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Beginning with the exact equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy, we obtain the density, momentum and stress tensor-moment equations. We close the
moment equations with two closures, one that guarantees an equilibrium state given by density
functional theory and another that includes collisions in the relaxation of the stress tensor. The
introduction of a density functional-theory closure ensures self consistency in the equation-of-state
properties of the plasma (ideal and excess pressure, electric fields, and correlations). The resulting
generalized hydrodynamics thus includes all impacts of Coulomb coupling, viscous damping, and the
high-frequency (viscoelastic) response. We compare our results with those of several known mod-
els, including generalized hydrodynamic theory and models obtained using the Singwi-Tosi-Land-
Sjolander (STLS) approximation and the quasi-localized charge approximation (QLCA). We find
that the viscoelastic response, including both the high-frequency elastic generalization and viscous
wave damping, is important for correctly describing ion-acoustic waves. We illustrate this result by
considering three very different systems: ultracold plasmas, dusty plasmas, and dense plasmas. The
new model is validated by comparing its results with those of the current autocorrelation function
obtained from molecular-dynamics simulations of Yukawa plasmas, and the agreement is excellent.
Generalizations of this model to mixtures and quantum systems should be straightforward.

PACS numbers: 52.27.Gr, 52.25.Dg, 52.35.Fp

I. INTRODUCTION

The advent of new high energy-density experimen-
tal facilities, such as the Linac Coherent Light Source
(LCLS) [1] and the National Ignition Facility [2], have
renewed interest in the physics of moderately to strongly
coupled plasmas (SCPs). Furthermore, recent, smaller-
scale experiments with ultracold neutral plasmas (UC-
NPs) [3, 4] and dusty plasmas (DPs) [5] continue to pro-
vide detailed information about these plasmas. Despite
the breadth of our knowledge about these non-ideal plas-
mas [6–12], current applications are pushing our need
for an understanding of plasma physics beyond that pro-
vided by the usual simplifications of homogeneous plas-
mas, linear transport coefficients, and linear collective
processes. Modern experiments probe non-equilibrium,
heterogeneous, and non-linear responses across large time
and length scales; examples of such experiments include
shock heating of inertial confinement fusion (ICF) cap-
sules [7] and wave excitations in UCNPs [8]. Because
molecular dynamics (MD) simulations cannot currently
be performed over the time and length scales relevant
for such experiments [6] and because kinetic equations
do not include non-ideal plasma properties, it would be
useful to develop a theoretical and computational model
both applicable to the extreme conditions of current ex-
periments and capable of reaching the relevant scales.

Models for large-scale dynamics are typically formu-
lated in terms of the macroscopic equations of hydrody-
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namics [13]. While such equations can be derived directly
from an underlying kinetic equation (e.g., the Boltzmann
equation) [14], two issues arise. First, the kinetic equa-
tion should itself contain the physics of strong coupling,
including both strong correlations and strong scattering,
and most kinetic equations are lacking in this respect.
Second, given a suitable kinetic equation, a moment hi-
erarchy is generated that must be truncated through
a suitable closure. For example, Murillo [15] obtained
a hydrodynamic description that is derived from mo-
ments of a modified Vlasov equation that includes corre-
lations through the equilibrium pair correlation function
g(r), using a variant of the Singwi-Tosi-Land-Sjolander
(STLS) [9] approximation, and this hydrodynamic de-
scription includes a simple closure at the level of the
momentum equation. Upon further examination [16],
SCPs require careful treatment of the high-frequency re-
sponse, as well, including collisions, and improved clo-
sures [17] are therefore needed to obtain an adequate hy-
drodynamic description.

The high-frequency response of SCPs has also been
examined by Golden and Kalman [10], who proposed
the quasi-localized charge approximation (QLCA) to de-
scribe high-frequency waves. In this scheme, the parti-
cles are assumed to oscillate around localized positions.
The QLCA is based on a time-scale separation in which
particle positions are described by an equilibrium pair-
correlation function g(r). Response functions were ob-
tained, and results are in relatively good agreement with
MD simulations. However, as is also true for the STLS
approximation, the QLCA does not contain dissipative
effects, and it is not applicable in the hydrodynamic limit.

The only existing hydrodynamic theory that accounts
for both low-frequency collisional effects (e.g., viscous
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damping) and high-frequency response (e.g., elastic re-
sponse) properties is the well-known generalized hydro-
dynamic (GH) theory [18]. GH is a phenomenological
model that extends the usual Navier-Stokes equation to
higher frequencies, and it is motivated by a model that
combines the properties of both solid and liquid bodies
by generalizing the transport coefficients in the Navier-
Stokes equation, using a memory function. Such a GH
model was first proposed by Frenkel [19] for viscoelas-
tic liquids and was later used by Ichimaru [20] to study
the dynamic properties of SCPs. Kaw and Sen [21] stud-
ied low-frequency modes in DPs using the GH equation
for dust particles and assuming a Boltzmann distribution
for electrons and ions. However, their GH model is valid
only in the long-wavelength limit, and it was primarily
developed for one-component plasmas (OCPs); ambigui-
ties remain regarding the correct forms of GH equations
[19, 21, 22].

However, the dynamics of SCPs may potentially be
well-described using a kinetic formalism based on full
Born-Bogolyubov-Green-Kirkwood-Yvon (BBGKY) hi-
erarchy equations. In this paper, we derive a new hydro-
dynamic model that explicitly incorporates correlations,
high-frequency (elastic) effects and viscous damping in
a self-consistent and generalizable manner. This is done
by inverting the usual order of closures: we first close the
hydrodynamics equations and then close the underlying
kinetic description. In the next section, we determine the
hydrodynamic moment equations from the BBGKY hier-
archy to describe the dynamics of non-ideal plasmas on a
wide range of length and time scales. We discuss the two
closures needed to obtain a generalization of the hydrody-
namics model and highlight the approximations needed
to do so. Connections to previous models of this type are
discussed. Next, we use our new hydrodynamics model
to obtain the properties of collective modes, including
correlations and collisions, and we compare our results
with those of previous models. We discuss our new MD
results for the current autocorrelation function and com-
pare these numerical results with the theoretical models.
We then apply our results to three different plasma con-
ditions to illustrate the implications of our new approach.
Finally, we summarize and discuss the broad implications
of our results to provide a perspective on the potential
utility of this approach.

II. HYDRODYNAMIC MODEL

Deriving the macroscopic equations of hydrodynamics
is a double closure problem in which, first, the BBGKY
hierarchy is closed to obtain a kinetic equation (e.g., the
Boltzmann equation) for the single-particle distribution
function f1 and, second, a hierarchy of moments is ob-
tained and must also be closed [17]. In this section, we
obtain the hydrodynamics equations for a strongly cou-
pled system by inverting the order in which the closures
are made; we first find the moments of the (unclosed)

BBGKY hierarchy and then find closures for the result-
ing moment (hydrodynamics) equations that now contain
self-consistent correlation information.

A. Moments of the BBGKY Hierarchy

We begin by considering a system of N particles of
mass m, charge e, positions ri, velocities vi and Liouville
distribution function fN (x1, ...,xN , t), where the xi =
(ri,vi) are phase-space coordinates. The particles inter-
act through an arbitrary pairwise potential v(|ri−rj |) in
the presence of an external potential vext(ri, t). The evo-
lution of the reduced distribution functions fi=1,...,N−1,
where

fi(x1, ...,xi, t)=

∫
dxi+1, · · ·, dxN fN (x1, ...,xN , t), (1)

is given by BBGKY hierarchy equations [23]. The first
hierarchy equation is

∂f1
∂t

+v1 ·∇f1 +
Fext

1

m
· ∂f1
∂v1

= − 1

m

∫
K12 ·

∂f2
∂v1

dx2, (2)

where Fext
i = −∇ivext(ri, t), Kij = −∇iv(|ri − rj |), and

f1(x1, t) and f2(x1,x2, t) are the one- and two- body
distribution functions, respectively. Typically, a kinetic
equation is obtained at this point by finding a suitable
functional relationship between f2 and f1 that closes the
BBGKY hierarchy. We will now obtain the hydrodynam-
ics equations from (2) directly.

We can obtain the moments of the distribution func-
tions by multiplying (2) by some functions Φ(v1) and
integrating over velocity. Choosing our set of functions
to be Φ(v) = {1,v1,v1v1} and measuring moments rel-
ative to the mean velocity, we define

n(r1, t) =

∫
f1(x1, t) dv1, (3)

nu(r1, t) =

∫
v1 f1(x1, t) dv1, (4)

¯̄P(r1, t) = m

∫
(v1 − u)(v1 − u) f1(x1, t) dv1, (5)

Q(r1, t) = m

∫
(v1 − u)2(v1 − u) f1(x1, t) dv1 (6)

to obtain

Dtn = −n∇ · u, (7)

mnDtu = −∇ · ¯̄P + nFext − C(r1, t), (8)

DtPij = −Pij∇kuk − Pik∇kuj − Pkj∇kui

−∇kQijk − Bij(r1, t), (9)

where

Dt =
∂

∂t
+ u · ∇,

C(r1, t) =

∫∫
K12 v1

∂f2
∂v1

dv1dx2,

Bij(r1, t) =

∫∫
K12(v1 − u)i(v1 − u)j

∂f2
∂v1

dv1 dx2.
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The three final equations, which are still exact, are the
continuity equation (7), the momentum equation (8), and
the stress tensor equation (9). Note that the terms C
and Bij contain all of the contributions from interparticle
forces, and these two terms give rise to electric fields,
collisions, and excess energy and pressure. As written
above, these equations are not closed for two reasons: (1)
we have not written an equation of motion for the heat
flow, Q, and (2) obtaining C and Bij requires knowledge
of the two-particle distribution function f2. Nevertheless,
this form illustrates how correlations formally enter into
a hydrodynamic description. In the next subsection, we
will employ dynamical density functional theory (DDFT)
to achieve a partial closure.

B. Dynamical Density Functional Theory (DDFT)

Building on work by Cahn [24] and time-dependent
Ginzburg-Landau models [25], it is possible to formu-
late the dynamics of a many-body system near equilib-
rium using the free energy functional F [n]. Such DDFTs
[26, 27] employ generalized forces (chemical potentials)
in terms of the functional derivative δF [n]/δn(r). The
use of density functional theory (DFT) as a closure for
the momentum equation was first proposed by Ying [28],
in the context of quantum hydrodynamics. Recently,
Lutsko [29] has shown a more systematic way to derive
a self-contained momentum equation using DDFT. The
principal idea of DDFT is to relate the f2 distribution
function to properties of the free energy, F [n]. We pro-
pose to introduce this approach as a closure for the SCP
momentum equation.

First, let us briefly present some results of classical
DFT [30] for equilibrium systems. The central result of
DFT is that for a given density n(r), there is a unique
Helmholtz free energy functional F [n] with a form that
does not depend on the external potential. Consequently,
knowledge of F [n] completely determines the microscopic
structure of the system. The (thermal) equilibrium den-
sity is given by the Euler-Lagrange equation

δF [n]

δn(r)
= µ, (10)

where µ is the chemical potential. The free-energy func-
tional F [n] is typically decomposed into the four con-
tributions of the non-interacting free energy F id[n], the
external potential energy Fext[n], the Hartree energy
FH [n], and the correlation functional Fcor[n], as

F [n] = F id[n] + Fext[n] + FH [n] + Fcor[n], (11)

where the non-interacting free energy F id can be written
explicitly (for classical plasmas) as

F id[n] = β−1
∫
dr
[
n ln

(
Λ3n

)
− n

]
, (12)

where β = 1/kBT , kB is Boltzmann’s constant, T is
the temperature, Λ = h/2π

√
mkBT is the thermal wave-

length, and h is Planck’s constant. The external potential
contribution is given by

Fext[n] =

∫
n(r) vext(r) dr. (13)

The Hartree term is

FH [n]=
1

2

∫∫
drdr′ n(r)n(r′)v(|r− r′|), (14)

where v(|r − r′|) is the pairwise potential. While the
Hartree term is the mean-field portion of the interacting
energy, it is the same term that gives rise to the self-
consistent electric field in the context of plasma physics.
Thus, this decomposition (11) ensures self-consistency
among each of the contributions to the free energy; quan-
tities such as the ”electric field” and the various con-
tributions to thermodynamic properties are not double-
counted. The exact form of Fcor[n] is unknown [31, 32];
however, it can be expressed formally in terms of the
direct correlation function c(r, r′), as follows:

c(r, r′) = −β δ2Fcor[n]

δn(r)δn(r′)
. (15)

The direct correlation function is related to the static
structure factor by the Ornstein-Zernike relation, which,
in Fourier space, reads as

S(k) =
1

1− n c(k)
, (16)

where k is the wavevector. Once the pair potential v(r)
has been specified, c(r) can be calculated using integral
equations, MD or Monte Carlo simulations, and the self-
consistent F is obtained.

Using (11)-(14) in (10) gives

β−1∇ lnn(r) +∇vext +∇U +∇δF
cor[n]

δn(r)
= ∇µ, (17)

where

U(r) =

∫
dr′ n(r′)v(|r− r′|) (18)

is the mean-field potential. Note that for an inhomoge-
neous interacting fluid, the chemical potential is a con-
stant, so ∇µ = 0 [30]. We are now in a position to use
DFT to ensure that the equations of BBGKY yield the
correct thermodynamic ground state.

In equilibrium, the velocity portions of the distribution
functions are Maxwellian. In this limit, we multiply (2)
by v and integrate it over velocity to obtain

β−1∇n(r1)− n(r1)Fext =

∫
K12 n2(r1, r2) dr2, (19)
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where

n2(r1, r2) =

∫∫
dv1dv2f2(r1,v1, r2,v2). (20)

Equation (19) is the equilibrium balance between the
fluid pressure and the electrostatic pressure of the inter-
nal and external fields. This result is the first equation
in the Yvon-Born-Green hierarchy. By ensuring consis-
tency between (17) and (19), we can relate the unknown
two-body distribution to the free-energy functional by
writing

∇U(r1)−∇δF
cor[n]

δn(r1)
=

β

n(r1)

∫
K12 n2(r1, r2)dr2. (21)

This result corresponds to a specific sum rule for a
fluid in DFT, and it relates the direct correlation func-
tion c(r1, r2) to the two-particle density n2(r1, r2) [30].
DDFT assumes that for an arbitrary density of a fluid,
it is always possible to find an external potential that
forces the system into equilibrium. This configuration
corresponds to an instantaneous value of the one-particle
density n(r1, t). Consequently, the two-particle density
n2(r1, r2, t) can be replaced by its equilibrium value,
n2(r1, r2), at any time. Substituting (17) into (19), the
DDFT closure is readily found to be

∇U(r1)−∇δF
cor[n]

δn(r1, t)
=

β

n(r1, t)

∫
K12 n2(r1, r2, t)dr2.

(22)
This closure was first obtained by Marconi and Tarzaconi
[26] for classical fluids and was later extended to multi-
body interactions by Archer and Evans [27].

Note that the right-hand side of (22) is C(r1, t); we can
now eliminate C(r1, t) in (8) to obtain the hydrodynamic
equations

Dtn = −n∇ · u, (23)

mnDtu = −∇ · ¯̄P + nFext + n∇U − n∇δF
cor

δn
,(24)

DtPij = −Pij∇kuk−Pik∇kuj−Pkj∇kui (25)

−∇kQijk − Bij .
Our fluid equations are not yet closed. We now need

to find approximations for the high-order moments: the
stress tensor and the heat flow. To do so, we proceed as
follows. In the hydrodynamic limit, where the mean free
path of the particles, λmfp, is smaller than the macro-
scopic length of our system, L = |∇n/n|−1, although the
heat flow and the moments beyond are not zero, they
can be neglected. Finally, the term Bij , which contains
the two-particle distribution function, is estimated using
a relaxation model; this procedure will be discussed in
the next section.

C. Relaxation Closure of Higher Moments

Elastic effects were introduced in the classical fluid
equations in the form of a memory function originally

developed by Frenkel [19]. Our goal here is to include
these effects in our model via the stress tensor equation.

To evaluate the stress tensor ¯̄P, it is customary to de-
compose it as

Pij = Pδij −Πij , (26)

where the diagonal terms of the stress tensor correspond
to the pressure P , and the off-diagonal terms correspond
to the dissipative effects Πij . Thus, using the Einstein
summation convention, we insert (26) into (24) and (25)
and separate the diagonal from the off-diagonal to find

mnDtu = −∇P +∇ ·Π + nFext + n∇U (27)

−n∇δF
cor

δn
,

DtP = −5

3
P∇kuk −

2

3
Πik∇ui − Bii, (28)

DtΠij = −Πij∇kuk −Πik∇kuj −Πkj∇kui,

+
2

3
δijΠlk∇kul + Bij

−P
(
∇iuj +∇jui −

2

3
δij∇kuk

)
. (29)

An important approximation is to assume that the ve-
locity gradients are small, so that the convective terms
can be neglected: Πij∇u ∼ 0 and P∇u ∼ 0. If the veloc-
ity gradients are large, then one must take into account
the convective terms; this situation will be discussed be-
low. To retain elastic effects, we do not use a thermody-
namic closure of the pressure tensor, but rather allow the
two-particle distribution function Bij in (29) to fluctuate
on a time scale τ using a phenomenological relaxation
model. Combining these two approximations, we obtain
for the pressure tensor

DtP =
P 0 − P

τ
, (30)

DtΠij =
Π0

ij −Πij

τ
, (31)

where Π0 and P 0 are the equilibrium values of the dis-
sipative stress and the pressure, and here, Π and P are
fluctuating quantities. Taking the convective derivative
of (27) and using the spatial gradient of (31), we obtain

Dt

[
mnDtu+∇P−nFext+ n∇U +n∇δF

corr

δn

]
= (32)

∇ ·Π0 −∇ ·Π
τ

.

Finally, we replace the dissipative term ∇·Π in the right-
hand side of (32) using (27) to yield a self-contained hy-
drodynamic model
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Dtn+ n∇ · u = 0 (33)(
1 + τDt

)[
mn(r, t)Dtu +∇P − n(r, t)Ftot + n(r, t)∇δF

cor[n]

δn(r, t)

]
= ∇ ·Π0, (34)

where Ftot = Fext−n(r, t)∇U(r) is the external and the
mean-field forces. Equations (33) and (34) are the main
results of this work. We will refer to this new model as the
viscoelastic-density functional (VEDF) model. It gener-
alizes the hydrodynamic momentum equation to account
for dissipative effects, elastic effects, and all impacts of
Coulomb coupling through a self-consistent equation of
state. In contrast with current hydrodynamic models,
the VEDF satisfies a low-frequency sum rule through the
density functional closure, and a high-frequency sum rule
through the relaxation time τ . The usual Navier-Stokes
equation for a viscous gas is recovered when τ is very
small, and the correlation term Fcorr is negligible. We
recover the hydrodynamic Bloch equations for fluids pro-
posed by Ying [28] when we neglect viscoelastic effects.

When velocity gradients are large, the neglected terms
in (29) become important. The relaxation time in the
left-hand side of (34) can be seen as the first-order expan-
sion of the elastic term around the velocity divergence,

τ(u) = τ + α∇ · u + ..., (35)

where τ is the Maxwell relaxation time, and α is related
to the microscopic effects of the fluid.

The VEDF model includes the relaxation time, viscos-
ity and correlations in the form of external parameters.
These quantities are determined as follows. For a fluid
system, the rate of stress can be written as

Πij = η

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
+ ξ

∂uk
∂xk

δij , (36)

where η and ξ are the shear and bulk viscosities, respec-
tively. The Maxwell relaxation time is given by

ωpτ =
3 η̄Γ

1− γiµ+ 4
15Ec

. (37)

Here, ωp = (4πe2n0/m)1/2 is the plasma frequency, ai =

(3/4πn0)1/3 is the Wigner-Seitz radius, Γ = e2/kBTai
is the coupling parameter, γ is the adiabatic index, µ is
the compressibility, Ec(Γ, κ) is the correlation energy in
units of temperature kBT , κ = ai/λDe is the screening
parameter, λDe is the Debye length, and the normalized
viscosity η̄ is defined as

η̄ =
4
3η + ξ

mn0 ωp a2i
. (38)

The equations are still not closed because we must specify
the viscosity and correlation energy. These quantities are

determined through MD and integral equations, as will
be described below.

An approximation for the free energy F [n] remains to
be found. While we have an analytical expression for
the density functional for the non-interacting fluid, the
correlation energy Fcor[n] is unknown. Various models
have been developed to estimate the free excess energy
[31, 32]. We recall here the expression of the free excess
energy obtained by Ramakrishnan and Yussouff [33]; this
expression is obtained from the Taylor expansion of the
direct correlation around a uniform density n0. The first-
order terms of this expansion can be written as

Fcor[n]=Fcor[n0]− 1

2β

∫∫
n̄(r′)n̄(r)c(|r− r′|)drdr′,(39)

where n̄(r) = n(r) − n0. In this work, the direct cor-
relation function is obtained using a hypernetted chain
(HNC) approximation.

In the next section, we compare the new VEDF model
to previously developed models.

III. REVIEW OF PREVIOUS THEORETICAL
MODELS

A. Generalized Hydrodynamics (GH)

Classical fluid theory, as expressed by the Navier-
Stokes equation, does not incorporate elastic effects. To
remedy this deficiency, Frenkel [19] extended classical hy-
drodynamic theory to elastic fluids by replacing the vis-
cosity coefficient with a nonlocal operator that accounts
for the elastic properties of fluids.

The GH equations describing the dynamics of a fluid,
obtained by Frenkel [19] and applied to dense plasmas
by Kaw and Sen [21], can be written for the momentum
equation as(

1 + τ
∂

∂t

)[
mn

∂u

∂t
− enE +∇P

]
= ∇ ·Π0, (40)

where E is the self-consistent electric field, P is the pres-
sure, and Π0 is the dissipative term.

Note the way that the derivatives ∂
∂t and Dt appear in

(34) and (40). In previous studies [20, 21, 34, 35] that
employed models like (40), different combinations of a
partial time derivative ( ∂

∂t ) and a convective derivative
(Dt) have appeared. However, our derivation from the
BBGKY hierarchy reveals that both of the derivatives
in these equations should be Dt. However, in the case of
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linear low-frequency modes, the convective derivative will
have no effect on the dispersion relation because u ·∇u is
a second-order term and can consequently be neglected.
For nonlinear waves in SCPs, additional terms may be
important.

Another important difference between the VEDF
model and the GH model is that the VEDF model de-
scribes viscoelastic effects, excess pressure and collisions,
whereas GH considers collisions only through the vis-
coelastic term. It follows that to improve the GH ap-
proach, one must find a way to include a better equation
of state to account correctly for correlations. Toward this
end, Shukla [34] added a new force, which is supposed to
represent the polarizing force between strongly coupled
ions and electrons, to the generalized momentum equa-
tion. The generalized momentum equation proposed by
Shukla can be written as(

1 + τ
∂

∂t

)[
mn

∂u

∂t
− (1−R)enE +∇P

]
=∇ ·Π0.(41)

Here, R accounts for the polarization force emanat-
ing from the interactions between the thermal electrons
and the strongly coupled ions and is given by R =
e2/4kBTeλDe ≤ 1, where Te corresponds to the electron
temperature. In comparison with (34), we are unable to
justify a term of the form in (41).

B. Singwi-Tosi-Land-Sjolander (STLS) Closure

Murillo [15] developed a hydrodynamic model for SCPs
based on the STLS [9] closure of BBGKY,

f2(x1,x2) = f1(x1, t)f1(x2, t)g(r1 − r2), (42)

where f1(x, t) is the one-body distribution function, and
g(r1 − r2) is the equilibrium pair correlation function.
This approximation satisfies the relevant (for hydro-
dynamics) low-frequency sum rules but violates high-
frequency sum rules. (This approach was later extended
using a generalized Navier-Stokes approach [16].)

With the closure (42), the hydrodynamics equations
for the density and the momentum become

∂n

∂t
+∇ ·

(
nu
)

= 0, (43)

m
∂
(
nu
)

∂t
+∇ ·

[
n〈vv〉

]
= n

(
Fcorr + Fext

)
, (44)

where

Fcorr(r1, t) =

∫
K12 n2(r1, r2, t) g(r1 − r2) dr2,(45)

n2(r2, t) =

∫
f1(x2, t) dv2. (46)

The term ∇ ·
[
n〈vv〉

]
, which describes both the ideal

pressure and the viscosity, was neglected in the original

work by Murillo [15]. Here, including this term, the mo-
mentum equation becomes

mnDtu +∇ · ¯̄P = n
(
Fcorr + Fext

)
. (47)

Assuming an equilibrium closure for the pressure tensor,
we see that STLS hydrodynamics results in the usual
Euler hydrodynamics equations in terms of the effective
force

Keff
12 ≡ K12(r1 − r2)g(r1 − r2). (48)

Thus, as opposed to the VEDF model, STLS hydrody-
namics does not account for viscosity or collisions, al-
though it does include pair correlations associated with
”excess” thermodynamic quantities. It is important to
note that the STLS approach incorporates the physics of
strong coupling directly through the two-body distribu-
tion function g(r), in contrast with the GH approaches
of Kaw and Sen [21] and Shukla [34]. The VEDF model
(34) consistently includes both contributions.

STLS hydrodynamics can be extended further by not-
ing that higher-order moments would lead, in some cir-
cumstances, to non-spherical distributions and, there-
fore, to transport.

IV. COLLECTIVE MODES IN DENSE
PLASMAS

In this section, we apply the VEDF formalism to study
the properties of ion-acoustic waves (IAWs) in dense plas-
mas. First, we derive the dispersion relation of the wave,
then we compare it with the results obtained with GH,
QLCA and MD simulations. The features that these re-
sults have in common and that differentiate between the
models are also discussed.

Let us consider, at time t = 0, a plasma composed
of both electrons, with density ne0 and temperature Te,
and ions, with density n0, temperature T , and mass m.
The ion temperature is assumed to be negligible com-
pared with the electron temperature. Because the elec-
tron mass is small with respect to the ion mass, one can
assume that the electrons are in Boltzmann equilibrium,
with the self-consistent electrostatic potential φ.

At time t > 0, the ion dynamics are described by the
VEDF equations (33) and (34). The electron-density dis-
tribution is determined by the Boltzmann distribution

ne(r, t) = ne0 exp

(
eφ

kBTe

)
. (49)

The electric potential φ is given by the Poisson equation

∇2φ = 4πe (ne − n) . (50)

To study the collective modes, we consider small den-
sities and velocity perturbations as follows:

ne(r, t) = ne0 +
eφ

kBTe
ne0, (51)

n(r, t) = n0 + δn, (52)

u(r, t) = δu. (53)
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We insert these expressions into Eqs. (33), (34), and (50)
and perform time and space Fourier transforms. The
resulting dispersion relation takes the form

ω2

ω2
p

=
q2

3 ΓS(q)
− i η̄ q2

1− i ω τ
ω

ωp
, (54)

where q = kai is the normalized wave vector. To find
the static structure factor S(q), we have performed nu-
merical simulations with a code constructed using the
HNC approximation for Yukawa systems. The HNC ap-
proximation has been modified with a bridge function to
describe SCPs. The numerical code is presented in more
detail in [36]; it has been validated by comparisons with
MD simulations.

The dispersion relation of IAWs in the GH model is
given by

ω2

ω2
p

=
q2

κ2 + q2
+
q2

3 Γ
− i

η̄ q2

1− iωτ
ω

ωp
. (55)

Now, assuming finite off-diagonal contributions to the
pressure tensor, the Navier-Stokes variant of STLS hy-
drodynamics yields the following dispersion relation for
IAWs:

ω2

ω2
p

=
q2

q2 + κ2

[
1−G(q)

]
+
q2

3 Γ
− i η̄ ω

ωp
q2, (56)

where the static local field correction G(q) serves as a
generalized compressibility. The second and third terms
on the right-hand side of (56) correspond to the thermal
portion of the pressure and the viscous damping, respec-
tively, which were previously neglected in [15].

However, the generalization of STLS hydrodynamics in
(56) is not closed because of the appearance of the vis-
cosity, which must be considered as a phenomenological,
constitutive property. In fact, we also typically specify
G(q); in this sense, (42) is not a true closure because it
requires the specification of g(r). Originally, STLS im-
posed a self-consistency condition to obtain g(r), whereas
Murillo employed the HNC approximation to avoid un-
physical (negative) properties of g(r).

To be complete, let us now discuss the QLCA. It is
a theory with a microscopic basis that provides a good
description of waves for SCPs. In the QLCA [10], par-
ticles are assumed to occupy local mean positions and
to diffuse slowly. Since these positions change over a
much longer time scale than the characteristic diffusion
time, they are replaced by equilibrium configurations us-
ing the equilibrium pair-correlation function. This model
has been designed to satisfy a high-frequency sum rule
and is restricted to SCPs (Γ � 1). QLCA yields the
dispersion relation for the IAW

ω2

ω2
p

=
q2

q2 + κ2
+
q2

Γ

[
4

45
Ec −

2

45
y
∂Ec

∂y
+

4

15
y2
∂2Ec

∂2y

]
,

(57)
where y = κ2, and Ec(Γ, κ) is the correlation energy.
For κ ≤ 1, we evaluate Ec(Γ, κ) and its derivative using

the expression given in [37]. For κ = 2, we use values
reported in Table VIII of [38].

A detailed comparison of these different analytical ex-
pressions for the dispersion relations of the IAWs will be
presented in the next section, along with results obtained
from MD simulations. First, we will discuss the proce-
dure we have followed to extract the dispersion relation
of IAWs from MD-simulation results.

V. MOLECULAR DYNAMICS (MD)
SIMULATIONS AND DISCUSSION

To validate the models examined in this study, we car-
ried out MD simulations to extract the dispersion rela-
tion of IAWs. Details of the code that we used have been
described previously [39]. In our simulations, the ions
interact through the Yukawa potential,

v(r) =
Γ exp(−κrij)

rij
, (58)

where rij = |ri − rj |/ai is the relative distance between
two particles, and v(r) is in units of kBT . We integrate
the equations of motion of N = 5000 particles with the
Yukawa potential, using a second-order symplectic in-
tegrator (velocity-Verlet) with cubic periodic boundary
conditions over a period of 5000ω−1p . Excellent energy
conservation was obtained with an integration time step
of 10−2 ω−1p .

Using the computed positions ri(t) and velocities vi(t),
we construct the current j(q, t) for a given normalized
wave vector q at time t as follows:

j(q, t) =

N∑
i=1

vi(t) exp[iq · ri(t)]. (59)

We then compute the time-dependent longitudinal cur-
rent autocorrelation function,

Cl(q, t) =
1

N

〈[
q · jl(q, t)][q · jl(−q, 0)

]〉
, (60)

by averaging the longitudinal component q · jl(q, t) over
all of the particles in our system. The spectrum of the
longitudinal current autocorrelation is obtained by tak-
ing the Fourier transform of (60) to obtain

Cl(q, ω) =

∫ ∞
0

dtCl(q, t) cos(ωt). (61)

For a given value of the wave number q, the dispersion
relation of IAWs ω = ω(q) corresponds to the peak of
Cl(q, ω).

A selection of our results is shown in Figure 1, which
displays the normalized longitudinal current autocorre-
lation function Cl(q, t) (top panel) and its spectrum for
Γ = 2, κ = 0.1 and for a range of the wave number q
(bottom panel). This procedure was performed repeat-
edly to obtain the dispersion relation of IAWs for a wide
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FIG. 1: (Color online) Normalized longitudinal current auto-
correlation function as function of time ωpt and its spectrum
for κ = 0.1 and Γ = 2.

range of values of Γ and κ. In the subsections below,
we explore the results of the VEDF model for specific
types of plasmas: UCNPs, DPs and high energy-density
plasmas (HEDPs).

A. Ultracold Neutral Plasmas (UCNPs)

It is possible to produce an UCNP via photo-ionization
of laser-cooled atoms or molecules [40]. In such plas-
mas, the electron and ion temperatures are ∼ 10 mK
and ∼ 10 µK, respectively, with plasma densities in the
range 109−10 cm−3. These SCPs typically have coupling
parameters in the range Γ ∼ 1 − 5 and screening pa-
rameters in the range κ ∼ 0.5 − 3, allowing us to probe
plasma properties in a regime where the physics of strong
coupling is moderate, but not perturbative. Thus, UC-
NPs allow us to explore predictions of the VEDF model
in the intermediate regime between traditional plasmas
and very SCPs.

Using the Yukawa model for the ions in an UCNP,
we have computed the dispersion relation for IAWs us-
ing several models and MD. Panels (a) and (b) of Figure
2 show the normalized dispersion relations obtained us-
ing the VEDF model, the usual GH model, the QLCA
and MD simulations for typical UCNP conditions. The
agreement between the VEDF model and the MD results
is excellent. The GH model discussed above (in section
III A) departs significantly from VEDF and MD results
in the short-wavelength limit; this difference may be ex-
plained by the fact that the GH model was developed
primarily for OCPs [20], and it does not include the cor-
rect Yukawa equation of state. We also observe that the
QLCA approximation [10], which was designed for very
SCPs (Γ � 1), is quite inaccurate in this intermediate
coupling regime.

The dispersion relation of IAWs in UCNP has been
measured in the long-wavelength regime by Killian and

coworkers [8]. These investigators measured the density
modulation of the waves and extracted the dispersion
relation of the IAW using mean-field theory (Vlasov).
Figure 3 (a) shows the dispersion relation of IAWs in
the long-wavelength limit obtained using Vlasov theory,
GH, QLCA and the VEDF model for Γ = 5 and κ = 1.
It can be seen that the Vlasov dispersion relation is in
quite good agreement with the other theoretical models
for these plasma conditions at long wavelengths. This
can be understood by noting that the long-wavelength
sound speed is inversely related to the compressibility,
which, in turn, is related to the long-wavelength limit
of the static structure factor S(0). In Figure 3 (b), we
compare the structure factors obtained using the HNC
approximation and Vlasov theory, with the inset show-
ing the results at very long wavelengths. One can clearly
see that the Vlasov theory captures most of the com-
pressibility for these plasma conditions, suggesting that
c(r) plays a small role. Because the mean-field theory
is a reasonable approximation in the hydrodynamic limit
q → 0 and because the MD results reveal larger discrep-
ancies at shorter length scales, UCNP experiments could
potentially be performed at very short wavelengths.

B. Dense, High Energy-Density Plasmas (HEDPs)

Dense plasmas are readily created in the laboratory
with radiation, shocks, and beams [1, 2, 7]; in many
cases, the resulting plasmas are strongly coupled [12].
Such plasmas are electron-ion mixtures describable in
terms of generalized Coulomb coupling parameters Γij =
ZiZie

2/aijK, where K is the mean kinetic energy. For
a near-equilibrium classical plasma, T is just the usual,
common temperature of the species, whereas, for degen-
erate electrons, K is modified to include Pauli exclusion
[12]; when the ions are moderately to strongly coupled
and the electrons are partially degenerate, the plasma
is referred to as ”warm dense matter” (WDM). Dense
plasmas differ from the UCNP discussed above in that
a larger range of ion coupling is possible, the electrons
may or may not be degenerate, and the ionization state
is not necessarily well known or defined [41]. For exam-
ple, in ICF experiments [2, 7], the target materials range
from condensed matter through WDM to a nearly ideal
plasma. Conversely, experiments at the LCLS create very
strongly coupled matter on the cool side of WDM [1].

Properties of IAWs corresponding to conditions over
the wide range of high energy-density conditions are dis-
played in Figures 2 (b)-(d). For strongly coupled plasmas
with screening parameter κ ≤ 2, the QLCA successfully
compares with the VEDF model, as shown in Figures 2
(b) and (c). Figure 2 (d) shows the dispersion relations
of the same models for Γ = 100 and κ = 2, and excel-
lent agreement between the VEDF model and MD re-
sults can be seen. It should be noted that the GH curve
is completely separated from the curves obtained from
MD simulations and the VEDF model for SCPs, even
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FIG. 2: (Color online) Dispersion relations of the longitudinal waves obtained using the VEDF model (green solid line) for
a range of Γ and κ. The results of the VEDF model are compared with those of the QLCA model (red square line), the
GH model (blue dashed line) and MD simulations (black dots). The frequency is normalized by an ion plasma frequency

ωp = (e2n0/ε0m
2)1/2 and the wave vector q = |k|ai with the Wigner-Seitz radius ai = (3/4πn0)1/3.
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FIG. 3: (Color online) (a) Dispersion relations of longitudinal waves obtained using the usual Vlasov dispersion relation, GH,
the VEDF model and the QLCA for Γ = 5 and κ = 1. (b) The static structure factor obtained using the HNC approximation
and the mean-field theory (Vlasov) for the same parameters as in Figure 2. The insert shows detail around wavelengths where
q = ka ≤ 0.5, corresponding to the regimes accessible by experiments and measured by Killian and coworkers [8].
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FIG. 4: (Color online) Dispersion relations of longitudinal
waves obtained from VEDF, GH, QLCA and MD simulations
for Γ = 150 and κ = 0.1. In this figure the MD data is
taken from Ref. [43]. The agreement between the molecular
dynamics data and the VEDF model is excellent.

in the hydrodynamic limit. Similarly, the phase velocity
of the wave obtained with the QLCA is strongly reduced
in the short-wavelength limit, leading to a large disagree-
ment with the VEDF model and MD results. The QLCA
tends to be very accurate when the effective coupling is
very large [42]. To illustrate this, in Figure 4, we com-
pare the MD results of Ohta and Hamaguchi [43] with
the predictions of the VEDF, QLCA and GH models,
for Γ = 150 and κ = 0.1. Here, the agreement between
MD, the VEDF model and the QLCA results is rather
good. In general, however, the VEDF model yields very
accurate results over the entire range of dense plasma
experiments within the Yukawa approximation.

C. Dusty Plasmas (DPs)

Dusty plasmas (DPs) are normal plasmas that have
a background composed of electrons, ions and neutrals
but also contain micron-scale particulates (”grains” or
”dust”) that are highly charged by fluxes from the back-
ground plasma species. While the dust particles are fairly
dilute (n ∼ 104/cc), they are cooled by dust-neutral col-
lisions and can have charges in the Q/e ∼ 1, 000−10, 000
range; because Γ scales with the square of that charge,
DPs are very SCPs and readily crystallize. The proper-
ties of the background plasma are consistent with those
of a very weakly coupled plasma, making the Yukawa
model for three dimensional DPs quite reasonable. (In
laboratory experiments in which the sheath is used to
trap the grains, wake potentials can form [11]; neverthe-
less, the Yukawa approximation still serves as a generic
model for such plasmas, especially monolayers.) Here,
we do not consider dust lattice waves, but we note that
Figures 2 (d) and 4 illustrate the dispersion relations of
dust-acoustic waves for plasmas with parameters similar

to those of DPs. The VEDF model describes such DPs
very well.

VI. CONCLUSION

In this paper, we have derived a new hydrody-
namic model (VEDF) for SCPs through a moment-based
method within a kinetic theory framework. Rather than
obtaining moments from a closure of the BBGKY hier-
archy, such as the Boltzmann equation, and then closing
the moment hierarchy, we obtain the hydrodynamic mo-
ments directly and exactly from the full BBGKY hier-
archy. This yields (unclosed) equations for the plasma
density, momentum and stress tensor; these moments
contain all correlation information and allow us to in-
troduce a different set of closures that retain correla-
tions. Because it is important to avoid double-counting
in field terms, correlation terms, and collision terms, we
ensure that the equilibrium limit of the momentum equa-
tion is connected with the thermodynamic ground state
specified by DFT through a DDFT approach. This ap-
proximation assumes that the equilibrium condition that
expresses the two-body distribution with the free excess
energy functional holds when the system is out of equilib-
rium. The second approximation is the relaxation model
for the stress tensor.

We have also compared the results of the VEDF model
with previous results in this area. Despite the various ap-
proximations that were needed, the approach lends itself
to systematic generalizations and helps to resolve discrep-
ancies among previous models [19, 21, 22]. In contrast
with existing approaches, including GH, the STLS ap-
proximation, and the QLCA, the VEDF model presented
here explicitly incorporates a self-consistent equation of
state and dissipative and elastic effects. In addition, the
VEDF formalism satisfies both low- and high-frequency
sum rules. Furthermore, the hydrodynamic model based
on the STLS ansatz proposed by Murillo [15] was gen-
eralized here to include dissipative effects. When the
elastic effects are small, the VEDF model reduces to this
hydrodynamic approach.

In the second part of this paper, we used the VEDF
model to study collective modes in Yukawa fluids. Ex-
plicit expressions for the dispersion relations of the lon-
gitudinal wave were analytically derived from the VEDF
model, GH, and the QLCA and evaluated numerically.
The correlation density functional Fcor[n] in the VEDF
model was estimated using the Ramakrishnan and Yus-
souff [33] Taylor expansion around a uniform density of
the direct correlation function c(r). Thus, the direct cor-
relation function was provided by the HNC approxima-
tion [36]. We evaluated the relaxation time τ using the
data for the correlation energy given in [37] and [20]. The
values for the viscosity were taken from [38]. We used
MD simulations to obtain the dispersion relation of the
IAWs for different types of plasmas by calculating the
current autocorrelation. The results obtained with the
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VEDF model were successfully confirmed by MD data.
The dispersion relation of IAWs was measured exper-

imentally by Killian and coworkers for UCNPs in the
hydrodynamic limit. Their results show good agreement
with results obtained using mean-field theory. The rea-
son for this agreement is that the contribution of the
correlations to the compressibility is very small. Here,
we have not found numerical results for our main re-
sult, (34), but rather have focused on linear waves in
dense plasmas. In this regard, the effects of the non-
linear physics that it contains remain an open area of
investigation.

We conclude by mentioning that it should be conve-
nient to use the VEDF formalism to describe a large
number of physical problems: shock waves in DPs [35],
quantum properties in plasmas [28], vapor condensation
and turbulence in clouds [44], and blood-particle deposi-
tion [45]. Extension of this model to magnetized plasmas,
quantum systems [46], nonlinear problems and mixtures
is left for future work.
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