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The spectrum of x-ray Thomson scattering is proportional to the dynamic structure factor. An
important contribution is the ion feature which describes elastic scattering of x-rays off electrons.
We apply an ab initio method for the calculation of the form factor of bound electrons, the slope
of the screening cloud of free electrons and the ion-ion structure factor in warm dense beryllium.
With the presented method we can calculate the ion feature from first principles. These results
will facilitate a better understanding of x-ray scattering in warm dense matter and an accurate
measurement of ion temperatures which would allow determining non-equilibrium conditions, e.g.,
along shock propagation.

PACS numbers: 52.25.Os, 52.27.Gr, 52.70.La, 71.15.Pd

I. INTRODUCTION

X-ray Thomson scattering (XRTS) experiments [1–8]
yield information on fundamental parameters such as
electron and ion density, electron and ion temperature,
and ionization state of high-density plasmas. Pump-
probe experiments with variable time delay provide in-
sight into the excitation and relaxation dynamics in dense
plasmas on ultra-short time scales [4, 9]. Therefore,
XRTS is considered as a key diagnostics in, e.g., com-
pression experiments in order to obtain adequate results
for the equation of state and further quantities such as
the transport coefficients of warm dense matter (WDM).
This is essential input data for interior and dynamo mod-
els of planets in the solar system and beyond [10, 11].
However, an accurate determination of these quantities
is a great challenge, both for high-pressure experiments
and many-particle theory.

The differential cross section for XRTS in the Born ap-
proximation is given by the total dynamic structure fac-
tor (DSF) of the electrons, d2σ/(dωdΩ) = σTS

tot
ee (~k, ω),

where ~~k and ~ω are the transferred momentum and en-
ergy in the scattering process of x-rays at electrons, re-
spectively. The Chihara formula [12] for the total DSF

Stotee (~k, ω) = ZfS
0
ee(~k, ω) + |f(~k) + q(~k)|2Sii(~k, ω)

+ Zc

∫ ∞
−∞

dω′S̃ce(~k, ω′)Ss(~k, ω − ω′)
(1)

is widely used for the evaluation of XRTS spectra [1, 2]
and distinguishes contributions of free and bound elec-
trons. The first term describes the DSF of free electrons
with Zf being the number of free electrons per nucleus.
The second term gives the contribution of electrons fol-
lowing the ion motion and is usually referred to as the
ion feature. Its amplitude is determined by the sum of
the form factor f(~k) of bound electrons and the screening

cloud q(~k) of free electrons. Although Chihara starts in
his derivation from a division of the electrons into bound
and free ones, at the end the ion feature is determined
by total form factor N(~k) = f(~k) + q(~k). The ion-ion
structure factor Sii(~k, ω) represents the thermal motion
of the ions. The last term in Eq. (1) describes inelas-
tic scattering of strongly bound (core) electrons due to
Raman transitions to continuum states, S̃ce(~k, ω′), which
are modulated by the self-motion of ions, Ss(~k, ω), and
multiplied with the core charge Zc.

To fully exploit the power of x-ray scattering measure-
ments and to obtain reliable plasma parameters it is im-
portant to know precisely the important contributions in
Eq. (1). For instance, the DSF of free electrons S0

ee(~k, ω)
can be determined beyond the random phase approxima-
tion (RPA) by using the Mermin dielectric function [13]
and considering electron-ion collisions in the Born ap-
proximation [1, 14–16]. The ion feature is of fundamen-
tal importance since it is a measure of the correlations
of bound and free electrons and of the ion dynamics in
WDM. It can be extracted from the XRTS spectrum [2]
by weighting its contributions against the DSF of free
electrons, the first term in Eq. (1), in conditions where
bound-free transitions are well understood or neglegibly
small. However, several questions have to be addressed
in this context, e.g., is a discrimination between free and
bound electrons in WDM still feasible, what is the shape
of the static and dynamic form factors, and what is the
slope of the ion-ion structure factor, especially at low
wavenumbers.

The ion feature has been studied by performing ab
initio simulations for the static ion-ion structure factor
Sii(~k) [17, 18]. Its slope can be fitted via hypernet-
ted chain calculations with respect to an effective po-
tential that accounts for screening and, in addition, for
short-range repulsion due to the bound electrons (HNC-
SRR) [18, 19]. The form factor f(~k) and the screening
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cloud q(~k) which enter the ion feature in Eq. (1) are usu-
ally calculated separately via approximate methods. This
approach might be inadequate to address the above men-
tioned questions and, instead, a unified first-principles
treatment of electrons and ions is chosen here.

Density functional theory molecular dynamics (DFT-
MD) simulations for the ion feature of u-Be and CH
were performed recently [20]. Applying the VASP pack-
age [21–23], ionic configurations where obtained. For
beryllium, a two-valence-electrons pseudopotential was
used; afterwards, static snapshots have been postpro-
cessed in ABINIT [24] using a superhard pseudopotential
accounting for all for electrons constituting beryllium.

In this study we calculate the ion feature solely from
one first principles method using DFT-MD simulations
which treat all four electrons per nucleus in the system on
the same footing. In particular, we determine the static
ion-ion and electron-ion (consisting of the form factor
f(~k) and the screening cloud q(~k)) structure factors for
beryllium at conditions that have been probed in XRTS
experiments: isochorically heated beryllium [14] (u-Be)
at ρ = 1.85 g/cm3 and a temperature of T = 12 eV, and
shock-compressed beryllium [3] (c-Be) at ρ = 5.5 g/cm3

and a temperature of T = 13 eV. Main goal of these
experiments was to determine the parameters ne and Te
using the inelastic scattering feature, additionally values
for the ion feature were given.

The first-principles method to calculate the ion feature
of beryllium is outlined in Sec. II, it can be applied to
other materials such as carbon and aluminum as well.
The results for the ion feature and the contributions of
the ion-ion structure factor and of the form factor are
presented in Sec. III. We compare with the XRTS data
for u-Be and c-Be derived from laser-driven pump-probe
experiments in Sec. IV and discuss the impact of non-
equilibrium, two-temperature states. Conclusions can be
found at the end of the paper.

II. THEORY

The dynamic structure factor Sab(~k, ω) can be
calculated from the intermediate scattering function
Fab(~k, t) [25],

Fab(~k, t) =
1√
NaNb

lim
τ→∞

1

τ

∫ τ

0

ρa~k(t′)ρb−~k(t′+t)dt′, (2)

Sab(~k, ω) =
1

2π

∫ ∞
−∞

Fab(~k, t)eiωtdt , (3)

with ρa~k(t) being the Fourier transformed particle den-
sity and Na the number of particles of species a. Us-
ing DFT-MD runs the limit τ → ∞ extends to the
duration of the simulation. If we assume that the nu-
clei are point-like particles located at positions ~rv, then
ρi~k(t) =

∑N
v=1 e

−i~k·~rv(t).
The static structure factor results from the frequency

integration of Eq. (3),

Sab(~k) =

∫ ∞
−∞

Sab(~k, ω)dω = Fab(~k, t = 0) . (4)

This quantity contains the scattering pattern of the
medium which reveals important structural information,
e.g., the pair distribution functions gab(~r) by Fourier
transformation,

Sab(~k) = 1 +
√
nanb

∫
(gab(~r)− 1)ei

~k·~rd~r. (5)

We now focus on the second term in Eq. (1), the ion
feature. The electron motion in this term is dominated
by the ion dynamics, e.g. ion acoustic waves [26, 27],
which are however not resolved in the considered exper-
iments [3, 14]. Hence we can approximate the dynamic
ion-ion structure factor as Sii(~k, ω) = Sii(~k)δ(ω), thereby
introducing the static ion feature as

Siee(~k) = |f(~k) + q(~k)|2Sii(~k) ≡ |N(~k)|2Sii(~k) . (6)

The total form factor N(~k) is the Fourier transform of
the mean electron charge distribution N(~r) around the
nuclei. Anta and Louis [28] called this the density of
a pseudo-atom. All pseudo-atom densities are superim-
posed according to the radial nucleus-nucleus radial dis-
tribution function gii(~r). This gives the total value of the
electron density at ~r

negei(~r) = N(~r) + ni

∫
d~r′N(|~r − ~r′|)gii(~r′) . (7)

Here, the electron-nucleus radial distribution function
gei(~r) is the probability to find an electron, bound or free,
at distance ~r from a nucleus at the origin. The electron
density at ~r is therefore negei(~r). Adopting the above
relation (7), one neglects higher correlations of the nuclei
as, e.g., molecules or other clustering. For the considered
case of beryllium, this is undoubtedly justified.

For our calculations we use the finite temperature
DFT-MD framework which combines classical molecular
dynamics for the ions with a quantum treatment of the
electrons based on DFT, see below. For given ion config-
urations, the electron density ρe(~r) is calculated from

ρe(~r) =
∑
n

fn |φn(~r)|2 , (8)

with φn being the single electron wave functions and fn
the Fermi occupation numbers of states n with energy
εn. In the same spirit as in Eq. (7), we write the electron
density as a sum of a mean electron charge density N(~r)
arround the different ions

ρe(~r, t) ≈
∫

d~r′N(|~r − ~r′|)ρi(~r′, t) , (9)

or in Fourier space ρe~k(t) ≈ N(~k)ρi~k(t). The values N(~k)

fluctuate slightly for the different time steps. There-
fore the total form factor N(~k) is determined within this
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ansatz by averaging over the time steps of the simulation,

N(~k) = lim
τ→∞

1

τ

∫ τ

0

ρe~k(t)

ρi~k
(t)

dt . (10)

Thus we get for the fluid many-particle system an aver-
age pseudo-atomic form factor. From the definition of
this quantity and accounting for charge neutrality, there
follows that N(k = 0) = Z.

In the case of warm dense beryllium, the valence and
conduction band are separated by a huge energy gap
which is found between −90 eV and −8 eV for u-Be and
between −83 eV and −5 eV for c-Be. Notice that the
free states can occupy weakly bound states due to the
dynamics of the system so that they start slightly below
zero. Therefore, we can distinguish between free (f) and
bound (b) electron densities, ρe(~r) = ρeb(~r) + ρef (~r), with

ρeb(~r) =
∑
n

εn<∆

fn |φn(~r)|2 , ρef (~r) =
∑
n

εn>∆

fn |φn(~r)|2 . (11)

We use a value of ∆ = −40 eV. The results are not sen-
sitive with respect to a change of this parameter. By
replacing ρe~k(t) in Eq. (10) with the Fourier transforms
of ρeb(~r) and ρef (~r), respectively, we get the bound elec-
tron form factor f(~k) for Be2+ ions and the screening
cloud q(~k) of free electrons.

We want to emphasize that a separation of the total
electron density into bound and free contributions is only
possible if the energy gap is large enough as in the case of
beryllium so that the precise choice of the parameter ∆
has no influence on the results, as long as it separates the
valence and conduction electrons. This might not be the
case for other materials like carbon or aluminum where
one has to calculate the ion feature, Eq. (6), via the total
form factor N(~k), Eq. (10), in a strict physical picture
using just the total electron density.

The finite temperature DFT-MD calculations were
performed with the Vienna ab initio simulation pack-
age VASP 5.3. [21–23] using the provided projector aug-
mented wave [29, 30] pseudopotential for the interac-
tion between the nuclei and the electrons. We used the
exchange-correlation (XC) functional of Perdew, Burke,
and Ernzerhof [31]. Convergence was checked for particle
numbers between 64 and 128 atoms and the energy cut-
off for the plane wave expansion. The simulations were
carried out with 64 Be atoms, each having four electrons,
an energy cutoff of 1400 eV, and a simulation time of 5 ps
up to 20 ps. The ion temperature was controlled with a
Nosé thermostat [32]. Evaluations of the Brillouin zone
were performed at the Baldereschi mean value point [33].
These parameters yield well-converged results, see [17].

III. RESULTS FOR THE ION FEATURE

One aim of XRTS experiments is to deliver information
on the temperature of the system under investigation. In

order to show the influence of the temperature on the
ion-ion structure factor and the total form factor, we per-
formed DFT-MD simulations for u-Be [14] and c-Be [3]
for various temperatures and evaluated the intermediate
scattering function Fab(~k, t) according to Eq. (2). In the
following we consider homogenous systems and therefore
all quantities depend only on |~k| = k.

A. Static ion-ion structure factor

We calculate the ion-ion structure factor according to
Eq. (4). Results are shown in Fig. 1 for u-Be and Fig. 2
for c-Be. Due to the finite simulation box, the struc-
ture factor cannot be determined for small wavenumbers
k. Under the simulation conditions, the minimum value
for k for 64 particles is ∼ 1.1 Å−1. Doubling the parti-
cle number yields a slightly smaller value of ∼ 0.9 Å−1,
see Fig. 2 (black solid curve), but increases the numer-
ical effort a lot. For numerical reasons we performed all
calculations with 64 particles.

The structure factors at k = 0 can be calculated via an
alternative way. In a charged particle system, the partial
structure factors (electron-electron, ion-electron and ion-
ion) are connected by See(k = 0) =

√
ZSei(k = 0) =

ZSii(k = 0) in the long-wavelength limit. Furthermore,
the ion-ion structure factor is related to the isothermal
compressibility κT by

Sii(k = 0) = nikBTκT ,

κT = − 1

V

(
∂V

∂p

)
T

,
(12)

which is determined from corresponding equation of state
data calculated via separate DFT-MD runs.
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Figure 1. (Color online) Ion-ion structure factor for u-Be [14]
for different temperatures. The circles at k = 0 represent the
values derived via the isothermal compressibility.

We have computed the ion-ion structure factor for tem-
peratures of 12 eV (u-Be) [14] and 13 eV (c-Be) [3] as re-
ported in the XRTS experiments, but also for additional
temperatures of 3, 6, and 9 eV in order to study the im-
pact of temperature. The results shown in Figs. 1 and
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Figure 2. (Color online). Same as in Fig. 1 but for c-Be [3].

2 are in qualitative agreement with earlier DFT-MD re-
sults [17, 18]. For u-Be, Fig. 1, a very similar behavior
is found for temperatures from 6 eV to 12 eV; only for
3 eV a slightly more pronounced structure results. Even
for k = 0 only small differences occur, except for 3 eV.
All curves represent a typical liquid-like behavior with
correlations increasing towards the lowest temperature
of 3 eV. For c-Be shown in Fig. 2 we observe more pro-
nounced structures and a shift to higher k values due to
stronger correlations between the particles for all tem-
peratures. Again, the strongest correlation peak occurs
for the lowest temperature of 3 eV.

B. Form factor
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Figure 3. (color online) Total form factor N(k) (black), form
factor of bound electrons f(k) (red), and screening cloud of
free electrons q(k) (blue) for u-Be [14] at different tempera-
tures. Red dash-dotted curve: Hartree-Fock form factor for
Be2+ ions [34].

The total form factor N(k) is calculated from the DFT-
MD simulations using directly the information contained
in the Kohn-Sham wavefunctions. In order to compare
with other approaches, we further calculated the contri-
bution of the bound electrons, f(k), and the screening
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Figure 4. (color online) Same as in Fig. 3 but for c-Be [3].

cloud q(k). As discussed above, this seems to be mean-
ingful in the case of beryllium.

For the results shown in Figs. 3 and 4, the wavefunc-
tions for several snapshots were evaluated and averaged.
Only a weak dependence on temperature is observed. As
expected, the form factor f(k) and the screening cloud
q(k) converge to f(k = 0) = q(k = 0) = 2, i.e. beryl-
lium consists of Be2+ ions and two unbound electrons
per ion under these conditions. Inspection of Figs. 3 and
4 shows that for u-Be the screening cloud q(k) becomes
negative starting at values k ≈ 3.7 Å−1 which indicates
anti-screening [35] while for c-Be this behavior starts at
k ≈ 4.1 Å−1. In the latter case the minimum is more
pronounced and shifted due to compression. We com-
pare also with the Hartree-Fock form factor [34] for Be2+

ions which exhibits increasing deviation from the ab ini-
tio results at larger wavenumbers and, thus, should not
be used for WDM states.

C. Ion feature
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Figure 5. (color online) Ion feature for u-Be for different equi-
librium temperatures. Thin lines are fits through the numer-
ical data. The dots at k = 0 represent the values calculated
from the isothermal compressibility.
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Figure 6. (color online) Same as in Fig. 5 but for c-Be.

We present the ab initio results for the temperature-
dependent ion feature, Eq. (6), in Figs. 5 and 6 which
are caluclated without any approximation for N(k) and
Sii(~k) other than the choice of the XC functional used
in the DFT. In the long-wavelength limit the ion fea-
ture has the value Siee(k → 0) = 16Sii(k → 0), thus
it is mainly defined by the isothermal compressibility.
In the investigated cases the ion feature for u-Be seems
to decrease monotonically with increasing wavenumber
for the considered parameters, and its temperature de-
pendence is important only for k < 3.5 Å−1. For c-Be
the temperature dependence is stronger and visible for
k < 5 Å−1. Only for the lowest temperature of 3 eV
does a pronounced maximum occur, which is at about
k = 5 Å−1 due to the correlation peak in the ion-ion
structure factor, see Fig. 2. For u-Be at a temperature
of 12 eV, similar results for the ion feature were obtained
in [20].

We conclude that our ab initio method for calculat-
ing the ion feature enables an accurate determination
of the plasma parameters density and temperature be-
cause no approximation (except the choice of the XC
functional used in the DFT calculations) has been made,
neither for the form factors nor the ion-ion structure fac-
tor. The sensitivity is greatest for low k values. Since
a measured spectrum contains all XRTS contributions,
an accurate extraction of the elastic scattering contribu-
tion is required for diagnostic purposes. This problem is
addressed in the next section.

IV. COMPARISON WITH XRTS
EXPERIMENTS

A. Scattering spectrum and plasma parameters

Experimental values for the ion feature can be inferred
in principle from measured XRTS spectra which rep-
resent the differential cross section on a relative scale.
Provided that bound-free transitions can be neglected
or their contribution is well defined, and that the elec-

tron feature (inelastic) and the ion feature (elastic) of the
scattering signal can be well separated, the experimen-
tal values can be brought to an absolute scale using the
f-sum rule ∫

S0
ee(k, ω)ωdω =

~2k2

2me
. (13)

In practice, the electron feature of the signal is fitted,
and a calibration constant C is determined from∫

I inelastic(k, ω)ωdω = CZf
~2k2

2me
, (14)

for Zf we use here the values 2.105 for u-Be and 2.2 for c-
Be, see [17]. Then, taking into account the instrumental
function of the detector, g(ω), we have

Ielastic(k, ω) = C

∫
Si

ee(k)g(ω − ω′)δ(ω′)dω′

= CSi
ee(k)g(ω) , (15)

and get an experimental estimate for Si
ee(k). The instru-

mental function g(ω) is usually taken as a Gaussian.
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Figure 7. (color online) Ion feature for u-Be for different equi-
librium temperatures. Thin lines are fits through the numer-
ical data. The dots at k = 0 represent the values calculated
from the isothermal compressibility. The dots with error bars
represent experimental data (cyan) from Ref. [1] and a re-
analyzed spectrum (green) given in Ref. [14].

The ab initio results for the ion feature are compared
with data derived from XRTS spectra in Figs. 7 and 8.
The values for the ion feature inferred in Refs. [1] and
[3, 36] for u-Be and c-Be, respectively, from the ex-
perimental XRTS spectra (cyan dots with error bars)
strongly deviate from the simulation results for low k val-
ues, while for medium values, k ≈ 4.5 Å−1, good agree-
ment can be stated for both cases. For the medium k
values we have Sii(k) ∼ 1 and q(k) ∼ 0 so that the ion
feature is determined by the bound electron form factor
f(k) alone, which shows for different temperatures only
slight deviations, see Sec. III B.

The pronounced deviations between the ab initio re-
sults and the XRTS data at low k values have prompted
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Figure 8. (color online) Same as in Fig. 7 but for c-Be.
The dots with error bars represent experimental data (cyan)
from [3, 36] and re-analyzed spectra (green).

Table I. Ion feature, calibration constant C (defined in
Eq. (14)) and variance for the fits (a)-(c) shown in Fig. 9 for
c-Be [3] at k = 1.3 Å−1 compared with the original value [3].

fit C ion feature variance of the fit
(a) 5.46 2.15 ± 0.26 3.6× 10−3

(b) 8.42 1.20 ± 0.19 4.6× 10−3

(c) 11.28 0.75 ± 0.17 7.3× 10−3

[3] 0.78 7.2× 10−3

us to re-analyze experimental spectra available for u-
Be [14] and c-Be [3, 36]. The spectra are relatively noisy.
In the case of the compressed beryllium experiment, the
analysis is even more difficult due to the double-peak
structure of the x-ray photon source. The electron fea-
ture was fitted in this case by four Gaussians, while we
used two Gaussians for u-Be.

We demonstrate the sensitivity of the fitting procedure
in Fig. 9 where we show three acceptable fits (a)-(c) to
the XRTS spectrum of c-Be at k = 1.3Å−1 (scattering
angle 25◦) [3, 36]. These fits lead to different calibration
constants C, defined in Eq. (13) and given in Table I,
and strongly different values for the ion feature, as well
as the normalized variance of the fits.

Furthermore, we compare the best fit (a) (green), due
to its slightest deviation, with the experimental XRTS
spectrum [36] and the original fit (cyan) in Fig. 10. The
re-analysis gives a better fit to the experimental spec-
trum (the variance is half of the value for the original
fit) resulting in a better agreement with the theoretical
prediction, see Fig. 7.

A re-analysis using the f-sum rule via Eq. (13) and
Eq. (15) was performed for several available spectra for
u-Be and c-Be. The results are shown as green symbols
with error bars in Figs. 7 and 8. The corresponding ion
features are shifted to higher values, being in much better
agreement with the ab initio results.
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Figure 9. (color online) Different fits for the same experimen-
tal spectrum at k = 1.3Å−1 for c-Be [3] leading to different
calibration constant C (Eq. (13)). Figure (a) shows the best
fit to the scattering data, while (b) and (c) slightly different
fits, but a strong derviation in the ion feature, see Table I.
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Figure 10. (color online) Normalized experimental scattering
data for c-Be at k = 1.3 Å−1 (scattering angle 25◦) in red, in
cyan (dashed) the orignal fit [3] and in green (solid) our new
fit (a).

B. Non-equilibrium effects

Although the re-analyzed data are shifted upwards to-
wards the ab initio results (green dots with error bars in
Figs. 7 and 8), they still do not agree with the curves
for the temperatures, 12 eV and 13 eV, given in Refs. [1]
and [3]. This requires certainly future experimental and
theoretical investigations. For instance one could take
into account possible non-equilibrium effects. There-
fore, motivated by this discrepancy we performed addi-
tional DFT-MD simulations with different electron and
ion temperatures [9, 37, 38], in order to study the effects
of a non-equilibrium, two-temperature state that might
have been created in these laser-driven experiments; see
also [38, 39]. We assume electron temperatures as re-
ported in the experiments (12 eV for u-Be and 13 eV for
c-Be), but make calculations also for lower ion temper-
atures of 6 eV and 9 eV, see Figs. 11 and 12. There is
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Figure 11. (color online) Ion feature for u-Be for non-
equilibrium two-temperature systems. Thin lines are fits
through the numerical data. The dots at k = 0 represent the
values calculated from the isothermal compressibility. The
dots with error bars represent experimental data (cyan) from
Ref. [1] and a re-analyzed spectrum (green) given in Ref. [14].
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Figure 12. (color online) Same as in Fig. 11 but for c-Be.
The dots with error bars represent experimental data (cyan)
from [3, 36] and re-analyzed spectra (green).

a good agreement of the re-analyzed data with the ab
initio simulations for an ion temperature of 6 eV (or-
ange dashed) for u-Be and an ion temperature of 9 eV
(green dash-dotted) for c-Be. Whether or not such two-
temperature states were generated in the experimental
setups should be addressed in future experiments.

V. CONCLUSION

In conclusion, we have determined the ion feature of
warm dense beryllium from first principles. No input

for the form factor, the screening cloud, and the ion-ion
structure factor was used; all quantities were determined
self-consistently within the DFT-MD simulations. We
observe for u-Be only a weak temperature dependence
which is more pronounced for c-Be. The ab initio re-
sults for the form factor indicate that standard meth-
ods of atomic physics like Hartree-Fock have to be used
with care for WDM. We find agreement with experimen-
tal data for the ion feature at medium k vectors in both
cases while significant deviations occur for low k values.
Re-analyzing the quite noisy spectra that were recorded
in these first XRTS experiments [1, 3, 14, 36] by using
the f-sum rule, considerably larger ion features were ob-
tained in this range, in much better agreement with the
ab initio results. In addition the data points indicate
that a two-temperature state might have been created in
the XRTS experiments, with lower ion temperatures of
about 6 eV and 9 eV, respectively.

Novel XRTS experiments with a much better spectral
resolution are necessary in order to verify the ion fea-
ture in warm dense matter, especially its low-k behavior,
its temperature dependence and possible non-equilibrium
effects. Such experiments could be performed at free
electron laser facilities like LCLS using the seeded x-ray
mode which would provide the required spectral resolu-
tion combined with a high peak brilliance, see [8]. In
such future studies our new results will help to use the
absolute intensity of the elastic scattering feature to mea-
sure the ion temperatures and to identify non-equilibrium
conditions.
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