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In data based reconstruction of complex networks, dynamical information can be measured and exploited to

generate a functional network, but is it a true representation of the actual (structural) network? That is, when

do the functional and structural networks match and is a perfect matching possible? To address these questions,

we use coupled nonlinear oscillator networks and investigate the transition in the synchronization dynamics to

identify the conditions under which the functional and structural networks are best matched. We find that, as

the coupling strength is increased in the weak-coupling regime, the consistency between the two networks first

increases and then decreases, reaching maximum in an optimal coupling regime. Moreover, by changing the

network structure, we find that both the optimal regime and the maximum consistency will be affected. In par-

ticular, the consistency for heterogeneous networks is generally weaker than that for homogeneous networks.

Based on the stability of the functional network, we propose further an efficient method to identify the optimal

coupling regime in realistic situations where the detailed information about the network structure, such as the

network size and the number of edges, is not available. Two real-world examples are given: cortico-cortical

network of cat brain and the Nepal power grid. Our results provide new insights not only into the fundamental

interplay between network structure and dynamics, but also into the development of methodologies to recon-

struct complex networks from data.

PACS numbers: 05.45.-Xt, 89.75.Hc

I. INTRODUCTION

The interplay between functions and structure in complex

dynamical systems is one of the central problems in inter-

disciplinary research [1]. Structural connectivity is referred

to as the physical connections among the units in a com-

plex system, which provides the basis for generating vari-

ous collective behaviors, e.g., the anatomical connections of

mammalian brains as detected by techniques such as high-

resolution magnetic resonance (MR) and diffusion tensor

imaging (DTI). Functional connectivity, on the other hand, is

characterized by the statistical and dynamical dependencies

among the unit activities, such as the correlations, synchro-

nization/coherence, transfer entropy, etc., which can be ex-

tracted from data collected through functional magnetic res-

onance imaging (fMRI), electroencephalography (EEG), and

multi-electrode array (MEA), etc. Functional connectivity is

descriptive and is mainly used to classify and distinguish the

observed phenomena [2]. The relationship between struc-

tural and functional connectivities can be highly nontrivial

and quite sophisticated. In particular, as a manifestation of

the collective dynamical behaviors, functional connectivity is

dependent upon the detailed interaction patterns among the

units, a point that has been well addressed in recent studies

of network dynamics [3–5]. However, functional connectiv-

ity is not determined entirely by the structural connectivity.

There are in fact circumstances in which the functional con-

nections can be established between units without direct phys-

ical connections [6], leading to phenomena such as partial
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synchronization [7], noise-induced coherence [8], generalized

and driven synchronization [9], etc. The nontrivial interplay

between structural and functional connectivities raises a chal-

lenging question: how to infer the physical connections from

the measured data of dynamical activities, referred to as the

inverse problem in complex systems [10–17].

Networks of coupled nonlinear oscillators serve as a

paradigmatic model to address the inverse problem. The past

decade has witnessed a great deal of progress in this area of re-

search [11–23]. In a general setting, an ensemble of nonlinear

oscillators (nodes) are coupled through a complicated pattern,

giving rise to various collective behaviors at the system level.

The goal is to retrieve from the measured dynamical data or

time series the detailed structural information about the under-

lying network, such as the modular structure [19, 22], network

symmetries [24], and nodal degrees [25], etc. In a real-world

system, the functional connectivity can be assessed through

calculating the correlation coefficients among the nodal dy-

namics [2]. Naturally, the synchronous dynamics of the net-

work plays a crucial role in revealing the relationship between

functional and structural connectivities [6]. In the past, a va-

riety of synchronization-based methods were proposed for re-

constructing the structural connectivity from observed nodal

dynamics [18–24]. For instance, through an adaptive feed-

back approach [18], the structure of a complex network can

be “copied” to an auxiliary network if the two networks can

be synchronized. In Ref. [19], transient synchronization is ex-

ploited to reveal the modular structures of complex networks,

which emerges spontaneously in distinct time scales of the dy-

namical evolution. In Ref. [21], it was found that, by driving

a synchronized network with constant external input signals,

the network connectivity can be deduced from the stationary

pattern of network desynchronization. In Ref. [22], the cat
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cortex was modeled as a network of subnetworks consisting

of noisy excitable neurons and it was found that in the biolog-

ically plausible regime (typically the regime of weak coupling

strength), the anatomical community structures on different

scales can be successfully retrieved from the functional clus-

ters defined according to the synchronization dynamics.

The interplay between synchronization and network recon-

struction, however, can be quite subtle [6]. Take the net-

work of diffusively coupled nonlinear oscillators as an exam-

ple [4, 5]. If the coupling strength is too weak, no oscilla-

tors in the network are synchronized, regardless of whether

there are direct connections. As a result, no information about

the network structure can be obtained from the nodal activ-

ities. If the coupling strength is too strong, most oscillators

will be synchronized, generating identical dynamical trajec-

tories. In this case, no information about the network struc-

ture can be obtained either. The “double-sword” role of syn-

chronization in network construction justifies the following

question: when do synchronization behaviors best reflect the

structural connectivity of the network? From the standpoint of

synchronization transition, this question can be interpreted as

finding the optimal coupling, or the optimal coupling regime,

in which the functional and structural connectivities are best

matched. Previous studies of synchronization-based network

reconstruction provided some hints, but these were mainly

based on some specific features of the system dynamics, lead-

ing sometimes to inconsistent conclusions. For instance, in

contrast to the finding that structural connectivity is better as-

sessed in a more pronounced synchronization regime (e.g.,

the methods based on transient synchronization and driving-

induced dynamical responses [19, 21]), in Refs. [22, 23], it

was shown that for neuronal systems such as cat brain, the

structural connectivity can be retrieved but only in the asyn-

chronous regime.

In this paper, we investigate the consistency between the

functional and structural networks using coupled nonlinear os-

cillator networks in the weakly coupling regime, with a focus

on searching for the optimal coupling regime where the two

networks are best matched. We find that, when the nodal dy-

namics are asynchronous, such an optimal coupling regime

generally exists, in spite of the dependence of the details of

this regime on nodal dynamics and network structure. An in-

teresting phenomenon is that the consistency of heterogeneous

networks is generally weaker than that for homogeneous net-

works. Taking advantage of the stability of the functional net-

work, we articulate and validate an efficient procedure to iden-

tify the optimal coupling regime from time series. Our work

not only gives new insights into the interplay between network

structure and dynamics, but also provides a practical method

to identify the optimal coupling regime that maximizes the

structural and functional consistency. This may have potential

applications in fields such as biomedicine.

In Sec. II, we describe the model of coupled-oscillator net-

works, define the functional network, demonstrate variations

in the network consistency, and show the existence of the op-

timal coupling regime. In Sec. III, we study the impact of

network structure on consistency. In Sec. IV, we present a

data-based method to identify the optimal coupling, assuming

that the network structure is unknown. In Sec. V, we extend

our study to alternative network models, taking into account

variations in network size and nodal dynamics, and to two

real-world networks as well: the cortico-cortical network of

cat brain and the Nepal power grid. In Sec. VI, we present

conclusions and discussions.

II. MODEL DESCRIPTION AND NUMERICAL RESULTS

We consider the following network model of coupled non-

linear oscillators:

ẋi = F(xi)− ε

N
∑

j=1

aij [H(xj)−H(xi)], (1)

where i, j = 1, . . . , N are the oscillator (node) indices, x

is an n-dimensional state vector, and ε denotes the coupling

strength. The individual nodal dynamics is assumed to be

identical and described by ẋ = F(x), and H(x) is the cou-

pling function. The coupling relationship among the oscilla-

tors, i.e., the structural connectivity, is characterized by the

adjacency matrix A, where aij = 1 if nodes i and j are

directly connected, and aij = 0 otherwise. This model

of linearly coupled nonlinear oscillators and its variants are

standard in the literature of network synchronization [4, 5],

which has been widely used to gain insights into the inter-

play between network structure and dynamics, as well as to

test synchronization-based methods for network reconstruc-

tion [13–15, 18, 23–25].

For neuronal systems such as the human brain, the mean

activity of the population of neurons in a small area nor-

mally has a broad frequency spectrum but with some pro-

nounced rhythms [26]. Motivated by this, we assume the

nodal dynamics to be chaotic. Specifically, we define the

nodal activities as those determined by the chaotic logistic

map, x(n + 1) = F [x(n)] = 4x(n)[1 − x(n)], and set the

coupling function as H(x) = F (x). (As will be discussed

later, our main results do not depend on the specific nodal dy-

namics.) We note that, in previous studies of coupled periodic

oscillator systems, the network structure cannot be retrieved

in the weakly coupling regime [22, 23].

To be concrete, we investigate the consistency of func-

tional and structural connectivities in small-world networks

(SWNs). We choose the coupling strength randomly in the

asynchronous regime. SWNs of N = 50 nodes and average

degree 〈k〉 = 6 (so the total number of links is L = N〈k〉/2 =
150) are generated using the standard rewiring algorithm [3]

with the rewiring probability ρ = 0.1. In simulations, we

choose the initial conditions of the logistic maps randomly

from the unit interval and, after a transient period of 5×103 it-

erations, construct the functional network based on Pearson’s

correlation. More specifically, we record the states of all maps

in the network for a period of T = 2× 103 iterations, and cal-

culate the correlation coefficient between maps i and j using
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the formula,

rij =

∑T

n=1
(xi(n)− x̄i)(xj(n)− x̄j)

√

∑T

n=1
(xi(n)− x̄i)2

∑T

n=1
(xj(n)− x̄j)2

, (2)

where x̄ =
∑T

n=1
x(n)/T is the time-averaged dynamical

variable. We then average rij over an ensemble of initial con-

ditions and calculate the corresponding ensemble-averaged

correlation coefficient cij . Because the correlation matrix C

is symmetric, we only need to keep elements in the upper tri-

angular part, i.e., we can set cij = 0 for i ≥ j in C. Finally,

we select from C the L largest elements (so as to make the

size and the total number of links in the functional network

identical to those of the structural network), which give the re-

spective functional links. These links, together with the nodes

they connect with, constitute the functional network.

To evaluate the consistency between the functional and

structural networks, we introduce a quantitative measure: the

similarity coefficient S =
∑L

l=1
sl/L, with sl being the con-

sistency of the lth link. Specifically, we have sl = 1 if the

lth link of the structural network is also a link of the func-

tional network, otherwise we have sl = 0. Note that, through

defining the similarity coefficient, we treat the functional links

effectively as unweighted and undirected, i.e., the functional

network can also be described by a binary matrix. In gen-

eral, we have 0 ≤ S ≤ 1, and a larger value of S indicates a

higher degree of consistency between the two networks. For

S = 1, the two networks are completely matched, making it

possible to infer the structural connectivity precisely from the

functional connectivity.

We evaluate the consistency between the functional and

structural networks in the weakly coupling regime in which

synchronization is unlikely. We choose ε randomly in the

range ε ∈ (0, εc), with εc being the critical coupling strength

marking the onset of network synchronization. (Note that εc
can be estimated through an eigenvalue analysis [27, 28].) For

our SWN model, we have εc ≈ 5 × 10−2. The network con-

sistency for four typical coupling strengths are presented in

Fig. 1. For ε = 1 × 10−3 [Fig. 1(a)], the functional network

appears quite different from the structural network. Indeed,

the similarity coefficient for this case is S = 0.37. Raising

the coupling strength to 2 × 10−3 [Fig. 1(b)], we see that

the overlap between the two networks is increased, leading

to S = 0.77. For ε = 1 × 10−2 [Fig. 1(c)], remarkably the

functional network overlaps with the structural network com-

pletely, giving rise to S = 1. Increasing ε further to 2× 10−2

[Fig. 1(d)], the degree of consistency between the two net-

works is reduced, corresponding to S = 0.61.

To better understand the physical meaning of the network

consistency, we plot in Fig. 1(e) the probability distributions

of cij for the values of the coupling strength used in Figs. 1(a-

d), which provide additional information about the functional

connections. In fact, this distribution is key to network re-

construction [14, 17, 22]. To accurately reconstruct the struc-

tural network from the functional network, it is required that

the correlation coefficient should have a bimodal distribution,

with one peak corresponding to existent links and another to

nonexistent ones. Thus, if the two peaks are well separated,
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FIG. 1: (Color online) For SWNs of coupled chaotic logistic maps,

(a-d) consistency between the functional (red dots) and structural

(open circles) networks and (e) the probability distributions of the

correlation coefficient cij for different coupling strengths. The pa-

rameters are (a) ε = 1 × 10−3, S = 0.37, (b) ε = 2 × 10−3,

S = 0.77, (c) ε = 1 × 10−2, S = 1, and (d) ε = 2 × 10−2,

S = 0.61. The results are averaged over 20 system realizations.

the reconstruction accuracy will be higher. However, if the

distribution is unimodal, it will be difficult to distinguish the

actual links from the nonexistent ones, making it difficult to

infer the network structure. From Fig. 1(e), we see that, for

ε = 1 × 10−2, the distribution consists of two well separated

peaks. However, for other coupling strengths the distributions

are either unimodal (ε = 1× 10−3 and 2× 10−3) or bimodal

but with indistinguishable peaks (ε = 2×10−2). These results

are consistent with Figs. 1(a-d).

Figure 1 indicates that, for properly chosen coupling

strength, the structural connectivity can be reliably retrieved

for coupled chaotic oscillator networks. This result extends

those in Refs. [22, 23], where it was shown that in the weakly

coupling regime the structural connectivity can only be re-

trieved in excitable networks of coupled noisy neurons. Fig-

ure 1 also shows that, in the asynchronous regime, there exists

an optimal coupling value (about εo = 1 × 10−2) for which

the functional network matches perfectly with the structural

network: S = 1. The general existence of the optimal cou-

pling value and its dependence on the network structure are

issues to be addressed next.



4

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

ε

S
, η

 

 

S
η

ε
1

ε
2

FIG. 2: (Color online) For SW networks, the network similarity co-

efficient (open triangles) S and the link stability coefficient (open

circles) η versus the coupling strength ε. Both S and η reach unity

values for ε ∈ [ε1, ε2], where ε1 ≈ 9× 10−3 and ε2 ≈ 1.5× 10−2.

The results are averaged over 20 system realizations.

III. EFFECTS OF NETWORK STRUCTURE ON

CONSISTENCY

To better reveal the optimal coupling regime, we vary the

coupling strength ε in the range (0, 4 × 10−2) and calculate

the similarity coefficient S as a function of ε. The results

are presented in Fig. 2. We see that, as ε is increased from

zero, S first increases, reaches its maximally possible value

(S = 1) for ε1 = 9 × 10−3, remains at the unity value until

ε passes through ε2 ≈ 1.5 × 10−2. As ε is increased further

from ε2, S quickly decreases to near zero values. Figure 2

shows, strikingly, that there actually exists an interval in the

parameter space, ε ∈ [ε1, ε2], in which the functional and

structural networks are perfectly matched.

The existence of an optimal coupling regime in which the

functional and structural networks match perfectly is remark-

able, but does this hold for network topologies other than the

small world, e.g., random networks (RNs) and scale-free net-

works (SFNs) [29]? Setting the rewiring probability to be

ρ = 1 in the SWN model, we effectively generate RNs [3]

and can then investigate the variations of the network consis-

tency in the weak-coupling regime (εc ≈ 4.2 × 10−2). The

results are presented in Fig. 3(a). We find that, as for the

case of SWNs, there exists an coupling interval, ε ∈ [ε1 ≈
8× 10−3, ε2 ≈ 1.2× 10−2], within which the functional and

the structural networks match perfectly. Comparing with the

results for SWNs, we observe similar behaviors in the varia-

tions of S with ε.

Keeping the network size and the total number of con-

nections unchanged, we study SFNs generated according to

the standard BA algorithm [30]. The network consistency

measure S versus the coupling strength in the weak-coupling

regime is shown in Fig. 3(b) (εc ≈ 2.5×10−2 for SFN). Com-

paring with the results of SWNs and RNs, we notice a distinct

feature for SFNs in that the structural connectivity cannot be

perfectly retrieved: Smax ≈ 0.985 < 1 for εo = 7 × 10−3.

The main reason is that SFNs have a heterogeneous degree
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FIG. 3: (Color online) Network similarity coefficient (open triangles)

S and the link stability coefficient (open circles) versus the coupling

strength ε for (a) RNs and (b) SFNs. In (a), S = η = 1 is reached for

ε ∈ [ε1, ε2], with ε1 ≈ 8 × 10−3 and ε2 ≈ 1.2 × 10−2. In (b), we

have Smax ≈ 0.985 and ηmax ≈ 0.993 for εo = 7 × 10−3. Each

data point is averaged over 20 system realizations.

distribution with a small number of hub nodes of extraordi-

narily large degrees. The network structure can thus affect the

maximum consistency value. In particular, for heterogeneous

networks, it is not possible to obtain perfect reconstruction of

the network structure based on functional (dynamical) data.

To gain more insights into the deterioration of the net-

work consistency in SFNs, we examine the mismatched con-

nections in the functional network for the optimal coupling

strength εo and check the properties of the nodes they connect

in the structural networks. We find that, for ε = εo, there

is only one mismatched edge between the two networks and,

interestingly, this edge connects the two largest hub nodes in

the structural network: the 2nd node of degree k2 = 16 and

the 5th node of degree k5 = 19. Checking their neighboring

nodes in the structural network, we further find that the two

hub-nodes have only 5 common neighbors, i.e., the two hubs

are embedded in quite different local “environment”. Since

the coupling strength is weak and oscillators in the network

are not synchronized, the accumulating coupling signal that

each hub receives depends on the states of its neighbors. A

smaller overlap in their neighborhoods leads to a larger dif-

ference in the coupling signals that they receive, leading to

weaker correlation between the two hubs. This provides a

heuristic explanation for the observed small correlation coef-
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FIG. 4: (Color online) For RNs of N = 50 and different connec-

tion density, variations in the network similarity coefficient (open

triangles) S and the link stability coefficient (open circles) as a func-

tion of the coupling strength ε. For 〈k〉 = 12 (blue color), we

have Smax ≈ 0.977 and ηmax ≈ 0.937 for εo = 7 × 10−3. For

〈k〉 = 20 (red color), we have Smax ≈ 0.868 and ηmax ≈ 0.814
for εo = 4 × 10−3. Each data point is averaged over 20 system

realizations.

ficient between the two hub-nodes (c2,5 ≈ 1× 10−3).

There can be also opposite situations where the hubs are not

structurally connected but are functionally connected. This

occurs when the neighboring nodes of two hubs are heavily

overlapped. (An example of this behavior will be presented

in Sec. V, where the network consistency of a cat brain net-

work is analyzed). According to the mechanism of general-

ized synchronization, two uncoupled chaotic oscillators can

still be synchronized if they are driven by a strong, common

signal [9, 31]. As a result, although the two hubs are not struc-

turally connected, their activities can still be highly correlated

if their neighbors have a substantial overlap. The results in

Fig. 3(b)] thus suggest that, comparing with the connections

among the low-degree nodes, the links among the hub nodes

are more difficult to be detected and ascertained. In general,

network consistency is relatively weak for heterogeneous and

dense networks as compared with homogeneous and sparse

networks.

Our above reasoning based on neighborhood overlap is jus-

tified by numerical simulations. In particular, keeping the net-

work size unchanged (N = 50), we plot in Fig. 4 the vari-

ation of S as a function of ε for RNs of 〈k〉 = 12 and 20.

Comparing with the result of 〈k〉 = 6 [Fig. 3(a)], we see

that, as 〈k〉 is increased, the network consistency is gradu-

ally deteriorated. For 〈k〉 = 6, we have S = 1 within the

interval ε ∈ [8 × 10−3, 1.2 × 10−2], but for 〈k〉 = 12 and

20, we have Smax ≈ 0.977 and 0.868, respectively. Since

the neighborhood overlap is enhanced in more densely con-

nected networks, these results thus suggest that the network

consistency tends to be weaker in heterogeneous and dense

networks. From Figs. 3 and 4, we also observe that, with the

increase in 〈k〉, the optimal coupling regime shifts towards

small values, which can be attributed to the increased network

synchronizability in densely connected networks.

IV. DATA-BASED IDENTIFICATION OF OPTIMAL

COUPLING REGIME

While at the optimal coupling strength the functional and

structural networks are best matched, it remains a challenge to

identify this optimal coupling strength in a practical situation,

since a priori knowledge of the network structure is generally

not available, e.g., the structures of biological and neuronal

complex networks. (We still assume that the network size and

the total number of connections are known.) For the task of

network reconstruction, it is desired that the optimal coupling

can be evaluated from only the measured time series, so that

the network structure can be best retrieved from the functional

network. Based on recent works on synchronization dynamics

in complex networks, we articulate an efficient method that

enables reliable identification of the optimal coupling regime

without knowing the network structure.

Recent studies of network synchronization demonstrated

that, in an asynchronous regime where a synchronization so-

lution between any pair of oscillators is unstable, some syn-

chronization clusters can still emerge [32]. For example, in

the weakly coupling regime where complete synchronization

is ruled out, the oscillators can be phase-synchronized into dif-

ferent clusters, forming distinct synchronization patterns [33].

The patterns can be unstable, emerge and disappear in an in-

termittent fashion, but the structure of each individual cluster

can still be relatively stable, depending on the network struc-

ture [7, 34]. The relation between synchronization pattern and

network structure provides an approach to identifying the op-

timal coupling regime based on the stabilities of the synchro-

nization patterns. In particular, through continuous variations

in the coupling strength in the asynchronous regime, we can

assess the stability of the constructed functional network. The

optimal coupling regime is one in which the stabilities change

little. This is essentially a method of connectivity stability

analysis (CSA).

The working of our CSA method can be described as fol-

lows. First, starting from a small coupling strength close to

zero, e.g., ε = 1× 10−4, we construct the functional network

according to the method introduced in Sec. II. Second, we ap-

ply a small increment to the coupling strength, ∆ε, simulate

the system evolution, and construct the functional network

again. Comparing the structures of the two functional net-

works at slightly different values of the coupling strength, we

can calculate the connectivity stability coefficient defined as

η = Lm/L, where Lm is the number of matched connections

between the two functional networks. Third, we increase ε
progressively in the weak-coupling regime and obtain the de-

pendence of η on ε. The optimal coupling regime is the small

interval about the point at which η is maximized. We empha-

size that, unlike the quantityS, η can be calculated without the

knowledge of the network structure (only the network size and

the total number of connections are known). If η is maximized

for the same value of εo that maximizes S, the full structure of

the network can be obtained from the functional network.

We now use the network models studied in Sec. III to

demonstrate that the measure η can be maximized with respect

to variation in the coupling strength. As shown in Fig. 2, we
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see that, for SWNs, η can reach its maximum value of unity

in the interval ε ∈ [ε1, ε2], in remarkable agreement with the

behavior of the similarity measure S, indicating that the con-

nectivity stability coefficient is indeed able to characterize the

network consistency. Similar results are also obtained for RNs

and SFNs, as shown in Fig. 3. In all cases we find that η
reaches its maximum at the same point at which S is maxi-

mized.

Comparing with the conventional methods of network re-

construction [11–23], our CSA method can extract the struc-

tural information of an oscillatory network in the weakly

coupling regime in which many biological networks operate.

Take the neuronal network as an example. To retrieve the

network structure, the coupling strength among the neurons

can be adjusted systematically within the biologically plau-

sible regime through, e.g., drug delivery or external stimu-

lations [35]. From the measured data of neuronal activities,

we can construct the functional network for a set of values

of the coupling strength. The stabilities of the corresponding

functional network can then be calculated to yield the opti-

mal coupling regime. The functional network in the optimal

coupling regime can be taken as a good approximation of the

actual structural network.

V. APPLICATION TO REAL-WORLD NETWORKS

How about realistic networks? To investigate, we check

the consistency of functional and structural connectivity for

two typical networks in natural and and man-made systems,

namely the cortico-cortical network of cat brain and the Nepal

power grid.

We first study the cat brain network, which consists of 53
nodes (cortex areas) and 519 links (fiber connections of differ-

ent axon densities). The network possesses an apparent small-

world feature [36]. According to their functions, the cortex ar-

eas can be grouped into four divisions: 16 areas in the visual

division, 7 areas in the auditory division, 16 areas in the so-

matomotor division, and 14 areas in the frontolimbic division.

As areas within the same division are more densely connected

than from different divisions, the network possesses also the

community feature [36].

Using the structure of the cortico-cortical network of cat

brain, we simulate the system evolution according to Eq. (1)

and examine the consistency between the functional and struc-

tural networks. The results are shown in Fig. 5(a), where

the coupling strength ε is systematically changed from 0 to

1 × 10−2 (for the cat brain network, the onset of network

synchronization occurs for εc ≈ 1.3 × 10−2). We see that,

similar to the theoretical network models, there exists an opti-

mal coupling strength: εo ≈ 3.5× 10−3 at which the network

consistency is maximized (Smax ≈ 0.89). Figure 5(a) also

shows the connectivity stability coefficient versus the cou-

pling strength, which is maximized for the same value of the

coupling strength (ηmax ≈ 0.86).

When checking the mismatched connections, we find that

they are mostly associated with the hub nodes in the structural

network. In our SFN model, we obtain that the two largest
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FIG. 5: (Color online) Network consistency in real-world networked

systems. (a) For the cortico-cortical network of cat brain, S (open

triangles) and η (open circles) versus the coupling strength. The op-

timal coupling strength is εo ≈ 3.5× 10−3. (b) For the Nepal power

grid, the maximum values of S and η are achieved within the interval

ε ∈ [ε1, ε2], where ε1 ≈ 6× 10−3 and ε2 ≈ 1.1× 10−2. Each data

point is averaged over 20 system realizations.

hubs are structurally connected but functionally disconnected.

Here we observe the opposite case: two hubs that are struc-

turally disconnected but functionally connected. These are

the 43th node (in the frontolimbic division, with k43 = 32
connections) and the 44th node with k44 = 34 connections.

While the two hub nodes are not directly connected, they have

in total 31 common neighbors, i.e., their neighborhoods are

heavily overlapped. Our reasoning in Sec. III suggests over-

lapping neighborhoods as the source of correlation between

the dynamical activities of the two hub nodes (the correlation

coefficient is c43,44 ≈ 2 × 10−2), resulting in the false link

in the functional network that does not exist in the structural

network.

The Nepal power grid has 15 nodes (power stations) and 62
links (transmission lines) [37]. Onset of synchronization oc-

curs for εc ≈ 3.6 × 10−2. Figure 5(b) shows S and η versus

the coupling strength. The optimal coupling interval is identi-

fied to be ε ∈ [6× 10−3, 1.1× 10−2], in which both S and η
reach their maximum values: S = 1 and η = 1.

We now examine the robustness of the existence of max-

imum consistency between the functional and structural net-

works with respect to changes in the system details such as the
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FIG. 6: (Color online) For different network models, S (open tri-

angles) and η (open circles) versus the coupling strength: (a) RN

of N = 500 and 〈k〉 = 6 where we have εo ≈ 6 × 10−3,

Smax ≈ 0.997, and ηmax ≈ 0.961, (b) RN of coupled chaotic

Rössler oscillators, where we have εo ≈ 1.1× 10−2, Smax ≈ 0.56,

and ηmax ≈ 0.94, (c) RN of coupled noisy phase oscillators, where

we have εo ≈ 7 × 10−3, Smax ≈ 0.42, and ηmax ≈ 0.86. Each

data point is the result of averaging over 20 system realizations.

network size and nodal dynamics. First, we increase the size

of the RN to N = 500 (fixing 〈k〉 = 6). Onset of synchroniza-

tion occurs for εc = 2.2 × 10−2. Figure 6(a) shows S and η
versus ε. We see that, similar to behaviors in the smaller-size

networks, there exists an optimal coupling, εo = 6 × 10−3,

at which both S and η are maximized: Smax ≈ 0.997 and

ηmax ≈ 0.961. To investigate the effect of the nodal dynam-

ics type, we replace the logistic map with the chaotic Rössler

oscillators [38] [(dx/dt, dy/dt, dz/dt)T = (−y − z, x +
0.1y, 0.1 + xz − 18z)T ] in the same RN as in Fig. 3(a), and

show in Fig. 6(b) S and η versus ε. The oscillators are coupled

through the x component, i.e., H([x, y, z]T ) = [x, 0, 0]T , and

the correlation coefficient is calculated from the x component.

The synchronization onset occurs for εc ≈ 2.0 × 10−2. Fig-

ure 6(b) shows the existence of the optimal coupling value in

the weak-coupling regime: εo ≈ 1.1×10−2, at which both the

network consistency and connectivity stability are maximized

(Smax ≈ 0.56 and ηmax ≈ 0.94).

The phenomenon of network consistency has also been ob-

served in complex networks of coupled phase oscillators. In

particular, we consider the generalized Kuramoto model de-

scribed by [39]

θ̇i = ωi + ε
∑

j

aij sin(θj − θi) +Dξi(t),

where ωi is the natural frequency of the ith oscillator, which

is randomly chosen in the range [−0.1, 0.1], ξi(t) ∈ [0, 1] rep-

resents independent Gaussian white noise, and D is the noise

amplitude. In simulations, we fix D = 1 × 10−2 and choose

the initial phases of the oscillators randomly from the inter-

val [−π, π]. Using the same random-network structure as in

Fig. 3(a), we calculate the variations in S and η as a function

of ε. Figure 6(c) shows that, there exists an optimal coupling

strength (εo ≈ 7× 10−3) for which both network consistency

and connectivity stability are maximized (Smax ≈ 0.42 and

ηmax ≈ 0.86). This result is consistent with those in Ref. [39],

where it was shown that, using the approach of phase synchro-

nization, the network consistency (network similarity mea-

sure) can be maximized for some weak coupling strength.

VI. DISCUSSIONS AND CONCLUSION

A few remarks are in order. First, our numerical re-

sults show that, despite variations in the network structure

and nodal dynamics, there always exists an optimal coupling

regime (interval) in which the consistency between the net-

work functions and structure is maximized. It is useful to

develop a more quantitative understanding of the mechanism

that leads to this phenomenon. In Ref. [14], a relationship was

established between the dynamical correlations and the topol-

ogy for general coupled oscillator networks. Specifically, it

was found that, in the presence of noise, there exists a one-to-

one correspondence between the correlation matrix C (which

can calculated solely from measured time series) and the net-

work adjacency matrix A, as

A =
[

σ2/(2ε)
]

C
†,

where σ denotes the noise amplitude and C
† is the pseudo

inverse of C. This relation provides a mechanism for the ex-

istence of the optimal coupling. In particular, if the coupling is

too weak (ε ≈ 0), the oscillators will not be correlated so that

many elements of C will be near zero. In this case, there is a
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high probability that the inverse C
−1 is not well defined, de-

fying any meaningful correspondence between the correlation

matrix and the network adjacency matrix. In the other extreme

case, if the coupling is too strong (ε ≪ 1), all oscillators in

the network will be synchronized so that many elements in C

will be closing to unity. In this case, C−1 cannot be defined

either. Thus, a meaningful relation between the network cor-

relation and adjacency exists only when the coupling is neither

too weak nor too strong, implying the existence of an optimal

regime that maximizes the consistency between structural and

functional networks.

Second, from numerical simulations, we find that the two

measures, the network similarity (S) and link stability (η),

can be maximized for the same optimal coupling strength.

This feature can be understood from the distribution of the

correlation coefficients for the optimal coupling, which is bi-

modal with a distinct gap between the two distribution peaks,

as shown in Fig. 1(e). While the gap is gradually narrowed as

ε deviates from εo, the existence of the gap about εo is robust

as any small variations in ε will not remove the gap. Since

functional links are retrieved from the non-zero peak in the

distribution, the functional network is stable for ε in the vicin-

ity of εo. When ε is far from εo, the peaks are smeared and

the distribution becomes unimodal, leading to ambiguities in

the construction of the functional network. In this case, we

say that the functional network is unstable.

Third, in retrieving the network structure using the CSA

method, two problems may arise: unknown number of struc-

tural connections and unknown network size. For the former,

we need to assume a number of links (e.g., based on some

pre-knowledge about the network if available) and then cal-

culate the stability measure by varying the coupling strength.

For example, using the RN model studied in Sec. III and as-

suming there are L′ = N links in the network, we can ana-

lyze the consistency for these N connections using the CSA

method. We find that, despite large variations in the connec-

tivity stability, an optimal coupling strength always exists and

its estimated value (1.6× 10−2) turns out to be slightly larger

than that for the case of known network structure. For the case

of unknown network size, we choose a subset of nodes (e.g.,

N ′ = 20) and L′ = 20 connections, which gives us a network

of smaller size. Using the CSA method, we find that, within

the interval ε ∈
[

9× 10−3, 1.4× 10−2
]

, we have Smax = 1.

Fourth, the methodology developed in this paper for iden-

tifying and characterizing the consistency between functional

and structural networks is for unweighted and undirected net-

works. It remains unknown whether weighted and directed

complex networks can be treated. In studying heterogeneous

networks such as SFNs and the cat brain network, we attribute

the mismatched connection to the overlapping neighborhoods

of the hub nodes, and suggest generalized synchronization as

a possible source for the mismatch. However, the relationship

between topological heterogeneity and network consistency

remains to be investigated.

To summarize, using complex networks of coupled nonlin-

ear oscillators, we have investigated the consistency between

functional and structural connectivities in the physically and

biologically relevant regime of weak coupling. Our main find-

ing is that, regardless of the network structure and nodal dy-

namics, there exists an optimal coupling regime in which the

consistency between the functional and structural networks is

maximized. We develop a method (CSA) to identify the op-

timal coupling regime in practical situations of unknown net-

work structure, and demonstrate that the method works well

for both model and real-world networks. Our study provides

new insights into the interplay between network structure and

collective dynamical behaviors, which can be useful in under-

standing the working of physical and biological networks.
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