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Previous studies of quantum chaotic scattering established a connection between classical dynam-
ics and quantum transport properties: integrable or mixed classical dynamics can lead to sharp
conductance fluctuations but chaos is capable of smoothing out the conductance variations. Rela-
tivistic quantum transport through single layer graphene systems, for which the quasiparticles are
massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp
conductance fluctuations persist to certain extent even when the classical system is fully chaotic.
An open issue concerns about the effect of finite mass on relativistic quantum transport. To address
this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the
quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the clas-
sical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting
a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that
the mass has little effect on relativistic quantum transport. In solid state electronic devices based
on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the
quasiparticle is massless or massive and whether there is chaos in the classical limit.

PACS numbers: 05.45.Mt,72.80.Vp,73.23.-b

I. INTRODUCTION

Quantum chaos is a field that studies the quantum
manifestations of classical chaos [1]. Earlier works were
mostly on nonrelativistic quantum systems described
by the Schrödinger equation. Recent years have wit-
nessed a tremendous interest in two-dimensional Dirac
materials [2] such as graphene [3–9], topological in-
sulators [10], molybdenum disulfide (MoS2) [11, 12],
HITP [Ni3(HITP)2] [13], and topological Dirac semimet-
als [14, 15], which has led to the emergence of the field of
relativistic quantum chaos [16–23]. A fundamental issue
of interest is to uncover and understand the phenomena
of relativistic quantum origin that are not found in non-
relativistic quantum chaotic systems. A remarkable ex-
ample is Klein tunneling, a uniquely relativistic quantum
phenomenon, which has dramatic effects on conductance
fluctuations in graphene quantum point contacts [24] and
regularization of tunneling in chaotic Dirac fermion and
graphene systems [20]. The focus of this paper is on a
relativistic quantum manifestation that differs character-
istically from its counterpart in the nonrelativistic quan-
tum world: the presence of persistently sharp conduc-
tance fluctuations in chaotic graphene systems.
Conductance fluctuations are a fundamental phe-

nomenon in open quantum systems. An important result
is universal conductance fluctuations (UCFs) in meso-
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scopic systems [25–29]. The pioneering work of Lee and
Stone [25] established theoretically that, for mesoscopic
metal samples, when the inelastic diffusion length ex-
ceeds the sample dimensions, the conductance fluctua-
tions are of the same order as the conductance quanta,
which is independent of the sample size and of the de-
gree of disorder at low temperatures, thereby exhibiting
universal features. This result was consistent with both
experimental studies [26] and numerical simulations [28].

Since the discovery of graphene [3–6], the anomalous
transport behavior of its charge carriers has attracted
a great deal of attention [7–9]. The phase coher-
ent length of graphene at low temperatures can
be as long as several hundred nanometers [30]
or even micrometers [31]. It have been demon-
strated experimentally that for graphene quan-
tum dots smaller than 100 nm, the conductance
peaks become strongly non-periodic, indicating a
major contribution of the quantum confinement
[32]. While it can be difficult for current technol-
ogy to cut graphene precisely following a partic-
ular shape under 100 nm, the irregularities of the
boundary often pushes the classical dynamics to
the chaotic regime, yielding transport properties
mimicking those of quantum chaotic scatterings
and also Gaussian ensembles of the peaking spac-
ing distributions [32]. Conductance fluctuations in
graphene systems have been studied experimentally and
analyzed using the framework of UCFs [33–35]. Rycerz
et al. [36] found theoretically that for strong disorder, the
fluctuation behaviors agree with the Altshuler-Lee-Stone
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prediction [25, 37]. However, in the case of weak disorder,
abnormally large conductance fluctuations (with magni-
tude several times larger than that in the strong disorder
case) can occur, which can be attributed to the absence
of backscattering due to the honeycomb lattice structure.
Horsell et al. [38] subsequently found that the variance
of UCFs in both monolayer and bilayer graphene flakes
is strongly affected by elastic scattering, particularly, in-
tervalley scattering. Though the correlation of the fluc-
tuations as a function of the Fermi energy is insensitive
to the specific scattering mechanisms under common ex-
perimental conditions. For few-layer graphene flakes in
contact with superconducting leads, conductance fluctu-
ations can be enhanced if the applied voltage is smaller
than the superconducting energy gap [39].

The seminal work of Jalabert, Baranger, and Stone [29]
suggested that conductance fluctuations in the ballistic
regime can be a probe of quantum chaos, establishing for
the first time a connection between quantum transport
in solid-state devices and classical chaos. Subsequent
works [40–47] revealed that UCFs are intimately related
to the study of quantum chaotic scattering [48, 49]. A re-
sult in nonrelativistic quantum chaotic scattering is that,
for those with integrable or mixed (nonhyperbolic) clas-
sical dynamics, sharp conductance fluctuations can oc-
cur. This is because, in the corresponding classical phase
space, there are Kolmogorov-Arnold-Moser (KAM) is-
lands centered about stable periodic orbits, which quan-
tum mechanically have little interaction between the cor-
responding bounded states and the electron waveguides
(leads), leading to extremely sharp conductance fluctu-
ations on energy scales of the same order of magnitude
as the interaction energy [50]. The abrupt conductance
changes are in fact a kind of Fano resonance [51–55].
However, if the classical dynamics are chaotic, due to
ergodicity of classical orbits, the states will have strong
interactions with the leads regardless of their positions.
As a result, there is little probability for localized states
with long lifetime to form, giving rise to smooth con-
ductance fluctuations in the energy scale determined by
the interaction strength. The distinct types of classical
dynamics thus have marked fingerprints in the quantum
conductance fluctuation patterns, which can be exploited
to modulate the conductance fluctuations in quantum
dot devices by controlling the corresponding classical dy-
namics [56, 57]. We note that a closed system exhibiting
chaos in the classical limit is capable of generating scarred
states in the quantum regime, which are concentrations
of the electronic states about certain classical periodic
orbits [58–61]. However, when the system is open, the
degree of localization of the originally scarred states is
generally much weaker than that of the localized states
in classically integrable or nonhyperbolic systems.

In relativistic quantum dots such as those made of
monolayer graphene, a recent work [19] revealed that
systems with mixed classical dynamics exhibit sharper
conductance fluctuations than those with chaotic classi-
cal dynamics, which is similar to nonrelativistic quan-

tum systems. However, even when the classical dynam-
ics are fully chaotic, monolayer graphene quantum dots
still permit the existence of highly localized states, lead-
ing to Fano-like resonances with sharp conductance fluc-
tuations. This implies that quasiparticles in a chaotic
graphene confinement can make the classically unstable
orbits somewhat more “stable” in relativistic quantum
systems, implying that the interplay between chaos and
relativistic quantum mechanics can lead to phenomena
that are not present in nonrelativistic quantum systems.

A unique feature of monolayer graphene is that the
quasiparticles are massless Dirac fermions. However, an
open issue concerns about the interplay between finite
mass and chaos in relativistic quantum transport. In
this paper, we address the generality of persistently sharp
conductance fluctuations in relativistic quantum chaotic
systems. We use chaotic bilayer graphene quantum dots
(BGQD) as a prototypical class of systems. The key fea-
ture of bilayer graphene is that the quasiparticles have a
finite mass. We find that persistently sharp conductance
fluctuations are still present in BGQDs, indicating that
a finite mass is not capable of breaking down the local-
ized states. Another finding is that, in bilayer graphene
quantum dots, electrons tend to “hop” between the two
layers along the classical ballistic trajectory in each layer.
Thus, the local density of states (LDS) for one layer does
not form an “orbit” per se: an “orbit” emerges only when
the LDS for both layers are combined. Our results indi-
cate that in both massless and massive chaotic relativistic
quantum systems, Fano-like resonances and sharp con-
ductance fluctuations are a common feature. While in
nonrelativistic quantum systems, the resonances can be
removed by making the system classically chaotic [56, 57],
the same cannot be expected in relativistic quantum sys-
tems. This may have implications in the development of
relativistic quantum electronic devices.

II. MODEL OF CHAOTIC BILAYER

GRAPHENE SYSTEMS

Bilayer graphene is composed of two coupled mono-
layers of carbon atoms, each with a hexagonal lattice
structure. We use the AB stacking bilayer graphene
model [62], which includes inequivalent A1 and B1 atoms
in the top layer and A2 and B2 atoms in the bottom.
The two graphene layers are arranged in such a way that
the A1 atoms are directly above the B2 atoms, while B1

or A2 atoms are above or below the center of hexagons
in the other layer. We consider the tight-binding model,
which characterizes the electronic structure of graphene
reasonably accurately [63], which is applicable to sys-
tems of a finite number of layers [7–9]. The tight-binding
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Hamiltonian for bilayer graphene is [62]

H =− γ0
∑

l,<i,j>

(a†l,ibl,j +H.c.)− γ1
∑

i

(a†1,ib2,i +H.c.)

− γ3
∑

<i,j>

(b†1,ia2,j +H.c.),

where a†l,i(b
†
l,i) and al,i(bl,i) are creation and annihilation

operators for sublattice A(B) at site Rl,i in layer l (1,2),
γ0 = t is the nearest-neighbor hopping energy in a single
layer (hopping between different sublattices), γ1 and γ3
are energies for the hopping processes A1 ←→ B2 and
B1 ←→ A2, respectively, which represent the interlayer
coupling. The coupling parameters have the standard
values [64]: γ0 = 2.8eV, γ1 = 0.4eV, and γ3 = 0.3eV.
In the momentum space, the low energy bands can be

approximated as E ≈
√

γ21/4 + v2p2 − γ1/2, where γ1,
p, and v are the interlayer hopping energy, momentum,
and Fermi velocity, respectively [65]. A quasiparticle in
the bilayer graphene can thus be regarded effectively as a
massive relativistic fermion [65], as opposed to massless
particles in monolayer graphene [63, 66–68].
To study the characteristics of quantum scattering dy-

namics in open BGQDs with different types of classical
dynamics, we choose the cosine billiard [69, 70] as the
confinement domain of the quantum dot, which consists
of two semi-infinite leads connecting to the billiard at
x = −L/2 and x = L/2, respectively, and two hard
walls: a flat one at y = 0 and a curved wall defined
as y(x) = W + (M/2)[1 − cos(2πx/L)]. Not only are
the classical dynamics of this billiard system well un-
derstood [69, 70], but also its quantum scattering dy-
namics in nonrelativistic regime [71] and for monolayer
graphene [19] have been studied. Varying the geomet-
ric parameters W/L and M/L can generate a continu-
ous spectrum of distinct types of classical dynamics. For
example, for W/L = 0.36 and M/L = 0.22, the classi-
cal scattering dynamics is fully chaotic without any sta-
ble periodic orbits. For W/L = 0.18 and M/L = 0.11,
the classical phase space is mixed (nonhyperbolic) with
both KAM islands surrounding stable periodic orbits and
chaotic sets [72]. For comparison, we also consider the
case where the two parameters are chosen to lie between
the chaotic and nonhyperbolic cases: W/L = 0.27 and
M/L = 0.165.
To probe into the transport properties, we utilize the

non-equilibrium Green’s function method (NEGF) in the
tight-binding framework to calculate the quantum trans-
mission and the local density of states (LDS) [73]. In
particular, the retarded Green’s function is

G(E) = (E · I −H − ΣR(E)− ΣL(E))−1, (1)

where Σ is the retarded self-energy characterizing the
effect of the lead, and the subscripts R and L indicate
the right and left leads, respectively. The transmission T
is given by

T (E) = Tr[ΓL(E)G(E)ΓR(E)G†(E)], (2)

where ΓL,R(E) are the coupling matrices of the quantum
dot for the left and right leads:

ΓL,R(E) = i[ΣL,R(E)− Σ†
L,R(E)]. (3)

In the low temperature limit, the conductance can be
calculated using the Landauer formula [73]:

G ≈
2e2

h
T (E). (4)

The local density of states for the device can be obtained
through

ρ = −
1

π
Im[diag(G)], (5)

and the local current between the nearest neighbor lattice
point i and j is given by

Ji→j =
4e

h
Im[HijC

n
ji(E)], (6)

where Cn = GΓLG
† is the electron correlation function

and Hij is an element of the Hamiltonian matrix [73]. To
improve the computational efficiency, the transmission,
LDS and the local current can be calculated using the
recursive Green’s function method.

III. RESULTS

Transmission fluctuations. We present results of
transmission fluctuations through the BGQDs that cor-
respond to three distinct types of classical dynamics:
mixed, intermediate, and chaotic. For comparison, re-
sults from 2DEG quantum dots (nonrelativistic quan-
tum dots - NRQD) are also included. In our simu-
lation, the maximum number of propagating modes is
Nmode = 96 for all cases for BGQDs, and Nmode = 48 for
2DEG quantum dots , so that their leads have compa-
rable width. The boundaries for the BGQDs are zigzag
in the horizontal direction. Figure 1 shows the trans-
mission coefficient T of the three types of BGQDs ver-
sus the Fermi energy, together with the results from the
2DEG quantum dots with the same corresponding classi-
cal dynamics. We see that, for both BGQDs and 2DEG
NRQDs, as the classical dynamics change from mixed
to chaotic, the conductance fluctuations become progres-
sively smooth. This is consistent with previous results of
quantum chaotic scattering in monolayer graphene quan-
tum dots (MGQDs) [19]. However, when comparing the
BGQDs with the corresponding 2DEG NRQD cases, we
see that for the same geometry (especially in the chaotic
case - the bottom lines in both panels), the conductance
fluctuations for the latter are nearly perfectly smooth,
while for BGQDs there are still sharp conductance fluc-
tuations. This phenomenon was also previously observed
for MGQDs [19]. In general, while in nonrelativistic
quantum systems classical chaos can effectively eliminate
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FIG. 1. (Color online) Transmission versus energy for the
cosine billiard quantum dot in both relativistic and nonrel-
ativistic regimes: (a) bilayer graphene (BGQD); (b) 2DEG
quantum dot (NRQD). The (blue/green/red) curves from top
to bottom are for mixed/intermediate/chaotic cases: W/L =
0.36 & M/L = 0.22, W/L = 0.27 & M/L = 0.165, and
W/L = 0.18 & M/L = 0.11, respectively. The circles in (a)
indicate the energy values used in Fig. 4. For all case, we use
Nmode = 96 for BGQDs and Nmode = 48 for 2DEG quantum
dots.

sharp conductance fluctuations through the destruction
of highly localized states in the dot region, chaos does not
seem to be as effective in removing the localized states
in relativistic quantum dot systems. As a result, sharp
conductance fluctuations in BGQDs persist. We empha-
size that this does not mean that classical chaos has little
or no effects on relativistic quantum transport - it is just
that the effect is not as strong as in the nonrelativis-
tic quantum case. In fact, from Fig. 1(a), we see that,
to certain extent chaos does suppress the conductance
fluctuations even for massive relativistic quasiparticles
in BGQDs.
Fano resonances and resonances width. To gain a

physical understanding of the persistent sharp conduc-
tance fluctuations in BGQDs, we analyze the resonance
width, the localized states, and the local current pat-
terns. Specifically, the transmission resonance is char-
acterized by Fano profiles [74], where the width of the
resonance can be related to the localization of the elec-
tronic states [53, 57, 75, 76], leading to sharp conduc-
tance fluctuations. In particular, the quantum transport
system can be effectively regarded as an isolated quan-
tum dot described by a Hamiltonian matrix H , which
is weakly coupled to two leads, one on each side of the
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FIG. 2. (Color online) Resonance width profile γα
for relativistic quantum dots and their nonrelativistic
quantum counterparts for different types of classical dy-
namics: (a) BGQD/mixed (b) BGQD/intermediate (c)
BGQD/chaotic, (d) NRQD/mixed (e) NRQD/intermediate,
and (f) NRQD/chaotic. The energy values at which the self-
energy is evaluated are E0 = 0.2t for (a-c) and E0 = t for
(d-f).
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FIG. 3. (Color online) The mean value of log
10

(γα/t) in a
moving window with the window size 0.04t and the step size
0.004t. The upper line in different panels in Fig. 2 are ex-
cluded in the average as it accounts for the smooth variation
rather than sharp conductance resonances. (a) is for BGQD
(left panels in Fig. 2) and (b) is for NRQD (right panels
in Fig. 2). The blue circles, green asterisks, and red plus
symbols are for mixed, intermediate, and chaotic cases, re-
spectively.
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dot region. The eigenenergies and eigenfunctions for the
isolated dot can then be calculated (Hψ0α = E0αψ0α),
yielding a set of real eigenenergies and eigenfunctions
{E0α, ψ0α | α = 1, ..., N}, where N is the number of
discrete points (or atoms). The effect of the leads can be
characterized by the retarded self-energy matrix ΣR. The
effective Hamiltonian for the dot, taking into account the
leads, can then be written as [H +ΣR(E0)], with a new
set of eigenenergies and eigenfunctions: {Eα, ψ0α}. Be-
cause of the coupling to the leads, electrons can “escape”
from the dot region to the leads, so the eigenenergy must
be complex:

Eα = E0α −∆α − iγα, (7)

where the imaginary part is proportional to the inverse
of the “lifetime” of the corresponding electron eigenstate
in the dot region before entering one of the leads. The
self-energy can be treated as a small perturbation to the
closed dot system, because the energy has nonzero values
only at the boundary points of the dot region adjacent
to the leads. With respect to E0α, the new eigenener-
gies Eα include a shift ∆α from E0α, and the imaginary
part γα that characterizes the exponential decay of the
wavefunction from the dot region. The energy scale of
the resonance is determined by γα given by [53, 57]

γα ≈ −〈ψ0α|Im(ΣR)|ψ0α〉. (8)

The behavior of γα in the complex plane of the eigenen-
ergy provides a physical picture of the localized states
and the sharp conductance fluctuations. In particular,
as the Fermi energy is changed, the self-energy is a slow
variable because it is mainly determined by the width
of the leads. In the vicinity of the resonance energy,
the self-energy can effectively be regarded as a constant.
The characteristics of the resonance are mostly deter-
mined by the eigenwavefunction of the isolated system,
ψ0α. If it is highly localized within the dot, it will have
extremely small values at the boundary points where the
self-energy has nonzero values, leading to a small value
of γα and thus to a sharp resonance. On the contrary,
if ψ0α is dispersive, it typically will have large values at
the boundary points, giving rise to a large value of γα.
The effects of the wavefunction patterns on the values of
γα in BGQDs has been examined numerically.
The connection between classical dynamics and lo-

calization of the electronic states is then the following.
When the classical dynamics is integrable or mixed, there
are stable periodic orbits about which the wavefunction
can be strongly localized. As the classical dynamics be-
comes more chaotic, the KAM islands are destroyed and
the periodic orbits become unstable, making it difficult to
form long-lived resonant states. Thus in general, classical
chaos can smooth out conductance fluctuations. Indeed,
from Fig. 1, we see that, as the classical dynamics be-
comes more chaotic, the conductance curve exhibit less
sharp fluctuations. This reasoning suggests that γα for
various resonant states should shift toward increasingly

larger values as the classical dynamics of the system be-
comes progressively more chaotic.

Results from a systematic calculation of the imaginary
part γα for the various cases are shown in Fig. 2. The
energy at which the self-energy matrix is evaluated is
E0 = 0.2t for BGQD [Fig. 2(a-c)] and E0 = t for NRQD
[Fig. 2(d-f)]. Since the calculated Eα values are accu-
rate only in the vicinity of E0, the energy intervals in
Figs. 2(a-f) are chosen to be relatively small and close to
E0. Note that the upper line of the γα values are in
the range of 0.01t to 0.1t, which correspond to the
smooth variation in the conductance curve, and
only the lower γα values correspond to the sharp
conductance resonances. From Figs. 2(a) and 2(d),
we see that, for mixed classical dynamics, both BGQD
and NRQD have γα values as small as 10−6t, leading to
the sharp conductance fluctuations in the top curves of
Fig. 1. As the classical dynamics becomes more chaotic,
the values of γα shift upwards, as shown in Figs. 2(b)
and 2(e). For the fully chaotic case [Figs. 2(c) and 2(f)],
the values of γα are large and their spread is small. To
reveal the effect more clearly, we have plotted
in Fig. 3 the averaged value of log10(γα/t) in a
moving window to remove the fluctuations pre-
sented in Fig. 2. Since the upper line of the γα
values correspond to the smooth variation in the
conductance curve, it is excluded when doing the
average.

In general, classical chaos can exert a strong effect on
the conductance fluctuations for both nonrelativistic and
relativistic quantum dot systems (for the latter regardless
of zero or finite mass). In the relativistic quantum case,
however, the effect of chaos-induced enlargement of γ is
less dramatic as compared with the nonrelativistic case.

Localized LDS and Electron flow patterns. Qualita-
tive insights into the role of classical dynamics in the
conductance fluctuation patterns in BGQDS can be
gained by calculating the LDS and electron flow pat-
terns for some representative energy values. For a bilayer
graphene system, the interlayer hopping energy is rela-
tively weak as compared to the intralayer counterpart,
i.e., the values of γ1 and γ3 are about one tenth of γ0,
and the LDS and electron flow patterns are not identical
for the two layers. For simplicity, we show here only the
x-component of the electron flow. In Fig. 4, the left and
middle columns show the LDS and electron flow patterns
for each layer, and the right column shows the combined
patterns from both layers. We see that the LDS and
electron flows are highly correlated, e.g., they are local-
ized in the same region of the dot. The two layers are
strongly coupled so that the electrons flow back and forth
between the two layers, as can be identified unambigu-
ously in Fig. 4(a), where in certain regions, the electron
and its flow are mostly localized to one layer but to the
corresponding adjacent regions on the other layer. When
the patterns from both layers are combined, the LDS pat-
terns reveal the underlying classical periodic orbits. The
y- and z-components of the current show similar features.
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FIG. 4. (Color online) Representative local density of states (LDS, the first row) and the corresponding x-component of the
electron flow (the second row) for BGQDs with mixed (a), intermediate (b), and chaotic (c) classical dynamics. For the LDS
patterns, dark (red) region means higher values, and the color scale is normalized for each panel for better visualization. Left,
middle, and right panels are for the first layer, the second layer, and combined layers. The Fermi energies are 0.3137t for (a),
0.4187t for (b), and 0.3784t for (c), with the respective maximum and minimum values of the LDS patterns as (3.0016, 1.2×10−3),
(0.4987, 7.7 × 10−3), and (0.4823, 5.6 × 10−3).
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FIG. 5. (Color online) Ratio of the maximum to the minimum
values of the LDS versus energy: (a) BGQD and (b) NRQD.
From top to bottom the blue circles, green asterisks, and red
plus symbols are for mixed, intermediate, and chaotic cases,
respectively.

From these results, we see that the classically mixed case
has relatively more pronounced localized states, but the
localized patterns weakened as the classical phase space
contains more chaotic regions. The degree of localization
can be qualitatively described by the ratio of the maxi-
mum to the minimum values of LDS, where a larger ratio
corresponds to stronger localization, as shown in Fig. 5.
The typical values of the ratio for BGQDs are about 103,
a few hundreds, and less than one hundred for mixed,
intermediate, and chaotic cases, respectively. The values
for 2DEG quantum dots are comparably smaller. The
electron flow pattern show similar features.

Through a comparison between the patterns for
BGQDs and NRQDs, we see that the former exhibits
more localized LDS and thus sharp conductance fluctua-
tions. This is consistent with previous results on mono-
layer graphene systems in the context of transport [19],
tunneling [77, 78], and spectral statistics [79].

IV. CONCLUSIONS

To probe into the effect of classical chaos on relativistic
quantum transport for quasiparticles with mass, we ex-
amine the transport properties of bilayer graphene quan-
tum dots. Previous works revealed that sharp conduc-
tance fluctuations can occur in nonrelativistic quantum
dot systems but only when the classical dynamics is in-
tegrable or mixed, but they persist for relativistic, mass-
less quasiparticles (e.g., from monolayer graphene). The
main purpose of our work is to determine whether finite
mass effect can eliminate the sharp conductance fluctu-
ations. Our results provide a negative answer. In par-
ticular, we find that chaos has similar effect on graphene
quantum dots, regardless of whether they are monolayer
or bilayer. While chaos can smooth out conductance fluc-
tuations to certain extent, its effect is weaker on relativis-
tic quantum transport systems as compared with those
on the nonrelativistic counterparts, regardless of whether
the relativistic particle is massless or massive.
Transport in bilayer graphene quantum dot, however,

has its own peculiar characteristics that, along a classi-
cal ballistic “orbit,” the quasiparticle hops back and forth
between the two layers, as evidenced by the LDS and elec-
tron flow patterns. The present work thus complements
previous works to provide a more complete picture about
the interplay between classical chaos and quantum trans-
port.
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