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Abstract9

Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what10

would be expected from assuming perfect mixing. In purely diffusive systems, for example, it is11

known that small initial fluctuations in reactant concentrations can lead to reactant segregation,12

which in the long run can reduce global reaction rates due to poor mixing. In contrast, non-13

uniform flows can enhance mixing between interacting solutes. Thus a natural question arises:14

Can non-uniform flows sufficiently enhance mixing to restrain incomplete mixing effects, and if so,15

under what conditions? We address this question by considering a specific and simple case, namely16

a laminar pure shear reactive flow. Two solution approaches are developed: a novel Lagrangian17

random walk method and a semi-analytical solution. The results consistently highlight that if shear18

effects in the system are not sufficiently strong, incomplete mixing effects initially similar to purely19

diffusive systems will occur, slowing down the overall reaction rate. Then, at some later time,20

dependent on the strength of the shear, the system will return to behaving as if it were well-mixed,21

but represented by a reduced effective reaction rate.22
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I. INTRODUCTION24

Chemical reactions driven by mixing are important processes that occur in a wide vari-25

ety of engineered and natural flows. Some common examples of practical interest include26

atmospheric flows [1], oceanographic flows [2], riverine flows [3], limnologic flows [4] and27

industrial reactors [5] to mention but a few. One of the perhaps most obvious but critical28

features to recognize in any reactive system is that in order for reactions to actually occur29

the chemicals involved in the reaction must physically come into contact with one another.30

Mixing is the physical process that enables this contact to occur. In flowing systems this is31

inherently a fluid dynamics problem as flows can act in such a way as to enhance, or indeed32

suppress, mixing and thus chemical reactions.33

While it is broadly recognized that non-uniform flows can enhance mixing, there is in-34

creasing evidence that current models do not adequately characterize these mixing processes,35

often overestimating reaction rates relative to what is observed in field and laboratory ex-36

periments [6–13]. This is likely due to the fundamental difference between the enhanced37

spreading/stretching of solutes that non-uniform flows induce, as quantified for example by38

an effective dispersion coefficient, and the true degree of mixing that actually occurs [14].39

While spreading and mixing are intricately related and indeed historically the words have40

been used interchangeably, it is important to highlight that they are different processes.41

This is because spreading may not account for subscale fluctuations in concentrations that42

are critical to understanding mixing. Thus, there is a need for improved models that can43

accurately capture the nature of reactive transport. In this work we argue that Lagrangian-44

based approaches are naturally conducive to capturing these effects. To understand this45

issue in greater detail we focus on the irreversible bimolecular reaction A + B → P , which46

can be regarded as the fundamental building block of more complex reaction chains (see47

ref. 15 for a detailed discussion).48

A rich body of literature exists exploring the effects of incomplete mixing on reactions in49

purely diffusive systems [16–21]. Consider the following classical experiment where a domain50

is initially filled with equal total amounts of A and B, such that CA(x, t = 0) = CB(x, t =51

0) = C0, where A and B move by diffusion and react with one another kinetically with some52

known rate coefficient k. For this setup there is an analytical solution CA(x, t) = CB(x, t) =53

C0/(1 + kC0t), which at late times scales like inverse time, or t−1. It is important to note54
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that this analytical solution relies implicitly on the assumption that the concentrations are55

completely uniform and equal in space, or in other words that they are always well-mixed. If56

however, there is some stochastic fluctuation of the concentration fields around their mean57

value, this late time scaling will break down. For such systems, it has been shown that58

the late time mean concentration of the species will scale as t−d/4 where d is the number59

of spatial dimensions in the system under consideration[18, 21]. Stochastic fluctuations are60

ubiquitous in real systems and so such breakdowns should perhaps be regarded as the norm61

rather than the exception.62

Specifically, for such systems, at early times, fluctuations about the mean concentration63

are often small enough to be discarded and the system behaves as is if it were indeed well-64

mixed. However, due to the fact that reactions consume mass, as the mean concentrations65

become smaller, the relative influence of the fluctuations becomes increasingly important.66

Indeed, at late times isolated pockets, or so-called segregated islands, of each reactive con-67

stituent emerge and the reaction is limited by how quickly reactants can diffuse across the68

interfaces of these islands, resulting in the slower t−d/4 scaling [16–18, 21]. This phenomenon69

often goes by the name of Ovchinnikov-Zeldovich segregation and this behaviour has been70

observed experimentally [19, 20].71

This problem has also received a great deal of attention in systems where transport is not72

by local Fickian diffusion, but rather by anomalous dispersive transport, including nonlocal73

in space superdiffusive systems and nonlocal in time subdiffusive systems [22–24]. Such74

nonlocal transport is common in a broad array of disciplines including transport in porous75

media [25–27], streams [28], groundwater systems [29, 30] and biological systems [31] to76

name a few. In all cases similar late-time scalings for the mean concentration that deviate77

from the well-mixed t−1 scaling have been predicted and observed. The specific late time78

scaling will depend on the nature of the transport and the dimensionality of the problem79

being considered. However, to our knowledge, this problem has received limited attention80

in the context where transport is by advection and diffusion in a non-uniform velocity field.81

As noted above, it is well known that non-uniform velocity fields can significantly affect the82

nature of mixing and thus can in principle strongly impact mixing-driven reactions.83

While much focus has been given to mixing in turbulent flows, it is important to recognize84

that mixing in non-uniform laminar flows can also result in very interesting mixing dynamics85

[32–38]. In this work we propose to study this problem in one of the simplest forms of non-86
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uniform flow, namely a pure laminar shear flow. Pure shear flows have received a great87

deal of attention in a variety of applications due to both their simplicity and ability to88

provide invaluable physical insight. Okubo [39, 40] studied transport in pure shear flows89

to better understand solute dispersion in rivers, estuaries, lakes and oceans. Novikov [41]90

used it as a model to study turbulent dispersion in streams. Others [42–44] highlight it as91

an important case in understanding turbulent dispersion. More recently it was shown [45]92

that from purely a mixing perspective, as quantified by the scalar dissipation rate [46, 47] or93

dilution index [48], a pure shear flow is incredibly efficient at mixing. The term hypermixing94

was used, emphasizing that the predicted mixing is even faster than conventional super-95

diffusion. Ref. 49 extended this to more complex flows using the Okubo-Weiss metric to96

quantify enhancement of mixing due to more general locally non-uniform velocity fields.97

The above discussion leads us the ask the following question: Is mixing in a laminar shear98

flow sufficient to overcome incomplete mixing effects on the evolution of mean concentration99

in a reactive system or will incomplete mixing effects still persist? The answer to this100

question is addressed in this paper with the first application to a non-uniform flow of a101

random walk particle tracking method designed for reactive transport. It was originally102

developed for purely diffusive transport [50] and we extend it further. The results of this103

paper provide a general understanding of the influence of shear flows on incomplete mixing,104

paving the road for more general non-uniform velocity fields.105

The paper is structured as follows. In Section II we present the governing equations for106

flow, transport and reaction for the chosen setup in dimensional and non-dimensional form.107

In Section III we discuss the initial conditions, focusing on both deterministic and stochastic108

initial conditions, which are at the root of incomplete mixing. In Section IV we describe109

the Lagrangian random walk particle tracking method for reactive transport. In Section V110

we present and discuss results obtained with this method. In Section VI we propose a semi-111

analytical model to interpret observations from Section V. We conclude with a discussion112

in Section VII.113

II. GOVERNING EQUATIONS114

We consider a bimolecular reactive system that is embedded in a uniform shear flow.115

Transport of the species is driven by a constant diffusion coefficient and advection according116
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to the uniform shear flow. The two constituents in this system, A and B, react kinetically117

and irreversibly with one another, i.e. A + B → P . At this point we are not interested in118

what happens to the product P , but rather on how A and B are consumed, so the fate of P119

is neglected in this work. The flow in the system is completely independent of the transport,120

i.e. the flow is not affected by the concentration of the constituents. For an infinite two-121

dimensional space, the governing equation for transport is the advection-dispersion-reaction122

equation (ADRE), given for each of the species i = A,B by123

∂Ci

∂t
+ αy

∂Ci

∂x
= ∇ · (D∇Ci)− ri (1)

where Ci(x, t) is the concentration [mol L−d], α is the shear rate [T−1], D is the dispersion124

coefficient [L2T−1].125

The sink term, in our case, is the local rate of reaction, and is identical for A and B since126

they are consumed with a 1:1 stoichiometry ratio, i.e.127

rA = rB = r . (2)

We assume the law of mass action prevails for our system, and write the reaction rate as128

r(CA, CB) = kCACB , (3)

where k [Ld mol−1 T−1] is the kinetic rate constant for a given reaction. Thus, eq. (1)129

represents a coupled set.130

A. Non-dimensional equations131

We consider the following dimensionless variables132

C∗ = C/C0, t∗ = kC0t, α∗ = α/(kC0), x∗ = x/l, y∗ = y/l, (4)

where l is a characteristic length associated with the initial fluctuations in concentration133

(e.g. a correlation length). Using these non-dimensional variables, our governing equation134

for transport becomes135

∂C∗
i

∂t∗
+ α∗y∗

∂C∗
i

∂x∗
=

1

Da
∇∗2C∗

i − C∗
AC

∗
B, (5)
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where Da = kC0l
2

D
is the Damköhler number, which quantifies the relative importance of136

reaction to transport by diffusion. In other words, it quantifies how quickly reactions happen137

relative to how quickly diffusion can homogenize a patch of size l. α∗ is a dimensionless shear138

rate that quantifies the relative importance of shear to reaction. For the sake of convenience,139

we drop the stars from here on, and all the variables presented are non-dimensional.140

III. INITIAL CONDITIONS141

The focus of this work is the emergence of incomplete mixing of reactants as the system142

evolves, which is known to arise due to stochastic fluctuations in the concentration field143

[e.g. 18, 21–23]. Thus we focus on the case of a stochastic initial condition, i.e. the initial144

concentration comprises a mean contribution plus a stochastic or noise term. In this case,145

the exact concentration at a point is unknown and statistical information is available instead.146

Specifically, we assume that for each of the species A and B, the stochastic initial con-147

centration field is given by an average value plus a white noise contribution. Decomposing148

the concentration into mean and a perturbation, we write for i = A,B149

Ci(x, t) = Ci(x, t) + C ′
i(x, t) (6)

where C(x, t) is the ensemble mean over all possible realizations. The perturbation C ′
i has150

zero mean. The initial condition for the mean is given in a general manner by151

CA(x, t = 0) = CA0(x),

CB(x, t = 0) = CB0(x)
(7)

Assuming that the initial fluctuation term is Gaussian (or that higher order moments152

are irrelevant), the initial condition for the perturbation concentration of species i and j is153

defined by the covariance structure154

C ′
i(x1, t = 0)C ′

j(x2, t = 0) = µij(x1)δ(x1 − x2) (8)

where µij is the white noise amplitude and δ is Dirac’s Delta function. The white noise or155

delta-correlated initial condition is tantamount to assuming a very short range correlation in156

the fluctuations. The delta correlation has been shown to be a good approximation of other157

short range correlation structures such as exponential or Gaussian [51, 52] and is invoked158

for mathematical convenience.159
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In this work we assume the system is ergodic and statistically (space-)stationary, so160

that the mean concentration and the correlations depend only on relative position. We161

also assume that the species have an identical statistical structure, so that the initial mean162

concentrations are equal, and are given (in non-dimensional form) by163

CA(t = 0) = CB(t = 0) = 1. (9)

Furthermore, we assume that the magnitudes of fluctuation variances are equal and constant164

in space,165

µAA = µBB = µ, (10)

and assume the species concentration fluctuations are initially uncorrelated, i.e.166

µAB = 0. (11)

We restrict ourselves to this specific setup for a few reasons. First, this simple case provides167

a great deal of physical insight into the problem at hand. Second, it is straightforward168

to implement this set of initial conditions in a particle tracking algorithm, although more169

complex structures can readily be included. Third, a semi-analytical approximate solution170

to this system, for arbitrary dimension (d = 1, 2, 3) when shear is absent (α = 0), is available171

from previous work [51], and can be used for comparison with the new results. Additionally,172

this approximate solution can, at least qualitatively, be extended to the shear problem as173

will be discussed below.174

IV. NUMERICAL PARTICLE TRACKING SIMULATIONS175

In this section we describe a Monte-Carlo-based particle tracking approach to finding176

numerical solutions for the system and equations presented so far. The approach is a novel177

extension of previous works [51, 53] which were restricted to purely diffusive transport. Here178

we extend the methodology to the case of uniform shear flow, with the long term goal of179

ultimately utilizing it to account for more complex, general flows.180

The fundamental principle behind any particle tracking numerical method is to represent181

the concentration field by a cloud of discrete particles, representing elementary masses of182

solute. Time is discretized into finite time steps (not necessarily equal), and the ADRE183

is applied using the concept of operator splitting: in every time step, we first annihilate184
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any particles that would react as determined by a physically based probabilistic set of laws,185

representing reaction in the system; second, we move all surviving particles in a manner that186

represents both advection and diffusion in the system following classic random walk princi-187

ples. The annihilation of particles is determined according to a local reaction probability,188

which is made up of two components, one based on the probability that two particles can189

collocate, which depends entirely on transport mechanisms, and the second based on the190

probability that reaction occurs given that particles have collocated, determined entirely by191

the kinetics of the reaction. The details are described in the following. Note that in this192

section we focus on the evolution of the system within a single time step ∆t. Hence, for193

simplicity, and without loss of generality, we use t = 0 to denote the beginning of the time194

step.195

A. Advection and diffusion196

For the case of a shear flow, consider a numerical particle that, at the beginning of a time197

step, is located at x(t = 0) = x0. The combined effect of shear advection and diffusion is198

expressed by a random jump of the particle to a new location at time t. We define f as the199

probability density function (PDF) of the new location, neglecting reaction. By definition,200

f is the solution of the advection-diffusion equation201

∂f

∂t
+ αy

∂f

∂x
=

1

Da
∇2f, (12)

for natural boundary conditions (i.e. f → 0 and ∇f → 0 as x → ∞) and initial condition202

f(x, t = 0) = δ(x − x0). Hence, f is the fundamental solution of (12). It is given by the203

multivariate Gaussian [40, 45]204

f(x, t;x0) =
1

(2π)d/2
√

det[κ]
exp

[

−1

2
ξTκ−1ξ

]

(13)

with a covariance matrix given by205

κ = κ(t) =
2t

Da





1 + (αt)2/3 αt/2

αt/2 1



 (14)

where206

ξ = x− (x0 + αy0tx̂) (15)
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FIG. 1. (Color online) Illustration of the temporal evolution of the spatial PDF (log scale) and the

eigenvectors of κ for a passive particle transported by shear flow.

is the offset from the mean location, y0 = x0 · ŷ is the initial y-coordinate, and x̂, ŷ are207

the unit vectors in the x, y directions, respectively. Iso-contours of the distribution are208

rotated ellipses with common foci at x0 + αy0tx̂ (See figure 1). The principle axes of the209

ellipses are aligned with the eigenvectors of κ, and rotate with time due to shear; one210

axis is growing super-diffusively and the other diffusively. Note that when α → 0, the211

distribution (13) converges to the 2d axi-symmetric Gaussian (the fundamental solution of212

the ADE with constant diffusion). Further details on the implementation of this method,213

as well as analytical expressions for the eigenvalues and eigenvectors κ are provided in214

Appendix A.215216

B. Reaction217

Next, based purely on transport, we wish to determine if two particles that are initially218

separated at t = 0 will collocate, and thus potentially react, over the next time step. Consider219

two particles, one of species A and the other of species B, that are are located at xA,220

xB initially at t = 0. The temporal density of their probability to collocate over some221

infinitesimal volume dx at time t is obtained by the product of their respective random walk222

PDFs and dx. Thus, the temporal density of their probability to collocate in any position223

in space is given by an integral over this product,224

v =

∫

f(x, t;xA)f(x, t;xB)dx (16)
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where integration is taken over the entire space. This expression is a convolution of two225

Gaussians, and is itself equal to a Gaussian with the sum of variances,226

v(s, t) =
1

2π
√

det[κA + κB]
exp

[

−1

2
sT (κA + κB)

−1s

]

(17)

where s = xA − xB is the distance between the particles at time t = 0. The convolution227

in (16) which yields (17) can be performed in Fourier space via the Faltung theorem [54].228

Since κA = κB = κ we can rewrite (17) as229

v(s, t) =
Da

8πt
√

1 + (αt)2/12
exp

[

−
Da(|s|2 − sxsyαt + s2y(αt)

2/3)

8t(1 + (αt)2/12)

]

. (18)

where |s| =
√

s2x + s2y. We thus see that the collocation probability density (18) depends on230

the following parameters: (1) both components of s, the initial inter-particle distance, (2)231

the diffusion length scale (2t/Da)1/2, and (3) the characteristic distance due to shear, αt.232

Assuming that the pair of A,B particles has survived over time t (i.e. they have not re-233

acted with other particles), their probability to react with each other during the infinitesimal234

time t′ ∈ [t, t + dt) is given by235

mpv(s, t)dt, (19)

where mp is the non-dimensional mass carried by a single particle, i.e. the number of moles236

multiplied by l2/C0. Thus, the probability of survival is given by the conditioned probability237

Ps(t + dt) = Ps(t)[1−mpv(s, t)dt], (20)

or, in words, the probability they are unreacted at t + dt is the probability they were238

unreacted at t and did not react with each other since then. Hence,239

dPs/Ps = −mpv(s, t)dt (21)

and by integration over a time step t, we obtain the overall reaction probability of the couple240

during that time step,241

Pr(t) = 1− Ps(t) = 1− exp

[

−mp

∫ t

0

v(s, t′) dt′
]

. (22)

For the degenerate case α = 0, the integral in (22) yields242

∫ t

0

v(s, t′) dt′ =
Da

8π
E1

(

Da

8t
|s|2
)

, (23)
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FIG. 2. (Color online) The integrated non-dimensional collocation probability
∫ t
0
v(s, t′) dt′ (in log

scale) for Da/t = 1 and αt = 0.1, 1, 10 in (a), (b), (c) respectively.

where E1 is the exponential integral. Note how this expression depends only on the absolute243

value of the inter-particle distance, as the system becomes isotropic when α = 0. For the244

general case α 6= 0, equation (22) is integrated numerically (fig. 2). However, the simplified245

solution (23) can be useful for approximating (22) when (αt)2 ≪ 12. Hence, it can be used if246

the time steps are small enough (recall that t is the length of the time step in the framework247

of this section).248

Also, with (23) it is easy to see that if Da
8t
s2 → 0, then the integral in (22) tends to infinity,249

and Pr → 1. This comes as no surprise: when the particles are close by, or when they are250

given enough time to diffuse, their colocation probability is expected to be close to 1.251

If, on the other hand, t → 0, while s 6= 0, the collocation probability tends to a Delta252

function in s, and Pr → 0. Again, this is expected, since particles that are sufficiently far253

from one another cannot collocate unless they are given sufficient time to diffuse.254

From a practical perspective to reduce numerical costs, the search for neighbours must255
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be limited to a certain distance range. We define this range by the ellipse256

sT (2κ)−1s = 2a2 (24)

where a > 0 is some predefined constant. Choosing larger a improves the accuracy of the257

numerical approach, but has an increased computational cost; as a rule of thumb, the choice258

a = 2 is typically sufficient as any induced error will be insignificantly small[51]. Note again259

that when α = 0 the ellipse converges to a circle of radius a
√

8t/Da.260

With this cut-off search distance, the collocation probability (17) integrates to261

η = 1− e−a2 , (25)

so the collocation probability needs to be rescaled by the factor η−1 for consistency to ensure262

integration over the density to be unity. Hence, the probability of reaction of a single A263

particle during a time step is evaluated by numerical integration of (22), or by the first order264

approximation265

Pr = η−1mpt

Nnb
∑

i=1

v(si, t) (26)

where Nnb is the number of B neighbours found within the ellipse. The probability is266

compared to a random number generated from a uniform distribution U ∈ [0, 1]. If U > Pr,267

the A particle under consideration is annihilated (removed from the system), and one of268

the neighbouring B particles is annihilated as well. The choice between neighbours is done269

based on their weighted probability of reaction, so that we randomly choose the B particle270

based on its relative probability of reaction. Additionally if a näıve search is performed271

to calculate collocation probabilities between all product pairs in the system, this can be272

computationally costly at O(N2), where N is the number of particles used. To speed up273

this process we use an algorithm from the data mining literature called the kd-tree [55],274

which accelerates this search to an O(N logN) process, providing significant computational275

savings.276

C. The numerical domain and finite size effects277

The system we consider is idealized as ergodic and infinite. Therefore, the total mass278

in the system is infinite as well. Each particle represents a finite mass mp. Hence, the279
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number of particles needed to simulate the system accurately is infinite. This is clearly280

unfeasible, since the number of particles in a numerical particle tracking simulation is finite281

and inherently constrained by the computational resources. To overcome this difficulty, we282

follow the classical approach of simulating the infinite system over a finite domain with283

periodic boundary conditions. At early times of the simulation, the finiteness of the domain284

is expected to have a negligible effect on the results and the domain can be considered285

infinite. However, at late times, boundary effects in the numerical simulation will lead to286

deviations from this idealisation.287

Indeed, previous works on purely diffusive transport [21, 23, 51] have observed and dis-288

cussed this effect. For the case of no shear (α = 0) over a domain of non-dimensional size289

Ωd with periodic boundary conditions the finite size effects kick in when the typical size of290

segregated islands grows to about half of the domain size. This was observed around the291

time292

tbnd = Da(Ω/8)2 (27)

which can be thought of as representing the characteristic time of diffusion of concentration293

perturbations over the finite simulation domain. Similar if not more restrictive conditions294

will arise when α 6= 0 and will be discussed in greater detail below. In this study, we use a295

rectangular domain S : [0,Ωx]× [0,Ωy] for the numerical simulation.296

D. Implementation of initial conditions297

Implementing periodic boundary conditions in a numerical particle tracking method over298

a rectangular domain is straightforward. The initial conditions (9-11) were implemented by299

randomly spreading N0 particles of each species in the domain S. The number of particles300

is not arbitrary, but rather is derived from the initial condition. Let us define the initial301

non-dimensional density of particles by302

ρ0 = N0/(ΩxΩy). (28)

This particle density is inversely proportional to the magnitude of the initial white noise µ303

and given by304

ρ0 = 1/µ. (29)
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This expression is a straightforward extension of the one derived by Paster et al. [51, Ap-305

pendix C]. To understand this result, consider a system where the initial condition for306

Ci(x, t = 0) is deterministic, i.e.307

CA(x, t = 0) = CA0(x) , CB(x, t = 0) = CB0(x), (30)

such that µ → 0 (zero noise term). By (29), we find ρ0 → ∞. Hence, even if the domain is308

finite, an exact representation of the initial condition (30) necessitates the use an of infinite309

number of particles, which is consistent with classical random walk theory [56]. For such310

case, a particle tracking algorithm may be less favourable due the error induced by the finite311

number of particles.312

In contrast, if we are interested in the case of a noisy/stochastic initial condition, as is the313

case with the present work, this method might be regarded as ideal. For such cases, particle314

tracking methods require a finite number of particles for an accurate representation of the315

initial condition. When the initial condition contains a considerable noise, the reactive316

particle tracking method may be very efficient with regard to computational resources,317

due to the small number of initial particles needed. This may be an advantage over other318

numerical methods, such as Monte Carlo simulations using Eulerian finite difference, volume319

or element methods. Additionally, random walk methods are known to be much less prone320

to numerical diffusion, which would lead to greater mixing and is thus an important factor321

in mixing-driven reactions[57].322

V. RESULTS323

Using the numerical algorithm described in the previous section, we have performed324

various simulations to study the effect of the Dahmköler number (Da) and shear rate (α)325

on the evolution of average concentration in the system (table I). In figure 3 we show326

representative results for a specific Dahmköler number, namely Da = 2, spanning a range of327

α values (0, 10−4, 10−3, 10−2, 10−1, 1, 10). The figure also shows two analytical solutions,328

one corresponding to the well-mixed case, and an approximate analytical solution [51] that329

incorporates noisy initial conditions for α = 0 . A slight discrepancy between the numerical330

and the approximate analytical solution for α = 0 is observed. As discussed in further331

detail in the following section, this discrepancy is due to restrictive assumptions involved332
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Da α N0 ∆t0 ǫ ∆tmax

2

0

6.4× 106

2.5 × 10−3 10−2 50

10−4 2.5 × 10−3 0.01 10

10−3 2.5 × 10−3 0.01 10

10−2 2.5 × 10−3 0.01 1

10−1 2.5 × 10−3 0.01 1

1 10−3 2.5 × 10−3 0.25

10 2.5 × 10−4 2.5 × 10−3 0.05

8

0

1.6× 106

0.025 0.025 100

10−4 0.025 0.025 100

10−3 0.025 0.025 100

10−2 0.025 0.025 10

10−1 0.025 0.025 10

1 0.012 0.012 5

10 0.012 0.012 1

TABLE I. Parameters of the numerical simulations. To speed up runs, the time step size is given by

∆tj = min{∆tmax,∆t0(1+ǫ)j}, where j is the step number. For all simulations, tbnd = DaN0/64 =

5 × 104, the number of ensemble realizations was Nsim = 8, the search radius factor was a = 2,

and domain size was Ωx × Ωy = 1× 4.

in developing the analytical solution, namely the neglecting of high-order moments of the333

concentration fluctuation fields.334

A. Pure diffusion: α = 0335

First, to elucidate some matters, let us focus on the previously studied case of pure336

diffusion and no shear (α = 0). The mean concentration curve for this case (see figure 3)337

matches the well-mixed solution at very early times, but clearly diverges from the well-338

mixed solution at relatively early times. This is consistent with the noisy initial condition339

for concentration, and has been extensively discussed in previous works (e.g. Paster et al.340

[51] and references therein). For this case, the only mixing mechanism is diffusion, which341
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FIG. 3. (Color online) The evolution of mean concentration with time for Da = 2. The approximate

analytical solution for α = 0 and the well-mixed solution are also plotted. All parameters are non-

dimensional.

strives to homogenize the concentration field and drive the system to a well-mixed state. At342

the same time, reaction occurs in all locations where A and B coexist, thus annihilating A343

and B and promoting the segregation of species, destroying mixing in the system. Figure 4344

depicts snapshots of particle locations at various times during the course of the simulation.345

These reveal that at very early times, A and B particles largely overlap in space and the346

system can be regarded as relatively well-mixed. At later times segregation leads to the347

formation of the aforementioned islands of single species, and reactions become restricted348

to their boundaries. At times for which island segregation is clearly visible, the average349

concentration in the domain scales with time as t−1/2, in agreement with previous predictions350

and observations. As seen in figure 4, the total number of islands decreases with time, and351

the average size of an island grows respectively. Islands that contain significant mass of one352

species consume neighbouring islands with lower mass of the second species, which in turn353
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FIG. 4. (Color online) Evolution in time of some representative realizations with various shear

rates, for Da = 2. Note how the islands form initially with irregular shape. Later on, for α > 0,

they tilt and become elongated due to the shear, and finally lie flat perpendicular to the x-axis.

Compare with figure 3. Note that, in the above figures, particle numbers were reduced (randomly)

to ∼ 103 to allow a good visualization of the results, and only the bottom half of the domain is

shown.

disappear from the system. At very late time, around t ≃ tbnd (see equation (27)), the finite354

size of the numerical domain starts to affect the simulation. At this time, the area occupied355

by a single island reaches about half the domain area and the infinite-domain behaviour356

breaks down. As noted above, for a detailed discussion on this see [51].357
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B. Diffusion and shear: α 6= 0358

For the cases where shear effects do exist (i.e. α 6= 0), we observe a different behaviour359

from the purely diffusive case, highlighting the role that shear plays in this system. Up to360

four discernible time regime scalings in average concentration emerge, which will be discussed361

in detail. First we qualitatively describe the results.362

At very early times, in all cases, there is a close agreement between the zero shear and363

finite shear simulations; at these earliest times diffusion dominates over shear effects and the364

latter are not discernible in the mean behaviour of the system. At these times the solutions365

break away from the well-mixed case and, other than for the highest simulated shear cases, all366

display the t−1/2 regime. In the largest shear case (α = 10), shear effects are strong enough367

to suppress this regime and the solution closely follows the well-mixed prediction, indicating368

that large shear can indeed suppress incomplete mixing effects. Then at some α-dependent369

time, the solutions break away from this scaling and shift to a faster scaling of t−1. The larger370

α, the earlier this transition occurs. During this time the concentration evolves parallel to the371

well-mixed solution, but at higher overall concentrations. Then again at some α-dependent372

value the solutions break away from this scaling and transition to another slower scaling of373

t−1/4. This is a finite size effect associated with the horizontal size of the domain, which is374

unavoidable in a numerical study and can be explained theoretically (see section VI), but375

is not expected in an infinite domain. All solutions collapse together during this regime,376

with deviations for different α values well within the standard deviation of the Monte Carlo377

simulation. Not surprisingly, we observed that increasing the number of realizations to378

calculate the average concentrations reduced the magnitude of these deviations. Since we379

are primarily interested in infinite-domain effects, we will focus on the regimes before the380

shear- and diffusion-induced boundary effects take place. Nonetheless the latter warrant381

some further discussion.382

Figure 4 shows particle locations at various times during the simulations for the Da = 2383

case for multiple values of α. What is interesting to note is that at early times when the mean384

concentrations still match the α = 0 case (see figure 3), the generic shapes of the islands look385

very similar to the α = 0 case regardless of the specific value of α. However as the breakaway386

from this regime occurs to the faster t−1 scaling, a noticeable difference appears, whereby387

the islands take on a different shape. At these times the islands are more elongated in one388
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direction, which is tilted relative to the natural y axis, reflecting the presence of shear in the389

system and the fact that there is a super-diffusive growth along one axis and a diffusive one390

along the other. This is directly analogous to the fundamental solution of a point source in391

a diffusive shear flow in equation (13). It is at these times that the effect of the shear flow392

is important in the system.393

Next, during the t−1/4 regime (the finite size effect scaling), all islands now span the394

full horizontal extent of the domain. In essence they have tilted all the way such that395

the super-diffusively growing axis is now closely aligned with the x axis. Reactions are396

now mostly limited by vertical diffusion across islands and the system behaves as if it were397

one-dimensional, which is consistent with an incomplete mixing scaling of t−d/4 with d, the398

number of spatial dimensions, equal to one. This is a finite size effect associated with the399

time it takes for an island to span the horizontal width of the domain, unavoidable in a400

finite size numerical simulation, but not expected in an infinite domain (see the following401

section and Appendix B for more discussion and explanation on the matter).402

Finally at tbnd (see equation (27)) another finite size effect, the same as in the cases with403

no shear, kicks in. At this point the islands occupy half the domain; there is no longer any404

space for islands to grow as they would in an infinite domain, and a complete breakdown405

occurs. It is interesting to note that at the latest time in all the shear flow cases the islands406

are horizontally elongated, again reflecting the role of shear, while for the pure diffusion407

case it is equi-probable that they could be vertically or horizontally aligned, as there is no408

preferential direction for growth in a purely diffusive system.409

Figure 5 shows the mean concentration against time for the same Da = 2 as well as Da =410

8. This figure serves to highlight that qualitatively the behaviour for both Da is very similar411

and all the observations and scalings discussed above still emerge. However, the breakaways412

from the well-mixed behaviour and transitions between each of these scaling regimes occur at413

different times, indicating a Da-dependent behaviour also. The emergence of these distinct414

time scalings is key to understanding incomplete mixing effects on chemical reactions, but415

at this point it is difficult to truly quantify these scalings from these observations alone. In416

the following, section VI, the results will be interpreted using a semi-analytical model that417

enables a more mechanistic explanation of each regime.418
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FIG. 5. (Color online) Same as figure 3 with additional solutions for Da = 8. The thin grey lines

in the background correspond to the results for Da = 2.

VI. INTERPRETATION OF SIMULATION RESULTS - A SEMI-ANALYTICAL419

CLOSURE420

In this section we present a semi-analytical solution, based on methods from previous421

works that look at purely diffusive transport, to explain each of the time scaling regimes422

for mean concentration that were observed in section V. This semi-analytical approach is423

based on a closure argument. Similar closures have been invoked in many previous studies,424

but it should be noted that it is known to not be exact [18, 21–23]. Rather, it enables one425

to predict the emergent scalings with time of mean concentrations, but not the exact values426

of mean concentration or time when these occur. Even in purely diffusive cases it is unable427

to match observations exactly without some empirical correction. These discrepancies have428

been studied and explained in detail by Paster et al. [51]. This is due to a problematic429

assumption behind the derivation of the closure, discussed below. Given these well known430

limitations, our objective here is not to match exactly the observations from the numerical431
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simulations, but to explore the emergent scalings with such a closure.432

A. Closure Problem for Mean Concentrations433

Averaging over equations (1)–(3) it can readily be shown that the mean concentration of434

the reactants in this system will evolve based on the following ordinary differential equations435

dCA(t)

dt
=

dCB(t)

dt
= −CA

2 − C ′
AC

′
B. (31)

Here we have used the physical requirement that CA(t) = CB(t) at all times, since the436

initial condition is CA(t = 0) = CB(t = 0) and the reaction stoichiometry is 1:1. When437

fluctuation concentrations are small relative to mean concentrations, the second term on438

the right hand side of (31) will be negligible and the system will evolve as is if it were well-439

mixed. However, when the fluctuations are not small relative to mean concentrations this440

term plays an important role, changing the evolution of the system in a meaningful manner.441

This presents a closure problem as it requires a governing equation or model for the C ′
AC

′
B442

term.443

To close this problem we rely on previous works in diffusive and super-diffusive systems,444

where using the method of moments it has been shown that a reasonable closure is to assume445

C ′
AC

′
B = −χG(x = xpeak, t), (32)

where G is the Green’s function for conservative transport in the specified system, xpeak is446

the location of the peak of the Green’s function, and χ is a constant. The formal derivation447

of closure (32) can be found in refs. 23, 58, and 59, where exact expressions for χ are448

developed. Similar closures without formal derivation have been proposed [18, 22]. However,449

it is important to note that it relies on the assumption that moments higher than third order450

(i.e. terms that consist of products of three fluctuation concentrations) are negligible. While451

this is a standard assumption in many closure problems it is inaccurate as highlighted by452

Paster et al. [51], who showed that in diffusive systems the semi-analytical solution and high453

resolution numerical solutions, while qualitatively similar in the late time scaling, will behave454

differently. Indeed, using the ’exact’ values predicted by neglecting higher order moments455

[23, 58] can in some instances yield unphysical results (e.g. creating rather than destroying456

mass of reactants when χ is too large). This mismatch is reconciled by demonstrating that457
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third and higher order moments are in fact not negligible, but can have similar structure to458

second order moments, manifesting as a different effective value of χ [51]. This justifies the459

structure of closure (32), but not the specific value of χ predicted. Thus, for now, we keep460

χ as a free (constant) parameter in our closure.461

B. Green’s function for pure shear flow462

The Green’s function for transport in a pure shear flow, within our dimensionless frame-463

work, satisfies the following governing equation464

∂G

∂t
+ αy

∂G

∂x
=

1

Da
∇2G (33)

with natural boundary conditions at infinity and initial condition465

G(x, t = 0) = δ(x− x0) , (34)

in full analogy with the problem posed by (12), whose solution is given by (13). Thus466

G(x = xpeak, t) =
1

2π
√

det[κ]
=

Da

2πt
√

4 + (αt)2/3
. (35)

Perhaps most notable in this solution is that for small α or small times the leading order467

behaviour of G(x = xpeak, t) scales like t−1, but at sufficiently large times, when the α-468

dependent term dominates in the denominator, the leading behaviour scales like t−2, which469

reflects the hypermixing regime alluded to earlier, where the plume spreads and the concen-470

tration peak decreases super-diffusively.471

C. Solutions with the closure472

With the proposed closure (32) and (35), our governing equation for the mean concen-473

trations of the reactants (31) becomes474

dCA(t)

dt
= −CA

2
+

χDa

2πt
√

4 + (αt)2/3
. (36)

While we are not aware of a closed form analytical solution to this equation for α 6=475

0, it is straightforward to integrate it numerically. Additionally, some useful asymptotic476

arguments can be made to understand how the solution evolves in time. These are discussed477
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in the following subsection. Then, to show the full emergent behaviour and verify our478

asymptotic arguments, we present numerical solutions of this equation. Note that for α = 0479

equation (36) is a Riccati equation whose solution can be expressed in terms of Bessel480

functions [21, 23].481

Early times - At early times, if the background fluctuations in concentration are small482

relative to mean concentration we expect the dominant balance in equation (36) to be483

between the term on the left hand side and the first term on the right hand side. In this484

case the equation can be solved as485

CA(t) =
1

1 + t
(37)

which is the solution for the well-mixed system.486

Late times - As the concentrations deplete, the term dCA/dt in equation (36) becomes487

negligible compared to the other terms in the equation. Then, the dominant balance in the488

equation shifts and becomes a balance between the two terms on the right hand side. Thus489

CA =

(

Daχ

2πt
√

4 + (αt)2/3

)
1

2

=

(

Daχ

4π

)
1

2

(t2 + α2t4/12)−
1

4 . (38)

Late time scaling 1 - Now if at these times t2 ≫ α2t4/12, or t <
√
12/α, then to leading490

order the concentration will decrease as CA ∼ t−1/2, which is the same scaling one would491

obtain for a purely diffusive system at late times in two dimensions. Note that for large492

values of α this intermediate condition is not necessarily met, since it may be violated when493

the incomplete mixing effects become important. Indeed for the α = 10 cases presented in494

figure 5 this scaling never emerges.495

Late time scaling 2 - At larger times when α2t4/12 ≫ t2, or t >
√
12/α, the concentration496

will scale as CA ∼ t−1, which is the same scaling as if the system were well-mixed. This497

suggests that the effect of a pure shear flow can indeed be strong enough to overcome the498

effects of incomplete mixing. However, the overall concentrations in the system could be499

considerably larger than the purely well-mixed case, due to the intermediate CA ∼ t−1/2
500

regime.501

In a well-mixed system, the solution will evolve as 1/(1+t), which at late times approaces502

t−1. Thus we can define an asymptotic late time retardation factor,503

Rasy =

(

2πα√
3Daχ

)
1

2

, (39)
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FIG. 6. (Color online) Numerical solution of (36) for various α, with fixed Daχ = 5 × 10−1. At

late times, concentration scales like t−1/2; at even later times, if α 6= 0, it scales like t−1. The value

of α affects the time of transition between each of the scaling regimes.

such that the concentration converges to (Rasyt)
−1 , i.e. the influence of shear is to return504

the system to behaving in a manner reflective of perfect mixing, but at a later time. This is505

equivalent to having an effective (retarded) reaction rate keff = k/Rasy. While the notion506

of an effective reaction rate at these late times is useful, note that it should only be applied507

at late times when t >
√
12/α.508

1. Numerical solutions of semi-analytical equation509

In this section we solve equation (36) numerically, using the numerical ordinary differential510

equation solver ode23 available in MATLAB. From (36) it is evident that CA(t) is a function511

of time depending on Daχ and α. Results varying and showing the respective influence of512

these are shown in figures 6 and 7.513
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FIG. 7. (Color online) Numerical solution of (36) for various Daχ. In this figure Daχ is varied to

show how it affects the transition between each of the scaling regimes. The solid lines correspond

to the equivalent case with no shear, i.e. α = 0, and the dashed lines to α = 10−2.

In figure 6 we consider fixed Daχ and vary α over several orders of magnitude to demon-514

strate the influence of shear. In all cases at very early times we observe close agreement515

between the α = 0 incomplete mixing solution and the solutions with shear. Then, again in516

all cases the solutions break away from this to a faster t−1 scaling as anticipated from the517

asymptotic arguments presented above. Larger α means an earlier breakaway to this faster518

regime. Note that the α = 10 case never seems to follow the intermediate t−1/2 regime,519

consistent with the idea that this regime need not occur if the conditions discussed above520

are not met.521

In figure 7 we consider fixed α and vary Daχ. In this figure the solutions for each Daχ522

combination and α = 0 are also shown. Raising Daχ triggers incomplete mixing effects at523

earlier times. Larger χ suggests larger noise in the initial condition, while larger Da means524

higher ratio of reaction to diffusion. When the product is larger, this means that fluctuations525
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in the mean concentration will play an important role at earlier times. The effect of shear526

is to return from the t−1/2 to a t−1 scaling. This is clearly seen for all cases and seems to527

occur at the same time, independent of Daχ, which is again consistent with the arguments528

in the previous section since this transition is determined solely by the value of α.529

For both figures 6 and 7 we do not observe the later time t−1/4 scalings observed in the530

numerical simulations. As argued before, this scaling is a boundary effect due to the hori-531

zontal extent of the numerical domain, which an infinite domain solution cannot reproduce.532

Since our primary interest here is the influence of the initial conditions on the late time533

scaling of mean concentration in an infinite domain, we do not focus on the t−1/4 scaling534

here. However, to demonstrate that it is truly a finite size effect associated with the limited535

horizontal extent of the domain we extend the current closure to includes finite boundary536

effect in Appendix B, which consistently demonstrates this behavior.537

VII. CONCLUSIONS538

In this work we have studied mixing-limited reactions in a laminar pure shear flow to539

address the question of whether shear effects can overcome the effects of incomplete mixing540

on reactions. We have considered a simple spatial system, initially filled with equal amounts541

of two reactants A and B subjected to a background shear flow. The average concentrations542

of A and B are initially the same, but there are also background stochastic fluctuations543

in the concentrations. These can lead to long term deviations from well-mixed behaviours544

due to spatial segregation of the reactants, which can form isolated islands of individual545

reactants where reactions are limited to the island interfaces.546

To study this system we adapted a Lagrangian numerical particle-based random walk547

model, built originally to study mixing-driven bimolecular reactions in purely diffusive sys-548

tems, to the case with a pure shear flow with the long term goal of developing it for more549

general non-uniform flows. Additionally we studied the system theoretically by developing550

a semi-analytical solution approach by proposing a simple closure argument. The results of551

the two approaches are qualitatively analogous in that the mean concentrations of reactants552

over time scale with the same power laws. An exact quantitative match however is not553

obtained; it is well known from previous work on diffusive transport that such closures are554

not exact, but that they can match emergent scalings in mean concentrations, which we555
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demonstrate is also true for the case with shear considered here.556

With both methods we observed the following behaviours. At early times, when mean557

concentrations are much larger than background fluctuations, the system behaves as it if558

were well-mixed. Then, when the fluctuations become comparable in size to the mean559

concentrations, and the domain becomes segregated, incomplete mixing slows down the560

reactions. Thus, the mean concentrations in the system evolve with a slower characteristic561

temporal scaling, consistent with a diffusion-limited case where shear is absent. Then at562

later times when shear effects begin to dominate, the system returns to behaving in a manner563

similar to a perfectly mixed system, but described by an overall lower effective reaction rate564

constant. If shear is sufficiently strong, the diffusive-like incomplete mixing regime never565

emerges and the system behaves as well-mixed at all times. It is important to note that this566

does not mean that the system is actually well mixed as segregated islands still occur, but567

rather that the mixing associated with the shear flow is sufficiently fast to result in a scaling568

analogous to a well-mixed system.569

The system is characterized by two dimensionless numbers. Da is a Damköhler number570

that quantifies the relative magnitude of reaction time scales to diffusion time scales. Large571

Da means that reactions happen more quickly than diffusion can homogenize any background572

fluctuations; thus systems with larger Da will amplify initial fluctuations and incomplete573

mixing patterns can play an important role at late times. Likewise, when Da is small,574

diffusion can homogenize fluctuations more quickly and the system will behave as better575

mixed. The second dimensionless number is α, a dimensionless shear rate that quantifies576

relative influence of shear to reaction. The Damköhler influences the onset time of incomplete577

mixing, while α controls the onset of a return to well-mixed type scaling.578

A key take home message of this work is that, while a pure shear flow can lead to579

a behaviour that is consistent with a well-mixed system, if the nature and evolution of580

incomplete mixing in the system is not adequately accounted for, then predictions of reactant581

concentrations, particularly at late times, can be off by as much as orders of magnitude. In582

contrast, if incomplete mixing is accounted for, more realistic predictions can be obtained.583
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Appendix A: Expressions for the eigenvalues and eigenvectors of κ584

The eigenvalues of κ, the covariance matrix, are given by585

λ1,2 =
1

2

(

Tr(κ)±
√

(Tr(κ))2 − 4 detκ
)

(A1)

where586

Tr(κ) = κ11 + κ22 =
4t

Da

[

1 +
1

6
α2t2

]

(A2)

is the trace of κ and587

detκ = κ11κ22 − κ
2
12 =

4t2

Da2

[

1 +
1

12
α2t2

]

. (A3)

Substituting (A2) and (A3) into (A1) one finds588

λ1,2 =
2t

Da

[

1±
(

1

2
αt

√

1 +
1

9
(αt)2

)

+
1

6
α2t2

]

. (A4)

The eigenvectors, in turn, are aligned with589

v′
1,2 =





1

−1
3
αt±

√

1 + 1
9
(αt)2



 (A5)

and the normalized unit vectors v1,2 are readily obtained by normalization of v′
1,2.590

When αt ≪ 1, the eigenvectors are inclined at about ±45◦ relative to the x̂ axis. For591

larger αt, the eigenvectors tilt clockwise (see Fig. 1), and for αt ≫ 1, they tend to align592

with x̂ and −ŷ, or more precisely, with (1, 3/(2αt)) and (1,−2
3
αt).593

In practice, the new location of a particle can be obtained by translation of the x coor-594

dinate of the particle by αy0t, and a random walk in two dimensions with jumps along the595

rotated eigenvectors of κ with magnitudes:596

x1 = ξ1
√
λ1

x2 = ξ2
√
λ2

(A6)

where xi is the walk length in the direction of the i-th eigenvector, and ξi is a random597

number, generated from a normal distribution with zero mean and unit variance. Hence,598

the new location is given by599

x = x0 + αy0t +
∑d

i=1(vi · x̂)xi,

y = y0 +
∑d

i=1(vi · ŷ)xi.
(A7)
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Appendix B: Domain boundary effects600

As discussed in section VI we wish to demonstrate that the t−1/4 scaling can be attributed601

to a boundary effect. Specifically we will argue here that this scaling is associated with finite602

extent of the horizontal boundaries of the domain. As shown in equation (32) the evolution603

of the mean concentration depends on the peak of the Green’s function for conservative604

transport. For a finite periodic domain this can be be calculated by the method of images605

G(x = xpeak, t) =

∞
∑

n=−∞

1

(2π)d/2
√

det[κ]
exp

[

−1

2
ξTnκ

−1ξn

]

, (B1)

where606

ξn = (nΩx, 0) (B2)

and Ωx is the horizontal length of the domain. In essence this solution adds every contribu-607

tion from point plumes located at equidistant intervals of Ωx along the x-axis at y = 0 and608

sums their contribution to the point x = 0, which is where the peak of the Green’s function609

for a point source located initially at (x, y) = (0, 0) will occur. It is convenient to take this610

point as one does not have to account for advection induced drift in the peak location, but611

the result is independent of this choice. We have612

G(x = xpeak, t) =
Da

4πt
√

1 + α2t2/12

∞
∑

n=−∞

exp

[

− Da(nΩx)
2

4t(1 + α2t2/12)

]

(B3)

which at late times converges to613

G(x = xpeak, t) =

√
3

2π

Da

|α|t2
∞
∑

n=−∞

exp

[

−3Da(nΩx)
2

α2t3

]

. (B4)

The term outside of the summation scales like t−2, as for the infinite domain case. As614

t3 ≫ 3DaΩ2
x/α

2 when the boundary effects become important, the infinite sum can be615

approximated by an integral which converges to616

√

π

3Da

|α|
Ωx

t3/2 . (B5)

Thus, the Green’s function converges to617

G(x = xpeak, t → ∞) =
1

2

√

Da

π

1

Ωx
t−1/2 . (B6)
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Hence, the combined effect on the scaling of the peak of the Green’s function is618

G(x = xpeak, t) ∼ t−1/2. (B7)

Since at late times our dominant balance argument indicates that C i =
√

χG(x = xpeak, t),619

once the horizontal boundary effects are felt the mean concentrations will converge to620

C i(t) =
√

χG(xpeak, t) =

√

χ

2Ωx

(

Da

π

)1/4

t−1/4 (B8)

which is independent of the value of α, and scales like t−1/4 . These results are in agreement621

with the observations in the particle tracking simulations. In figure 8 we plot the evolution622

of the average concentration over time by solving equations (31) and (32) numerically, using623

the finite domain Green’s function in (B3), instead of its infinite domain counterpart.624

The results in the figure are very similar to those observed in the numerical simulations,625

particularly in that at late times all solutions for α 6= 0 collapse on to the same curve. This626

scaling can also be interpreted physically as a boundary effect as follows. At the relevant627

late times, the single-reactant islands span the full width of the domain and the system628

essentially becomes one dimensional. The late time incomplete-mixing scaling is known to629

behave as t−d/4, which matches our findings [18]. This again demonstrates the utility of the630

simple proposed closure in interpreting the results observed in the numerical simulations. As631

a cautionary note, we would again like to highlight that the proposed closure is not exact;632

the good agreement with simulations is promising, but further work is required to refine it633

rigorously.634
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