions, indicating
that the mass is confined to the region very near r = 0.
The physics of the BECs under the modified harmonic

trap is essentially the same as that under the harmonic
trap. The small BECs (ǫ << 1) are well confined by the
modified harmonic trap, with only relatively small den-
sity maxima occurring outside the central region. Again,
for larger ǫ, the secondary density shells contain a higher
proportion of the BEC mass. We also notice that for
small ǫ the change in BEC concentration with respect to
radial variable is small, and the variation increases with
increasing ǫ. This suggest that rapidly varying solution
might be possible for large amplitude solutions. We shall
explore this point in more detail in Sec. VII.

D. An asymmetric trap

The Morse potential is one example of an asymmetric
trap [29, 30] and is given by U(r) = λ

(

e−2Ar − 2e−Ar
)

,
where λ > 0 and A > 0 are typical parameters (although
other signs can be considered). In contrast to the har-
monic trap, the Morse potential increases more slowly
along the positive r-axis. In relation to BECs, the Morse
potential has previously been considered for models of
trapped atoms [31].
We shall consider the Morse potential, written U(r) =

λ
(

e−2Ar − 2e−Ar
)

. One may use the formulas in Section
3 to obtain the first order perturbation solution corre-
sponding to the Morse potential. We omit the details
here, and summarize the results in Fig. 4, which illus-
trates the density |φ|2 in some cases of λ, A, and ǫ. We
observe that when λ < 0, much of the mass accumulates
at r = 0, represented by a large peak near the origin,
and a small remainder clusters into smaller, secondary
peaks at intermediate radial values. In general, the mass
spreads only up to some finite r value.
When A < 0, a rapid rate of decay signifies that mass

is very strongly confined to those values near r = 0. As ǫ
increases, this trap is strengthened. On the other hand,
when A > 0, the mass spreads further across the radial

FIG. 4: (Color online) Density profiles for several repulsive so-
lutions under the Morse potential U(r) = λ

(

e−2Ar − 2e−Ar
)

.

domain. Contrary to the case where A < 0, an increase in
ǫ actually weakens the trap, allowing a significant amount
of mass to reach values away from r = 0.
In each case presented, we have considered a negative

λ. When λ > 0, the solutions do not account for the
conservation of mass as they become rapidly unbounded.
This could signify that the density is confined to the re-
gion very near r = 0, as well as instability of the solu-
tions.
We see that, for small ǫ, the Morse potential is rather

effective at confining the BEC, with the secondary den-
sity maxima rapidly decaying in amplitude. So, the BEC
takes on a spherical from with only small amounts of mass
present outside this core. For larger BEC (ǫ = O(1)),
the nonlinear effects become stronger, and the secondary
density maxima hold more of the mass. Physically, the
Morese potential appears most useful for confining small
repulsive BECs.

E. Quantum pendulum potential: A lattice trap

The quantum pendulum potential takes the form
U(r) = λ (1− cos(r)). This is a good model of an op-
tical lattice type potential, which has been used to study
BECs in a number of settings [32]. The form we use here
is that of a 3-dimensional radial lattice trap.
The perturbation solution (6) given the lattice trap

potential may be constructed from the order-zero term
(9) along with the order-one term (12) evaluated with
U(r) = λ (1− cos(r)), and so on. For clarity, φ1 under
this potential is more explicitly written

φ1(r) = I1(r) +
λ

6r
(sin(r) + sin(2r)− 3r cos(r)) . (28)
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FIG. 5: (Color online) Repulsive solutions under the lattice
potential U(r) = λ (1− cos(r)).

Let us examine a few examples of these solutions in
Figure 5. Regardless of λ, the behavior of the density
plots (for small enough ǫ) is rather regular in light of
many of the previous examples. Here we see a significant
accumulation of the mass near the origin into a primary
density peak and a small remainder gathering via sub-
sequent, secondary peaks which vanish at finite r. The
value of ǫ influences the strength of the trap near the
origin: as ǫ increases, the mass can spread further across
the radial domain. Hence smaller values of ǫ correspond
to mass confined more tightly to the origin and closer
agreement with the unperturbed case φ0. Eventually,
the potential weakening as ǫ grows allows the solutions
to diverge at sufficiently large ǫ, which likely indicates
that the mass becomes confined to the region very near
r = 0. This blow-up suggests that the solutions may be
unstable.

The lattice potential gives somewhat interesting phys-
ical results. Although the trap is periodic with infinitely
many wells, the mass of the BEC is still primarily con-
tained within the central well, owing to the fact that the
BEC is repulsive. For various values of the physical pa-
rameters, the secondary density maxima do occur in the
outer potential wells. Therefore, the lattice trap can be
useful for forcing the secondary density shells to occur at
prescribed locations, which may be useful in experimen-
tal observations as this allows one to track the precise
location of the secondary maxima. In contrast, for other
types of potentials, the location of these maxima are due
to the dynamics of the 3 + 1 cubic NLS.

FIG. 6: (Color online) Density profiles for several re-
pulsive solutions under the double-well potential U(r) =
λ
(

(r2 − 1)2 − β
)

.

F. Double-well potential

Various applications call for double-well potentials [33].
One possible form of such a potential used is U(r) =
λ[(r2 − 1)2 − β], which gives a simple and symmetric
double-well. Given such a potential we can write the
perturbation theory presented in Section 3 and 4 by the
zeroth-order solution (9) and the first-order solution (12),
which now takes the form

φ1(r) = I1(r) +
λ

60r

[(

30βr − 105r+ 50r3 − 6r5
)

cos(r)

+
(

105− 30β − 75r2 + 15r4
)

sin(r)
]

.

(29)
In Figure 6 we plot these solutions for a few exemplary

values of ǫ, λ, and β. The overall structure of the density
when λ < 0 is not surprising; a large peak near the origin
accounts for most of the mass, while smaller, subsequent
peaks – vanishing at finite r – account for the rest. What
is interesting here is the influence of β. We notice a
clear dependence of the density on the value of β: as β
increases, the trap at the origin weakens. Additionally,
secondary peaks become taller so that more of the total
mass occurs at intermediate r-values. An increase in β
also places the density maximum away from the origin
so that the mass is no longer in highest concentration at
r = 0.
The density corresponding to solutions with positive λ

exhibits rapid blow-up, which increases as ǫ grows. This
case is seemingly unstable (mass is not conserved) and
suggests that mass is confined to the region very near to
the origin.
In physical terms, the double-well potential appears

rather effective at confining much of the mass of the BEC



8

FIG. 7: (Color online) Density profiles for several repulsive
solutions under the modified harmonic oscillator potential
U(r) = λ[r2 + β cos2(r)].

to the core region near the origin. This makes sense in
light of the fact that this potential is essentially a stronger
form of the harmonic potential. While secondary density
maxima do occur, they rapidly decay in amplitude as one
moves radially away from the core region.

G. Harmonic potential with lattice trap

It is possible to combine a harmonic potential and
lattice trap, or another collection of traps, to obtain
pseudo or quasi periodic potentials; this type of po-
tential has been considered previously in different set-
tings [34]. One possible form of such a potential is
U(r) = λ[r2 + β cos2(r)], which was used in [35]. This
class of potential was shown to be useful for studying the
1D dynamics of a BEC of cold atoms in parabolic optical
lattices [36]. Note that perturbation results can be ob-
tained for a number of different types of lattice traps. We
consider the potential U(r) = λ[r2+β cos2(r)], since this
potential is reasonably simple and has been considered
elsewhere.
Under this assumption, the perturbation solution (6)

will take φ0 as in (9) and φ1 as

φ1(r) = I1(r) +
λ

24r

[

3β cos2(r) sin(r)

+
(

6r + 3βr − 4r3
)

cos(r) + 6
(

r2 − β − 1
)

sin(r)
]

.

(30)
In Figure 7, we plot the density |φ|2 for this pertur-

bation solution given a potential of the form U(r) =
λ[r2 + β cos2(r)]. It is easy to observe the influence of
β. While the mass appears to gather in a pattern simi-
lar to that under previous potentials, we find that a far

smaller amount of the total mass lies outside of the initial
density peak. In this case, then, nearly all of the mass
clusters into a single peak near the origin. As β tends
from negative to positive values, the strength of the con-
fining potential increases and therefore we find more of
the density allocated close to the origin. Furthermore,
when the potential is weaker (for negative β), the maxi-
mal density is no longer located at the origin but at some
positive value of the radius.
All of the plots examined take λ < 0. The λ > 0 case

appears to be unstable as solutions become unbounded at
finite r and, therefore, do not adhere to the conservation
of mass. This density behavior indicates that mass is
actually confined to the region very near r = 0.
Physically, the modified harmonic oscillator trap be-

haves much like the standard harmonic trap, with much
of the mass of the BEC contained within the spherical
core region, and with the secondary density maxima de-
caying rapidly in amplitude. Despite the fact that there
is a periodic term in the potential, the harmonic term
dominates. This means that, unlike in the case of the
lattice trap, the secondary density maxima do not occur
at locations that are predictable only from the form of
the potential.

V. PERTURBATION SOLUTIONS FOR

GENERAL POTENTIALS IN ATTRACTIVE

BECS

We now turn to the case of attractive BECs (g < 0) in
three dimensions and proceed analogously to obtain the
perturbation theory. Assuming an expansion of the form

φ(r) = φ0(r) + ǫφ1(r) + ǫ2φ2(r) + · · · , (31)

the stationary solution will read

Ψ(x, t) = Ψ0(x, t) + ǫΨ1(x, t) + ǫ2Ψ2(x, t) + · · ·

=

√
2ǫ~

√

m|g|
ei

~

2m
t
(

φ0(r) + ǫφ1(r) + ǫ2φ2(r) + · · ·
)

.

(32)
Under these assumptions, we determine the order-zero
equation to be

φ′′0 +
2

r
φ′0 − φ0 = 0 (33)

given the conditions φ0(0) = 1 and φ′(0) = 0. Hence the
order-zero term φ0(r) reads

φ0(r) =
sinh(r)

r
. (34)

Continuing with the higher order terms, we find that
the order-one solution φ1 must satisfy

φ′′1 +
2

r
φ′1 − φ1 =

(

U(r)− 2φ20
)

φ0 , (35)
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along with φ1(0) = 0 and φ′1(0) = 0. Since we can write
the explicit form of the inhomogeneity with the aid of
φ0(r), this equation becomes

φ′′1 +
2

r
φ′1 − φ1 =

(

U(r)− 2 sinh2(r)

r2

)

sinh(r)

r
, (36)

and the first-order term φ1(r) reads

φ1(r) =
1

r

∫ r

0

sinh(s)

s2

(

s2U(s)− 2 sinh2(s)
)

W2(r, s) ds ,

(37)
where we define the function

W2(r, s) = sinh(r) cosh(s)−sinh(s) cosh(r) = sinh(r−s) .

Next, we see that φ2(r) satisfies

φ′′2 +
2

r
φ′2 − φ2 =

(

U(r) − 6φ0(r)
2
)

φ1(r) , (38)

subject to φ2(0) = 0 and φ′2(0) = 0. Thus, imposing φ0
in (34), the second-order solution φ2(r) reads

φ2(r) =
1

r

∫ r

0

φ1(s)

s

(

s2U(s)− 6 sinh2(s)
)

W2(r, s) ds .

(39)

VI. SOLUTIONS FOR SPECIFIC POTENTIALS

IN ATTRACTIVE BECS

Until now, we have obtained a second-order perturba-
tion theory for attractive BECs with a general potential.
To get a feel for the utility of these solutions, we illus-
trate their behavior by examining many explicit, relevant
potentials as examples.

A. Constant potential

Let us begin by considering attractive BECs given the
constant potential U(r) = λ, for λ ∈ R. In this case, we
obtain the perturbation theory taking φ0(r) in (34) and
φ1(r) of the form

φ1(r) =
1

r

∫ r

0

sinh(s)

s2

(

λs2 − 2 sinh2(s)
)

W2(r, s) ds ,

(40)
or, more simply,

φ1(r) =
λ

2r
(r cosh(r) − sinh(r))−2

r

∫ r

0

sinh3(s)

s2
W2(r, s) ds .

(41)
Let us define the integral term

I2(r) =
2

r

∫ r

0

sinh3(s)

s2
W2(r, s) ds

since it is independent of the potential and will appear in
each of the subsequent examples. By an approach similar

FIG. 8: (Color online) Density profiles for several attractive
solutions under the constant potential U(r) = λ.

to that employed in Sec. IV.A, we may write I2(r) in the
form

I2(r) = (Chi(4r)− Chi(2r) − ln(2))
sinh(r)

r

+ (2Shi(2r)− Shi(4r))
cosh(r)

r
,

(42)

where the functions Chi(r) and Shi(r) are defined as

Chi(r) = γ + ln(r) +

∫ r

0

cosh(s)− 1

s
ds , (43)

Shi(r) =

∫ r

0

sinh(s)

s
ds . (44)

The function φ1(r) can now be compactly written

φ1(r) =
λ

2r
(r cosh(r)− sinh(r)) − I2(r) . (45)

Figure 8 illustrates these solutions by plotting the den-
sity |φ|2 for a few choices of λ and ǫ. We see that, given
a constant potential, the mass behaves differently in the
attractive case than the repulsive case. Rather than re-
maining entirely near the origin, the mass now spreads
across the r-axis in nearly constant concentration. As
ǫ increases, the quantity of mass at any positive r value
decreases. Hence the solutions existing within the pertur-
bative regime (ǫ ≪ 0) exhibit the largest concentration
of mass at any given r.
We mention that the plots corresponding to attractive

BECs do not include the density corresponding to the un-
perturbed solution φ0(r) = r−1 sinh(r). Contrary to the
unperturbed solution in the repulsive case, the function
r−1 sinh(r) diverges as r → +∞ rather quickly, which
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is true also for the density |φ0|2, and such a density is
unphysical. What this means is that the potential or the
nonlinearity must be present in order for us to consider
physically meaningful solutions, otherwise the density is
not confined to a finite region and the solutions may blow-
up.
Physically, the attractive BECs under constant poten-

tials effectively are scaled versions of the radial station-
ary solutions to the attractive from of the 3 + 1 cubic
NLS. These solutions have a constant ambient density
over space, and the density will slowly oscillate until this
ambient value is attained. The physical parameters of
the problem will determine exactly what this ambient
concentration is, and we demonstrate how to calculate
this value in the following subsection.

B. Asymptotic behavior as r → ∞

In the previous example, we saw that a constant poten-
tial solution exists only for ǫ 6= 0. Hence there must be a
potential present in order to permit a physically relevant
solution. To see why, let us look at the asymptotic behav-
ior of solutions with bounded potentials, that is, poten-
tials which tend to some finite value as r → ∞. In partic-
ular, we consider U(r) such that U(r) → U∞ as r → ∞.
Let us assume that the radial wave function tends to
a finite value as r → ∞, say φ(r) → φ∗ in the limit
r → ∞. Then, we have φ∗ = ǫ

(

sgn(g)U0 + 2φ∗2
)

φ∗. We
can show that, when g > 0 (the repulsive case), the so-
lution φ∗ = 0 gives the stable equilibrium value. This
agrees with the behavior exhibited in the density graphs
given in Sec. IV. On the other hand, when g < 0 (the at-
tractive case) we find that the stable equilibrium is given
by

φ∗ =

√

ǫ−1 + U∞
2

. (46)

Indeed, we observe a tendency for certain solutions to ap-
proach a positive equilibrium in the density plots of the
present section. However, unlike with the repulsive case,
this asymptotic behavior does not appropriately account
for the ǫ→ 0 limit. Unsurprisingly, in the attractive case
we find that φ(r) → φ∗ ∼ ǫ−1/2, and hence the ǫ → 0
limit constitutes a singular limit for the attractive case.
This means that while the perturbation results for the
small potential (the small ǫ case) in repulsive BECs are
appropriate, we should numerically determine the solu-
tions for the attractive case when ǫ is small, since the
analytical solutions necessarily break down in the ǫ → 0
limit. As such, many results of this section will be deter-
mined by numerically solving the second order differen-
tial equation (5).
Again, these results are predicated on the existence of

a limit U(r) → U∞. If U(r) does not approach a finite
limit, then φ(r) may not approach the positive equilib-
rium value given in (46). Either φ(r) may not approach

FIG. 9: (Color online) Density profiles for several attractive
solutions under the harmonic oscillator potential, which takes
the quadratic form U(r) = λr2.

a finite limit, or φ(r) may approach the zero limit, de-
pending on the specific form of the potential given. We
shall see examples of each behavior as we explore various
potential traps in this section.

C. Harmonic potential

Next we can consider attractive BECs given the har-
monic oscillator potential U(r) = λr2 with λ ∈ R. In
this case, the perturbation solution constructed previ-
ously will take φ0(r) in (34) and φ1(r) of the form

φ1(r) =
λ

12r

[

(2r3 + 3r) cosh(r)− (r2 + 1) sinh(r)
]

−I2(r) .
(47)

We explore these solutions under the harmonic oscil-
lator potential U(r) = λr2 in Figure 9. The density
structure is rather regular when λ < 0. The mass is
trapped near to the origin, gathering into a large peak
followed by a finite set of smaller, secondary peaks. With
an increase in ǫ this trap is strengthened and a greater
portion of the total mass clusters near the origin. This
is precisely the opposite correspondence to that seen in
solutions modeling repulsive BECs under the same po-
tential. In that case, increasing ǫ causes the mass to
distribute further across the domain and the maximum
to exist further from the origin.
As was the case for repulsive BECs, solutions with λ >

0 are unbounded in finite r, indicating that the mass is
confined to the area near r = 0. This blow-up again
suggests that the solutions may be unstable.
Physically, we see that the BECs confined by the har-

monic trap are regular for λ < 0. In this case, the BECs
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FIG. 10: (Color online) Density profiles for several attrac-
tive solutions under the modified harmonic oscillator poten-
tial U(r) = λ

(

r2 + β exp
(

−r2
))

.

are forced to have zero density for large values of the ra-
dial variable. In this case, the BEC mass is primarily
confined to the core region, with secondary density shells
decreasing in total mass as one moves radially out from
the core region. This finding is true for both small and
intermediate sized wave functions (ǫ << 1 and ǫ = O(1)).

D. Modified harmonic potential

We consider solutions for the potential U(r) = λ(r2 +
β exp(−r2)) and plot the densities in Figure 10. When
λ < 0, we observe a tendency for the mass to remain con-
fined to the origin, gathering mostly into an initial den-
sity peak. Despite the sign of β, an increase in ǫ causes
a stronger pull of the mass toward r = 0. Moreover, in-
creasing ǫ translates the density maximum closer to the
origin and results in more of the total mass contained
within the primary peak. This effect certainly contrasts
the behavior of solutions modeling repulsive BECs given
the same potential (see Subsection V.C). In that case,
the value of β greatly influenced the strength of the trap
at the origin.
Figure 10 avoids those solutions which have a positive

λ as those plots grow rapidly without bound, of course,
indicating that the solutions do not account for mass con-
servation. As in earlier subsections, this suggests that the
mass is likely confined very near to the origin.
In the case of the modified harmonic trap, the physical

reasoning is the same as for the standard harmonic trap.
For an appropriately signed trap, regular solutions exist
and these solutions are primarily confined to the spherical
core region. The secondary density maxima decrease in
total mass fairly rapidly as one moves radially away from

FIG. 11: (Color online) Density profiles for several at-
tractive solutions under the Morse potential U(r) =
λ
(

e−2Ar − 2e−Ar
)

.

the core region.

E. An asymmetric trap

We consider solutions under the Morse potential
U(r) = λ

(

e−2Ar − 2e−Ar
)

and plot the densities in Fig-
ure 11. The detail to note here is the influence of the
parameter A. When A < 0, the density admits a global
maximum very near to the origin then decays rapidly to
zero. This behavior signifies that nearly all of the mass
is confined to the radial values near r = 0; smaller lo-
cal density maxima account for the minimal remaining
mass. This extreme rate of decay, confining nearly all
of the mass to the area near r = 0, is common to both
repulsive and attractive BECs with this potential.
The case in which A is positive differs greatly in struc-

ture. Contrary to the repulsive case, these densities ac-
tually oscillate about a positive value as r becomes large.
Accordingly, the mass is not confined to the origin, but
is able to disperse across the radial domain with a nearly
constant concentration. Hence when A > 0, which is typ-
ical, the mass behaves qualitatively differently depending
on the repulsiveness or attractiveness of the BECs.
The Morse potential is an example of a physical trap

that remains of bounded strength and hence is much
weaker than, say, a harmonic trap. As a result, the solu-
tions in many of the cases considered share the physical
properties of unconfined attractive BECs. For the case
where the potential is bounded (A > 0), the attractive
BECs tend to their ambient positive values, and hence
while there density oscillations, the whole region r ≥ 0
acts as one density cloud. The exception is when we pick
A < 0, for which the trap becomes unbounded in the
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FIG. 12: (Color online) Density profiles for several attractive
solutions under the lattice potential U(r) = λ (1− cos(r)).

radial coordinate. Such a trap is strong (much stronger
even than the harmonic potential, due to the exponential
rate of strengthening), and hence is confines the mass of
the BEC to a core region near the origin. Any secondary
density maxima decreases in size rapidly as we move ra-
dially outward from this core region. Therefore, then
A < 0, the trap is highly effective at containing the at-
tractive BEC, while when A > 0, the trap simply mod-
ifies the small radius behavior of the BEC before they
tend toward their natural asymptotic vales.

F. Quantum pendulum potential: A lattice trap

Figure 12 shows the densities under the quantum pen-
dulum potential U(r) = λ (1− cos(r)) for various values
of the parameters λ and ǫ. In this case, we observe a
mass distribution qualitatively different from that seen
when we study repulsive BECs. For all values of λ and ǫ,
the mass is not confined to the area between the origin
and some finite radius, but instead spreads throughout
the problem domain. Not unlike previous cases, the mass
gathers in large quantities at periodic radial values (rep-
resented by local density maxima which we can expect
to continue across the r-axis). However, what is unique
in this case is the lack of density decay, accounting for
the presence of a nontrivial portion of the mass at all
r. This is not surprising given the influence of a cosine
function in the potential, however it does stand in stark
contrast to the behavior of the repulsive case under the
same potential.
Physically, the lattice trap refocuses the density os-

cillations in the BECs to align with the potential wells
of the trap. For all parameter values taken, these BEC
solutions have maximal density in the center of each po-

FIG. 13: (Color online) Density profiles for several at-
tractive solutions under the double-well potential U(r) =
λ
(

(r2 − 1)2 − β
)

.

tential well in the lattice potential. The density profiles
do not tend to any constant asymptotic value. Rather,
the behavior observed continues as one moves radially
away from the origin. The physical picture is then of a
succession of density shells each occurring at radial dis-
tances corresponding to the potential wells in the lattice
potential. This allows one to predict where to experi-
mentally obtain the highest concentration of the BEC,
implying the usefulness of such a confining trap.

G. Double-well potential

The double-well potential takes the form U(r) =
λ[(r2−1)2−β]. Given such a potential, we may construct
the perturbation theory via φ0 in (34) and φ1 given by

φ1(r) =
λ

60r

[

(6r5 + 10r3 + 45r − 30βr) cosh(r)

−15(r4 + r2 − 2β + 3) sinh(r)
]

− I2(r) .
(48)

In Figure 13 we illustrate the densities for some choices
of the parameters λ, β, and ǫ. We find that the mass be-
haves qualitatively similarly under the double-well poten-
tial whether the BECs are attractive or repulsive. When
λ < 0, most of the mass accumulates at the origin via
one primary density peak, while secondary peaks which
gradually decay and vanish at finite r account for a small
remainder. As β shrinks, the trap confining the mass to
the origin strengthens. Thus, the value of β determines
to what extent the mass can spread along the r-axis.
The case where λ > 0 appears to be unstable and

results in a density which becomes rapidly unbounded at
small, finite r. Despite mathematically disregarding the
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FIG. 14: (Color online) Density profiles for several attrac-
tive solutions under the modified harmonic oscillator poten-
tial U(r) = λ[r2 + β cos2(r)].

conservation of mass, such a density suggests that the
mass is confined to the region very near to the origin.
As was noted for the repulsive BEC, the double-well

potential is effective at confining the attractive BECs, as
well. Physically, such a trap could be used to ensure that
most of the mass of the BEC remains within a spherical
core region, with only small amounts of mass allocated to
the secondary density shells. Interestingly, the trap is ef-
fective even when ǫ = O(1) (i.e., when the wave functions
are of intermediate amplitude). The additional parame-
ter, β, can be used to tune the trap so that the desired
concentration of BEC can be found in the core region.
When β → 0, the trap reduces to what is essentially a
stronger version of the harmonic trap.

H. Harmonic potential with lattice trap

In Figure 14, we plot the densities |φ|2 for solutions
given a potential of the form U(r) = λ[r2 + β cos2(r)].
We observe no qualitative differences between repulsive
BECs and attractive BECs. As with many other po-
tentials, the modified harmonic oscillator potential with
negative λ works to confine the mass to the area near the
origin. Specifically, the mass gathers in highest concen-
tration via a large peak at the origin and then in lesser
quantity within smaller, decaying peaks. These peaks
vanish in finite r and hence mass is not present across
the entire radial domain. The density maximum, how-
ever, does not always occur at r = 0. Instead, its location
is dependent on the value of β: as β shrinks, the global
maximum density (and highest concentration of mass) is
shifted further from the origin. Such a translation re-
sults in a similar shift of the subsequent local maxima

and, hence, smaller β also weakens the trap at the ori-
gin, allowing the mass to reach larger radial values.
On the other hand, the potential no longer traps the

mass when λ > 0, and the plots quickly diverge (likely
due to unstable solutions). This divergence suggests that
the density is confined only to the region very near r = 0.
The composite harmonic trap with lattice term is also

physically useful for ensuring that the attractive BEC is
mostly confined to the core spherical region surrounding
the origin. While the tuning parameter β influences the
specific form of this core region, note that for all non-
zero β values, we see that the trap is effective at forcing
secondary density maxima to decay sufficiently rapidly.

VII. THE NON-PERTURBATIVE REGIME

In the above, we have considered the perturbative case
in which ψ(x) =

√
ǫφ(r) analytically for small ǫ, while the

potential was also taken as small near the origin. For a
number of examples, we also gave numerical solutions in
the case where ǫ = O(1). In this present section, we shall
turn our attention toward qualitative results for the case
in which one or both of the nonlinearity or the potential
are not small relative to the kinetic energy term. In this
case, we drop ǫ from (1), and have

i~Ψt =

(

− ~
2

2m
∇2 + V (x) + g|Ψ|2

)

Ψ . (49)

Assuming a radial solution of the form

Ψ(x, t) =

√
2~

√

m|g|
exp

(

−sgn(g)
~

2m
it

)

Φ(r) , (50)

and writing the scaled potential as

U(r) = 2m

~2
V (r) , (51)

we find that the stationary state Φ(r) is governed by the
equation

Φ′′ +
2

r
Φ′ + sgn(g)(Φ− 2Φ3) = U(r)Φ . (52)

The initial conditions will be of the form Φ(0) = Φ0,
Φ′(0) = 0. If U(r) = ǫU(r), we recover the small-
potential limit. If, additionally, Φ(r) =

√
ǫφ(r), then we

recover the perturbative case for small amplitude wave
functions.

A. Small potential, intermediate amplitude limit

In the limit where the confining potential is small, but
the wave function is not small, we should have

Φ′′ +
2

r
Φ′ + sgn(g)(Φ− 2Φ3) = ǫU(r)Φ . (53)
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FIG. 15: (Color online) Plot of the wave function solutions to
(53) when ǫ = 0. This gives us the radial solutions to the 3+1
cubic NLS equation. The results are in qualitative agreement
with the density plots obtained in prior sections when both
small amplitude wave functions and small potentials were con-
sidered. Initial conditions are taken to be Φ(0) = Φ0 = 0.5
and Φ′(0) = 0.

In this limit, the wave functions act simply as solutions to
the 3+1 cubic NLS under radial symmetry. In Fig. 15, we
plot sample solutions for g > 0 (the repulsive case), g = 0
(the linear case), and g < 0 (the attractive case). The re-
sults are qualitatively similar to what we have observed in
several of the plots obtained in previous sections. In the
attractive case, the solutions exhibit damped oscillations
toward some positive asymptotic value. In the repulsive
case, the radial part of the wave function exhibits damped
oscillations as it decays to zero. The linear case is trivial,
as the only solution in this case is the radially constant
solution. Therefore, the oscillations in the density plots
obtained in the perturbative limit are completely consis-
tent with what one should expect from the solutions in
which the full nonlinearity is maintained (when there is
no perturbation due to a small amplitude).

Physically, we see that the unconfined solutions to the
3 + 1 attractive cubic NLS equation give BECs which
oscillate in density before tending toward an ambient
density level. These BECs therefore exist in a type of
spherical cloud that maintains the ambient density level
as the radial variable becomes large. This is in contrast
to, say, a soliton solution to the 1 + 1 cubic NLE equa-
tion, in which all of the density is located within a (rel-
atively) small wave envelope. For the repulsive case, we
wee that unconfined solutions to the 3 + 1 repulsive cu-
bic NLS equation result in BECs that have most of their
density allocated to a spherical core region centered at
the origin. There then exist secondary and much smaller
density shells surrounding this core region. These density
shells gradually decrease in mass as one moves radially
away from the central core region. Note that these den-

FIG. 16: (Color online) Plot of the wave function solutions
to (53) when ǫ = 0.1, U(r) = −(1 − cos(r)). This gives us
perturbations to the radial solutions to the 3 + 1 cubic NLS
equation due to the small potential. The results are in quali-
tative agreement with Fig. 15 for the attractive and repulsive
solution. The primary difference is that the oscillations in
the radial part of the wave function are amplified, due to the
form of the potential. For the linear case g = 0, the solution
is drastically different, as we are no longer at a steady state.
The linear case behaves qualitatively similar to the repulsive
case. Initial conditions are taken to be Φ(0) = Φ0 = 0.5 and
Φ′(0) = 0.

sity fluctuations (or, oscillating tails) are a fundamental
part of the solution to radial cubic NLS equations in three
spatial dimensions. They will also appear in the two-
dimensional case. The one-dimensional case is integrable
and permits solitons, which do not exhibit such oscilla-
tions. However, distinct types of oscillating solutions can
still be found for the one-dimensional cubic NLS (such as
solutions in terms of elliptic functions). Therefore, when
selecting a potential, one must decide on whether the os-
cillating tails are permissible or not. If not, one should
select a potential which will cause any such secondary
density maxima to be as small as needed.
One can similarly solve (53) when ǫ > 0 to obtain re-

sults for intermediate potentials and intermediate wave
function amplitudes. These numerical plots are included
alongside several of the density plots in previous sections,
and do not need to be reproduced here. However, in Fig.
16, we plot the solutions due to small lattice potentials.
It is clear that such results are effectively perturbations
of the solutions observed in Fig. 15. The exception is
when g = 0 (the linear case), as in the presence of a
potential this solution can no longer behave like a fixed
point and hence the potential dominates. Note that in
many cases there are quantitative changes in the solu-
tions under the potentials, but the qualitative behavior
of the wave functions is similar in both the small and
intermediate amplitude regimes in many cases.
Physically, this case corresponds to the very small mass



15

limit, since U = O(m) for small massm by equation (51).
Hence, in the very small mass limit, the BECs behave like
solutions of the free (unconfined) solution to the 3 + 1
cubic NLS equation.

B. Large potential, large amplitude limit and the

Thomas-Fermi approximation

While we have considered solutions for small or inter-
mediate potentials (ǫ << 1 or ǫ = O(1)), the large con-
fining potential is useful to study. This case is physically
relevant in the sense that a large or strong potential can
be used to confine a small BEC. The Thomas-Fermi case
corresponds then to the case where the radial potential
U(r) >> 1. To this end, let ǫ remain a small parameter,
and consider U = ǫ−1U(r). It makes sense to consider a
large amplitude radially-symmetric stationary solution of
the form Φ(r) = ǫ−1/2Φ(r), which yields the stationary
ODE

Φ
′′
+

2

r
Φ

′
+ sgn(g)Φ = ǫ−1(2sgn(g)Φ

2
+ U(r))Φ . (54)

In the very small ǫ limit, we must have 2sgn(g)Φ
2
+

U(r) → 0 as ǫ → 0. So, in the very large potential
case, we must have the scaling

Φ(r) ∼
√

− sgn(g)

2
U(r) (55)

in the ǫ → 0 limit. In such a limit, the kinetic energy is
negligible compared to the nonlinearity, and this is the
Thomas-Fermi limit. Indeed, (55) is the Thomas-Fermi
approximation for the 3 + 1 model.
In the case where the potential is large (but not so

large that ǫ→ 0), we can still study the solutions. From
the form of (54), it makes sense to consider a solution
that varies rapidly over space. So, let us consider

Φ(r) = Φ̂(R) , U(r) = Û(R) , where R =
r√
ǫ
. (56)

This puts (54) into the form

Φ̂′′ +
2

R
Φ̂′ − (2sgn(g)Φ̂2 + Û(R))Φ̂ = −ǫsgn(g)Φ̂ . (57)

Clearly, we should seek a solution of the form

Φ̂(R) = Φ0(R) + ǫΦ1(R) +O(ǫ2) . (58)

In turn, this will give the stationary solution

Φ(r) =
1√
ǫ
Φ0

(

r√
ǫ

)

+O(
√
ǫ) , (59)

hence for small ǫ the Φ0 term will dominate and give
the interesting qualitative features of the solution. As
was the case in two spatial dimensions [25], the larger
the amplitude becomes, the smaller the error term will

FIG. 17: (Color online) Plot of the scaled density for wave
function solutions to (60) in the case of both repulsive (g < 0)
and attractive (g > 0) BECs confined by the large lattice
potential (61). Initial conditions are taken to be Φ0(0) =
0.5 and Φ′

0(0) = 0. To recover the true density, one would

multiply |Φ0(R)|2 by a factor of ǫ−1 (since Φ(r) = O(ǫ−1/2 in
this case) which would give |Φ(r)|2 = ǫ−1|Φ0(r/

√
ǫ)|2. The

large potential has a stronger influence on the density of the
BECs than does the nonlinearity.

be. For example, if the potential scales as 102k units, the
amplitude scales as 10k units while the correction scales
as 10−k units (a difference of 2k orders of magnitude
between the amplitude and the error). From (57) we see
that Φ0(R) must satisfy the equation

Φ′′
0 +

2

R
Φ′

0 = 2sgn(g)Φ3
0 + Û(R)Φ0 . (60)

Equation (60) is nonlinear and non-autonomous, so we
seek numerical solutions.
In Fig. 17 we plot the density for both attractive and

repulsive BECs for the lattice potential Û(R) = cos(R)−
1, which corresponds to a large lattice potential of the
form

U(r) = 1

ǫ

(

cos

(

r√
ǫ

)

− 1

)

(61)

for small ǫ. In this case, we see that even though the solu-
tions are dominated by the large potential more than by
the nonlinearity (which is clear when comparing Fig. 17
to Fig. 15), even though they both scale equally. So, even
though the amplitude of the wave function is relatively
large (of order O(ǫ−1/2)), the order O(ǫ−1) potential still
dominates. This in in agreement with what we see in
some of the solutions of previous sections, such as when
the attractive BECs exhibit density that does not tend to
a steady state (as radial solutions of the 3+ 1 cubic NLS
with no potential might suggest) due to the influence of
the potentials.
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FIG. 18: (Color online) Plot of the scaled density for wave
function solutions to (60) in the case of both repulsive (g < 0)
and attractive (g > 0) BECs confined by the large Morse po-
tential (62). Initial conditions are taken to be Φ0(0) = 0.5
and Φ′

0(0) = 0. To recover the true density, one would mul-

tiply |Φ0(R)|2 by a factor of ǫ−1 (since Φ(r) = O(ǫ−1/2) in
this case) which would give |Φ(r)|2 = ǫ−1|Φ0(r/

√
ǫ)|2. We see

that the large potential dominates the dynamics of both solu-
tions, with only minor differences seen between the attractive
and repulsive BECs. The large potential confines most of the
mass to near the origin.

In Fig. 18 we consider the large Morse potential
Û(R) = 2[exp(−2R)− 2 exp(−R)], which takes the form

U(r) = 2

ǫ

(

exp

(

− 2r√
ǫ

)

− 2 exp

(

− r√
ǫ

))

(62)

for small ǫ. We plot the resulting density curves for the
attractive and repulsive BECs, and find that there is very
little difference between each case. This again demon-
strates that the large potentials dominate the dynamics
of the BECs in the limit considered.
Physically, the large potential - large amplitude ap-

proximations obtained here give corrections to the
Thomas-Fermi approximation, in the sense that the
Thomas-Fermi approximation is static (there is no in-
put from kinetic energy). Here we show that in the case
of rapidly varying solutions, the kinetic energy term may
scale large enough so that it gives an additional contribu-
tion. Therefore, for slowly varying solutions the Thomas-
Fermi approximation as derived above is useful, while
when the density of the BEC is more rapidly varying
in space, we can develop a type of singular perturba-
tion which allows us to adequately address that case, as
well. In the latter case, we find that the contribution
of the potential still dominates the other terms. This is
clearly seen in Figs. 17-18 in which the strong potential
is the primary forcing mechanism for the spatial distri-
bution of the density. In contrast, the nonlinearity and
kinetic energy play a far more minor role, as evidenced
from the fact that both the attractive and repulsive BECs

have quite similar qualitative density distributions. The
role of the nonlinear term and the kinetic energy term
is then to bring about specific quantitative differences in
the density distributions. In the case of the Morse po-
tential, most of the BEC is confined to the central core
region. In contrast, the density distribution under the
very large lattice potential results in a non-uniform and
nearly chaotic appearance. This means that, in the very
large potential limit, one may be able to predict the loca-
tion of density maxima, but one may not be able to pre-
dict the relative strength of each maxima. The physical
picture is then of a succession of spherical density shells
with somewhat highly variable mass concentrations.

C. Solutions with slow space variability

In order to consider solutions that vary slowly with the
radial space variable, we consider

Φ(r) = Φ̃(ρ) ,U(r) = Ũ(ρ) , where ρ = ǫr . (63)

Then,

sgn(g)(Φ̃− 2Φ̃3) = Ũ Φ̃ . (64)

We obtain either the zero solution Φ̃(ρ) = 0 or the non-
trivial solution

Φ̃(ρ) =

√

1− sgn(g)Ũ(ρ)

2
(65)

assuming this solution is defined. Note that this is again
in the form of a Thomas-Fermi approximation, and this
differs from the large potential, large amplitude result by
a constant. This makes sense, as when either:
(i) the solution is slowly varying in the space variable; or
(ii) the solution and potential are large;
the Kinetic energy term Φ′′ + 2

rΦ
′ is negligibly small rel-

ative to the other terms.
Relative to our discussion above regarding the

Thomas-Fermi approximation, this result make complete
physical sense. In the case of slowly varying density pro-
files, the kinetic energy is negligible, and hence the re-
maining terms without derivatives completely determine
the spatial profile of the BEC wave function, and hence
of the density profiles.

D. Very small amplitude limit

In the limit where the amplitude of the wave function
is very small (say ǫ << 1), yet the potential cannot be
considered a small quantity, we approximate (52) by the
linear equation

Φ′′ +
2

r
Φ′ + sgn(g)Φ = U(r)Φ +O(ǫ2) , (66)
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where ǫ denotes the amplitude of the wave function.
While this equation is linear, it is still non-autonomous
and cannot be solved exactly for arbitrary forms of the
potential U(r). Still, we can obtain solutions for specific
forms of U(r).
When the potential is a constant or zero, U(r) = λ, we

have

Φ(r) =











ǫ
sin(

√
sgn(g)−λr)√

sgn(g)−λr
+O(ǫ3) if g > 0 ,

ǫ
sinh(

√
sgn(g)−λr)√

sgn(g)−λr
+O(ǫ3) if g < 0 .

(67)

This is consistent with what we have seen in the den-
sity plots of previous sections. In the repulsive case, the
radial part of the wave function exhibits damped oscil-
lations with decay in density as r → ∞. Meanwhile, in
the attractive case, the nonlinearity tends to focus the
solution, and in the absence of this nonlinearity the (rel-
atively large) potential results in growth. Therefore, the
higher order terms help in keeping the solutions bounded
in the attractive case.
For the harmonic potential, U(r) = λr2, we have

Φ(r) = ǫ exp

(

−
√
λ

2
r2

)

KM(r) +O(ǫ3) , (68)

where

KM(r) = KummerM

(

3
√
λ− sgn(g)

4
√
λ

,
3

2
,
√
λr2

)

(69)

and KummerM denotes Kummer’s (confluent hyperge-
ometric) M function [38]. In the large r limit, where
λr2 − sgn(g) ∼ λr2, we have the asymptotics

Φ =















ǫr−1/2J1/4

(√
|λ|
2 r2

)

+O(ǫ3) if λ < 0 ,

ǫr−1/2I1/4
(√

|λ|
2 r2

)

+O(ǫ3) if λ > 0 ,
(70)

where J1/4 and I1/4 denote the relevant Bessel functions.
For the Morse potential U(r) = λ[exp(−2Ar) −

2 exp(−Ar)], we have

Φ(r) =
ǫ

r
exp

(

A

2
r

){

WW(0)

WM(0)
WM(r) +WW(r)

}

+O(ǫ3) ,

(71)
where

WM(r) = WhittakerM

[√
λ

A
,

√

−sgn(g)

A
,
2
√
λ

A
exp(−Ar)

]

,

(72)

WW(r) = WhittakerW

[√
λ

A
,

√

−sgn(g)

A
,
2
√
λ

A
exp(−Ar)

]

.

(73)
Here, WhittakerM and WhittakerW denote the Whit-
taker M and W functions, respectively [38].

For the lattice potential U(r) = λ(1− cos(r)), we have

Φ(r) =
ǫ

r
MathieuS

(

4(sgn(g)− λ),−2λ,
r

2

)

+O(ǫ3) ,

(74)
where MathieuS denotes the odd Mathieu function with
characteristic value 4(sgn(g)− λ) and parameter −2λ.
These solutions, obtained for particular exactly solv-

able cases, can be used to validate some of the pertur-
bation results obtained in earlier sections. In the small
amplitude limit, kinetic energy and potential terms dom-
inate, which effectively linearizes the model, allowing for
such approximate solutions.

E. Very large mass limit

In the above solutions, we effectively considered cases
where the mass m was small or intermediate. If the mass
m is very large, then the kinetic energy term vanishes.
Furthermore, the transformation (50) will vanish while
the potential function (51) will blow up. Therefore, in
the very large mass limit we should consider the equation
(49) directly without this type of solution assumption.
However, while we can no longer consider a solution of
the form (50) in the very large mass limit, we shall now
show that any solution in the large mass limit must still
be a stationary solution.
Taking the limitm→ ∞, from equation (49) we obtain

i~Ψt =
(

V (x) + g|Ψ|2
)

Ψ . (75)

Writing Φ(x, t) = R(x, t) exp(iΘ(x, t)), we must have

Rt = 0 and − ~Θt = V (x) + gR2 . (76)

The former equation implies that R is constant in time,
hence R = R(x). As such, the amplitude is time-
invariant and the solution is indeed stationary. Then,
the second equation gives

Θ(x, t) = − t

~

(

V (x) + gR(x)2
)

. (77)

Hence, in the very large mass limit, the wave function Ψ
must take the form of a solution

Ψ(x, t) = R(x) exp

[

− it
~

(

V (x) + gR(x)2
)

]

. (78)

For this limiting case, the amplitude of the wave function
is specified through any boundary or initial condition.
For instance, Ψ(x, 0) = R(x). In the very large mass
limit, the potential only influences the phase of the so-
lution. This is in contrast to the finite mass case, where
the phase was space independent (for the type of solution
we studied).
Since the choice of R(x) is arbitrary (it is not deter-

mined from the temporal differential equation), it is pos-
sible to make a solution of the form (78) stationary. If we
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pick R(x) so that V (x)+gR(x)2 = Ω, for some constant
Ω, then

R(x) =

√

Ω− V (x)

g
. (79)

Yet, this is again the Thomas-Fermi approximation, giv-
ing a stationary solution

Ψ(x, t) =

√

Ω− V (x)

g
exp

[

− iΩt
~

]

. (80)

So, in the very large mass limit, purely stationary so-
lutions do exist and furthermore must take the form
of the Thomas-Fermi approximation. Meanwhile, non-
stationary solutions (of the more general form (78)) also
exist in the marge mass limit, and such solutions con-
tain an arbitrary function which may be specified by any
desired boundary conditions.

F. Asymptotic properties of eigenfunctions

Throughout the paper, we have scaled out the central
density at r = 0, setting it to a constant throughout the
plots and the perturbation analysis. We now consider
the structural dependence of the solutions on the central
density. We shall show that for acceptable values of the
central density, the results obtained up to this point are
completely reasonable and capture all interesting quali-
tative behaviors. For large values of the central density,
there can be blow-up of the unperturbed solutions, high-
lighting the non-physical nature of such cases.
Starting with a radial solution (50) to (49) such that

Φ(0) = χ > 0, we can treat χ as a type of bifurcation pa-
rameter. We restrict our attention to eigenfunctions cor-
responding to the zero potential case, as it is such func-
tions which we perturb solutions against in the case of
non-zero potentials. Therefore, consider a solution form

Φ(r) = χq(r) (81)

to (50). Placing this into (49) and neglecting the poten-
tial, we obtain the radial equation

q′′(r) +
2

r
q′(r) + sgn(g)

(

q(r) − 2χ2q(r)3
)

= 0 . (82)

Note that χ enters this equation through the nonlinearity
(for a purely linear equation, this multiplicative scaling
would not matter). We have the conditions

q(0) = 1 and q′(0) = 0 , (83)

so that Φ(0) = χ.
For the repulsive case (g > 0), we plot a sample of

relevant solutions in Fig. 19. We see that χ does in-

deed behave like a bifurcation parameter and χ =
√
2
2

is a critical value. For 0 < χ <
√
2
2 , the eigenfunctions

FIG. 19: (Color online) Plot of the scaled radial eigenfunc-
tions q(r) for the repulsive BEC when the central density is

Φ(0) = χ, i.e. Φ(r) = χq(r), q(0) = 1. We see that χ =
√
2

2
is

a critical value. For 0 < χ <
√

2

2
, the eigenfunctions will ex-

hibit oscillatory decay toward zero density for large r. Mean-

while, if χ >
√

2

2
, the eigenfunctions will exhibit unbounded

growth, making the solutions non-physical. If χ =
√

2

2
, the

eigenfunction is degenerate (in particular, a constant), which
corresponds to a steady state in the space variable. Therefore,
it makes sense to exapand our purturbation solutions about
the eigenfunctions which exhibit decay, and this is exactly
what we have done in earlier sections.

corresponding to χ will exhibit oscillatory decay toward

zero density for large r. Meanwhile, if χ >
√
2
2 , the eigen-

functions will exhibit unbounded growth, making the so-

lutions non-physical. If χ =
√
2
2 , the eigenfunction is

constant and hence degenerate. These are all possible
solutions parameterized in χ, and we see that the phys-

ical solutions correspond to 0 < χ <
√
2
2 . Therefore,

it makes sense to consider perturbations of the decay-
ing eigenfunctions when studying the equations which
include potential.
To understand why the eigenfunctions which decay

must oscillate in the repulsive case, as opposed to, say,
decaying monotonically, note that as the eigenfunctions
decay, they enter the small amplitude regime. As such,
for large enough r, we must have |q(r)|3 << |q(r)|, so
the linear term dominates. This means that (82) can be
replaced by

q′′(r) +
2

r
q′(r) + q(r) = 0 (84)

for large r. Therefore, in the repulsive case, the eigen-
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functions should obey

q(r) =
q1 cos(r) + q2 sin(r)

r
(85)

for real constants q1 and q2 as r → ∞, whenever the

eigenvalue χ satisfies 0 < χ <
√
2
2 .

For the attractive case, the zero equilibrium is unsta-
ble, and the decaying solutions will be drawn toward one
of the non-zero spatial equilibria to the equation (82),
which are easily seen to be ± 1√

2χ
. Since the solutions

tend asymptotically toward one of these non-zero values,
it might be tempting to think that non-linear effects will
dominate in the large r limit. However, note that the
solutions should behave like

q(r) = ± 1√
2χ

+Q(r) (86)

for some function Q(r) satisfying Q(r) → 0 as r → ∞.
Placing (86) into (82) and noting g < 0 for the attractive
case, we arrive at

Q′′(r) +
2

r
Q′(r)

−
(

± 1√
2χ

+Q(r)

)

{

1− 2χ2

(

± 1√
2χ

+Q(r)

)2
}

= 0 .

(87)
In the large r limit, |Q(r)|3 << |Q(r)|2 << |Q(r)|, and
keeping only linear terms, we obtain

Q′′(r) +
2

r
Q′(r) + 2Q(r) = 0 . (88)

We therefore find that

Q(r) =
q1 cos(

√
2r) + q2 sin(

√
2r)

r
, (89)

for real constants q1 and q2 as r → ∞. Therefore, when
r is sufficiently large, we must have

q(r) = ± 1√
2χ

+
q1 cos(

√
2r) + q2 sin(

√
2r)

r
(90)

for the attractive case. Hence, the eigenfunctions for the
attractive case also exhibit oscillations as they decay, and
as such there are no monotone decreasing eigenfunctions
which remain bounded.
In Fig. 20 we plot sample numerical solutions to (82)

for various values of χ, and the exact numerical solu-
tions demonstrate the behavior predicted in the large-r
asymptotics derived above. Therefore, the solutions tend
toward one of two spatial fixed points. By the above
analysis, and what we see from the numerics, the so-
lutions will always exhibit damped oscillations as they
tend toward these asymptotic values, since the solutions
are asymptotically within the linear regime for the large-
r limit. Since the unperturbed solutions behave in this
matter, it makes sense to perturb these solutions in the

FIG. 20: (Color online) Plot of the scaled radial eigenfunc-
tions q(r) for the attractive BEC when the central density is
Φ(0) = χ, i.e. Φ(r) = χq(r), q(0) = 1. Solutions tend to
either of the ± 1√

2χ
spatial fixed points, and since the linear

terms dominate (as we have shown in the above analysis) the
solutions will exhibit damped oscillatons as they tend toward
these values.

presence of small potentials. Note that, if the potential
exerts a strong enough influence on the solutions, it may
effectively switch the solution from attractive to repul-
sive, resulting in solutions which decay toward zero in
density even if the governing cubic NLS equation is in
the attractive regime. We observe this behavior in some
of the perturbation and numerical solutions of Sec. VI.

VIII. DISCUSSION

A. Summary

Throughout this paper, we have been able to study
solutions both analytically (through a perturbation ap-
proach) and numerically for both attractive and repulsive
BECs under the 3+ 1 cubic NLS with arbitrary forms of
the confining potential. The stationary solutions stud-
ied here correspond to radially symmetric BECs in three
spatial dimensions. Such results generalize the 1D and
2D results considered by the authors previously [23–25].
Numerical solutions have also been discussed in a number
of cases where the potential was permitted to be larger,
and in the attractive case in the degenerate limit ǫ→ 0.
For the repulsive BECs, there are essentially two phys-

ical scenarios that emerge. First, the BEC may be con-
fined to a small region surrounding the origin. Such
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BECs are appropriately confined by the trap, and may be
observed experimentally near the origin in high concen-
trations. Second, one may have a local density maxima
at the origin, with auxiliary density maxima occurring at
positive values of the radius. In this case, BECs can be
found at density maxima shells that surround and grad-
ually radiate out from the origin. In each of these shells,
the density is locally large, whereas in regions between
these shells there is a drop in observed density of the
BEC. These shells are spherical in form, owing to the ra-
dial symmetry of the potential traps in three-dimensions.
Regarding the attractive BECs, the strength of the po-

tentials will strongly influence the behavior of the BEC
wave functions. First, in the case where the potential
is radially unbounded, the solutions behaved like those
found in the repulsive case, with either a single spherical
density region, or with the density allocated along a num-
ber of shells surrounding the origin. Meanwhile, when
the confining potential is relatively small, we can observe
positive-density BECs even as the radius becomes large.
The wave function then gives a cloud of BECs which is
radially unbounded. This means that these types of so-
lutions exist with a non-zero background concentration
of the BEC. However, this large BEC cloud can still have
global and local density maxima, in which a much larger
density of the BEC can be found.
We finally obtained some numerical and qualitative re-

sults for the case when the amplitude of the wave function
and the size of the potential are in the non-perturbative
regime. In particular, we considered cases where the po-
tential is small but the amplitude is not small, the po-
tential and the amplitude are large, the kinetic energy
term is small, the amplitude is small but the potential is
not small. We also considered the very large mass limit.
In cases where the potential is large, the potential domi-
nates the form of the wave function, akin to the Thomas-
Fermi limit. Similarly, when the kinetic energy term is
small, or the mass is very large, we recover solutions that
agree with the Thomas-Fermi limit.

B. Size of the potential and the wave functions

In the so-called perturbative limit, where both the po-
tential and the amplitude of the wave function for the
BEC are small enough, perturbation and numerical so-
lutions have been used at various points to generate the
plots provided in Sec. IV and VI. The specific values of
ǫ for which perturbation solutions may be used will vary
from model to model. We often find that ǫ = O(10−1)
or smaller gives accurate perturbation solutions for the
repulsive case. The attractive case is a bit more compli-
cated. The attractive BECs which tend toward a zero
density as the radius increases from the origin can be
accurately described by the perturbation results when
ǫ = O(10−1) or smaller. Unfortunately, those attractive
BECs which asymptotically approach some positive den-
sity fail to be accurately approximated by the perturba-

tion approach. The reason for this is that the asymptotic
density scales like |φ(r)|2 ∼ ǫ−1 as r → ∞, and hence
the small ǫ regime is actually a singular limit, render-
ing the perturbation results useless for these particular
BECs. Interestingly, the large ǫ limit is well-defined for
such BECs, although the perturbation results (relying on
small ǫ) still are not useful. So, those attractive BECs
with asymptotic behavior |φ(r)|2 ∼ ǫ−1 as r → ∞ must
be numerically simulated.
In the case where the potential is large (ǫ >> 1), one

can obtain a perturbation expansion in inverse powers
of ǫ. At lowest order, such an expansion will agree di-
rectly with the Thomas-Fermi approximation (provided
kinetic energy is small enough). Similarly, if kinetic en-
ergy is small, or if mass is very large, then the solutions
are in agreement with the Thomas-Fermi approximation.
There is an interesting limit in which the solutions are
rapidly varying in space and the confining potential is
large. In such a limit, we can obtain rapidly varying so-
lutions with large kinetic energy, even in the presence of
the large potential. Such solutions themselves are large,
but are of orders of magnitude smaller than the large
potential. Such a case can be seen as a perturbation to
the Thomas-Fermi approximation. In the limit where the
amplitude is very small, but the potential and kinetic en-
ergy terms are not small (in a relative sense), then the
model is effectively linearized and one can obtain closed
form solutions under specific potentials.

C. Physical implications from potentials of various

sizes

In considering small and intermediate potentials and
wave functions, we observed two general trends concern-
ing potentials: certain potentials were highly effective
at concentrating most of the mass of the BEC near the
origin in a core spherical region. Other potentials were
far less effective, leading to larger secondary density max-
ima (which take the form of concentric density shells sur-
rounding the primary core density region at the origin.
The strongest potentials were able to adequately confine
both attractive and repulsive BECs. On the other hand,
weaker potentials were more effective when containing
the repulsive BECs, as the tails of their respective wave
functions decay for larger values of the radial coordinate.
On the other hand, such weaker potentials were not so
effective at containing the attractive BECs, and in such
cases the attractive BECs behaved much like the uncon-
tained solutions found in the 3 + 1 cubic NLS with zero
potential. Since attractive BECs naturally tend to some
positive ambient density under the 3+1 cubic NLS model,
this means that a potential is necessary in order to force
the greatest density concentration into any specific re-
gion. In contrast, the repulsive BECs can be found in a
spherical centralized mass around the origin.
For all cases considered, when there is a primary core

region of BEC density at the origin, there are secondary
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density maxima that occur in density shells that surround
the core region. These secondary density maxima exist
whenever there is a repulsive BEC, or whenever the at-
tractive BEC is forced by a potential into occupying the
region near the origin. The existence of these maxima
is inherited from the 3 + 1 cubic NLS equation, as was
seen when we considered the zero-potential limit. Oscil-
lating tails in the wave function are fundamental to the
radially symmetric solutions in three spatial dimensions.
This is in contrast to the case of one spatial dimension,
in which solitons can be obtained (owing to the integra-
bility of the one dimensional model). While one cannot
completely remove these secondary density maxima, as
we show in Sec. IV and VI, one can pick specific forms
of the confining potentials in order to minimize the mass
in these secondary density shells, in order to ensure that
nearly all of the mass lies in the central spherical region.
Therefore, the specific choice of potential can matter a
great deal, as is known in experiment design for studying
BECs.

Lattice potentials which have many local potential
wells can be shown to allow one to control the secondary
density shells inherent under the model studied. In cases
where the appearance of density maxima away from the
core region cannot be helped, these potentials allow one
to control the location of these secondary density max-
ima. In effect, they allow one to predict exactly where
any secondary density shells of BEC concentration will
be located away from the central spherical region. In
contrast, for other types of potentials, the appearances
of these secondary density maxima can vary quite a bit
with the model parameter, as their location can be influ-
enced by the nonlinearity of the problem. This is another
way in which choosing the right potential can be benefi-
cial in experimentally observing the BEC concentrations
in three dimensions.

In the case where the potential is made large, these
secondary density maxima can be reduced in magnitude
further, and in the very large potential limit where the
potential dominates the other terms in the cubic NLS,
the results reduce to the Thomas-Fermi approximation.
Additionally, when the kinetic energy term is small or the
mass is very large, the results can be shown to reduce to
the Thomas-Fermi limit. Meanwhile, if the amplitude of
the wave function is very small, relative to the kinetic
energy and the potential, the governing equation is ef-
fectively linearized, and for many potentials the model
becomes exactly solvable. The qualitative results for this
case are in agreement with the earlier perturbative results
obtained in the small ǫ limit.

There also exist rapidly varying solutions in space, un-
der the large potential limit. Such solutions can be seen
as a next order correction to the Thomas-Fermi approx-
imation, in which the kinetic energy term is maintained
due to the rapid space variations. Still, such solutions
scale as the square root of the potential, hence such re-
sults are essentially corrections to that limit. As we saw
in Sec. VII, the rapidly varying solutions are strongly

determined by the choice of potential used, much more
so than even whether such solutions are attractive or re-
pulsive. Physically, this again highlights the importance
of selecting an appropriate potential.

D. Conclusions

We have determined qualitative behaviors of both at-
tractive and repulsive BECs in three spatial dimensions,
assuming radial symmetry of solutions. This radial sym-
metry yields BECs which can occur either (i) in a spheri-
cal region surrounding the origin, (ii) in spherical density
shells surrounding the origin, or (iii) in an infinite cloud
with local density minima and maxima occurring radi-
ally. The repulsive BECs correspond to cases (i) and (ii),
whereas the attractive BECs correspond to cases (i), (ii)
and (iii), depending on the strength and form of the po-
tential. There are qualitative differences in the solutions
as one transitions from fairly weak confining potentials
to strong confining potentials. In the limit where the
potentials are particularly large, they dominate the be-
havior of the wave functions, akin to what one sees in
the Thomas-Fermi limit. For more intermediate or small
potentials, the kinetic energy term and nonlinearity also
play a role in the structure of the solutions.
Without the radial symmetry, one could still solve (1),

but in this instance it would be necessary to simulate the
governing partial differential equation directly, subject to
any initial or boundary conditions. One could also seek
self-similar solutions to (1) (as opposed to radially sym-
metric solutions); however, one would need to consider
very special potential traps in order to study the solu-
tions. Such solutions are typically only sought in the case
where the potential is removed (so that one simply con-
siders the cubic NLS without potential), as there would
likely need to be very specific time dependence in the po-
tential in order for a self-similar wave function solution to
exist. Analytical results could be possible for some very
specific non-radial potentials, but we would not expect
many general results in the absence of some symmetries.
Results might also be obtained for time-dependent poten-
tials, which can be switched on and strengthened over an
interval of time, but again we would not expect general
results with likely only very special cases being solvable.
Alternately, one could consider BECs on other spa-

tial structures, such as manifolds. This type of work has
been considered for the linear Schrödinger equation un-
der various potentials [37], but not for BECs governed by
nonlinear Schrödinger equations. For instance, one could
consider BECs on 2D surfaces embedded within three-
dimensional space. These BECs would be more challeng-
ing to work with than simple BECs in two-dimensional
space, such as the radial solutions of [25]. Such work
would be most relevant for BECs on non-flat surfaces. In
particular, it would be interesting to study the structure
of BECs on curved or hyperbolic surfaces, as perhaps
one can pick specific surfaces to enhance persistence or
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stability of the BECs.
Studying stability of oscillating solutions can prove

more complicated than studying solutions of more well
behaved solutions, such as solitons. In the soliton case,
once can apply the VK criteria to study the solutions [39].
Spectral approaches in this vein can be used to study
oscillating or non-stationary solutions, although this is
often more complicated than in the soliton case [40]. For
the 3 + 1 model, one would need to contend with the

oscillation solutions and with a non-autonomous equa-
tion in the space variable (due to the potential term),
which would complicate any such analysis. It may still
be possible to perform some type of stability analysis nu-
merically or under some approximations, for the types of
solutions we obtain in this paper, and such a study may
be of interest in future work for the three-dimensional
BECs.
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