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Abstract

Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi,

plants, and animals. In addition to the developmental algorithms that build them, many also

employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We

model these adapting network architectures using a generic dynamical system on weighted graphs

and find in simulation that these networks ultimately develop a hierarchical organization of the final

weighted architecture accompanied by the formation of a system-spanning backbone. In addition,

we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems

characterized by long periods of slow changes punctuated by bursts of reorganization events.
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I. INTRODUCTION

Transport networks, whether engineered by man or made by nature, need to maximize

efficiency subject to cost constraints if they are to function optimally. Man-made distribution

networks, such as those used in electric power distribution, irrigation or information flow

can be centrally designed and constructed to achieve this optimality. However, in nature –

and occasionally in artificial networks – the architecture of an efficient network is frequently

the result of gradual alterations according to locally available information, rather than the

execution of a central plan [1, 2].

An example of such a system is the intracellular network of protoplasmic veins composing

the slime mold Physarum polycephalum. These veins perform cytoplasmic streaming and

transport nutrients from food sources to the rest of the network. The organism redistributes

the vein wall material so that little used conduits gradually disappear and heavily used ones

grow. The physarum network exhibits a dense array of structurally organized loops and has

been shown to be robust and efficient [3] with strikingly organized flow patterns [4].

To address more general locally adaptive network systems, we have adapted a mathe-

matical model designed for Physarum in Refs. [3, 5–8]. In striving for generality this work

may be seen as existing in parallel with a recent study by D. Hu and D. Cai [9], however

where their work is primarily concerned with steady-state structure and the existence of

‘optimal’ solutions, we are more interested in the progression and character of the dynamics

and the network topology over a much broader range of initial conditions. Like the specific

Physarum model, our model uses an undirected, weighted graph representation of the trans-

port network, where the graph’s edges represent the tubes and its nodes their junctions. The

transport flows through the tubes are Hagen-Poiseuille and the tube conductivities dynami-

cally adapt to the local flow. Note that only the edge weights are dynamically adapting, and

not the nodes or the edges themselves. The underlying topology of the transport network

thus remains the same unless edges disappear as their conductance approaches zero. To be

clear however, despite taking the Physarum slime mold as our inspiration, we intend our

analysis to be a general exploration of possible network dynamics and not an explicit model

of Physarum polycephalum.

In our analysis, the networks evolve from a number of prescribed initial network topolo-

gies. Instead of spatially fixed sources, each pair of vertices of the network can and do act as
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a source and sink. The conductivity of the links grows or shrinks according to the average

flow through them. As described in the rest of the text, starting from a random assignment

of edge conductivities we find that the networks converge to a hierarchically organized archi-

tecture, dominated by a high conductivity backbone that spans the network. Additionally,

the dynamical rearrangements of network links show striking, system-spanning behavior at

certain key moments of the evolution that is reminiscent of glassy systems.

Significant variants of this basic adaptive networks concept can be attained in the formu-

lation of the flow boundary conditions and in the details of the flow-based feedback for the

conductivities. Both processes interact with one other – the conductivity of an edge deter-

mines the flow through it, but the flow in turn gives rise to changes in the conductivity. Note

that despite the adaptation of a given edge’s conductivity being driven by the local flow con-

ditions these conditions arise from the global solution of currents and pressure differentials

over the entire network and hence some measure of global information affects the adaptation

dynamics as well. Because of this interdependence it will be important to understand the

type of interaction that exists between the conductivities and the flows, and in particular

the associated timescales. It is known, for example, that Physarum’s adaptation processes

act on much longer timescales than its transportation processes [3, 10]. Accordingly, we

assume for our model that both the transport flows and the sources and sinks change much

faster than the conductivities. The local flows are calculated as an ensemble average over

the flows in a connected network of N vertices created by each N · (N − 1)/2 possible pair

of sources and sinks (cf. Complete Multipoint Selection Method in [8]).

Our model is governed by a system of three types of equations, two for each edge –

describing transport and adaptation, respectively – and one for each node, ensuring flow

conservation. The flow Qkl
ij through the edge {i, j} between the nodes i and j is the trans-

ported volume through the edge from node i to node j per unit time, when node k is a

source and node l a sink. This quantity is also known as the volumetric flow rate or vol-

ume velocity, although Qkl
ij could just as well represent the amount of any transported good

through a given route per time, like traffic on streets, data through a wireless connection, or

electrons through a conductor. In a fluid transport setting, the hydrostatic pressure differ-

ence ∆pklij := pkli − pklj along the tube between the pressures pkli and pklj defined at the nodes

i and j acts as a potential difference from which the flow arises. The proportionality factor

is the fraction of the tube’s conductivity, denoted as Cij, and its length lij, which gives the
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transport equation:

Qkl
ij =

Cij
lij
·
(
pkli − pklj

)
. (1)

This first order flow can be thought of as a Hagen-Poiseuilleian laminar tube flow through a

cylinder of length lij and radius rij, for which the conductivity in the Newtonian case would

be defined as Cij = π
8η
· r4ij, where η is the dynamic viscosity of the fluid. The ensemble

averaged mean flow can hence be calculated as

〈|Qij|〉 :=
1

N ·(N−1)
2

∑
(k,l)∈P

∣∣Qkl
ij

∣∣ , (2)

where P is the set of all node pairs, and flows are considered equally in both directions.

Meanwhile, for each node the sum of incoming flows must equal the sum of outgoing flows,

unless the node is a source or sink which contributes an additional flow, ζ ≥ 0, defining the

boundary conditions to eq. 1:

∑
j,∀ {i,j}∈E

Qkl
ij =


ζ : i = k

−ζ : i = l

0 : else

= (δik − δil) · ζ. (3)

where E is the set of all edges.

Finally, we model the adaptation process with a differential equation describing the time

evolution of the conductivities Cij = Cij(t):

dCij(t)

dt
= β · f

(
〈|Qij(t)|〉

ε

)
− α · Cij(t). (4)

This equation features a positive, non-linear feedback term β · f(〈|Qij(t)|〉/ε), that grows

an edge’s conductivity as a function of the scaled mean flow 〈|Qij(t)|〉/ε through itself.

Balancing this term is a negative, exponential decay term −α ·Cij(t). The parameters β ≥ 0

and ε > 0 scale the feedback and the flow through one edge; α ≥ 0 is the exponential decay

parameter. We have chosen here not to co-evolve lij, though the manner in which changing

tube lengths may embed into space is an interesting problem for future consideration.

The exact form of the feedback function f must be chosen according to the details of the

particular system under consideration. Nevertheless, it may be generalized to a function of
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x := 〈|Qij(t)|〉/ε ≥ 0 that is positive definite, monotonically increasing, and bounded. Such

a general f would thus display no feedback when there is no flow, higher feedback for greater

flows, and a capped maximum feedback, guaranteeing that Cij(t) does not diverge. These

general conditions are fulfilled by a sigmoidal function, f(x) = xγ

1+xγ
, which we use as our

feedback function in this paper.

By appropriate non-dimensionalization we may reduce the control parameters for our

dynamical system to ϑ := ζ/ε, the load on the system, and γ, the sigmoidal exponent. Given

this simplification, there are four possible ways to tune the system: different (random) initial

conductivities Cij(0), different underlying initial topologies, varied transportation load ϑ, or

differently tuned sigmoidal feedback functions (varied γ). We have separately studied the

influence of ϑ and γ. In all cases, multiple instances of different underlying topology classes

– Erdős-Renyi (ER) pure random [11], Watts-Strogatz (WS) small world [12], Barabasi-

Albert (BA) rich-get-richer [13] and 4-regular graph – were examined, each with various

initial value sets Cij(0). Details about the algorithm we used to solve this dynamical system

are presented in the appendix.

II. INTERMITTENT ADAPTIVE DYNAMICS

After an initial rapid adaptation period, a typical simulation shows long periods of qui-

escent dynamics with little to no change in the conductivities, Cij(t), punctuated by rapid

avalanche-like rearrangement events. In Fig. 1 we plot a representative example of a WS

network with N = 100 nodes, load ϑ = 10 and feedback parameter γ = 1.8. The slow equi-

libration dynamics is interrupted by short periods of fast adaptation, i.e. the period around

t = 85, 120, 145 and 190 highlighted with yellow bands (which are the last rearrangement

events observed in this particular dataset). This behavior is robust and occurs regardless of

the underlying topology classes or initial conductance values.

Note that once the conductivity of an edge drops below a certain threshold during the

slow phase of the dynamics, it seems to enter a self-reinforcing runaway to null conductivity.

As its flow continues to decrease the feedback term dies away and the conductivity can

only decay exponentially thereafter. These feedback threshold events trigger the rapid,

short-timescale rearrangements, and further act as a selection effect on the edges, leading

to a clean separation into two categories: regular, flow-conducting edges; and edges with
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FIG. 1. (Color online) (a)-(b) Time-evolution of the network conductivities. The conductivities

are coloured based on the magnitude of the normalized maximum derivative of the conductivity

(plotted in (c)) during the rearrangement event around t = 120. After an initial period of transient

dynamics (t ' 0− 10), the system settles into a pattern of long times of slow or steady dynamics

punctuated by rapid, avalanche-like rearrangements of the edge conductivities, such as the periods

highlighted in yellow (the last four rearrangement events seen for this dataset). Only a subset of

the edges in the network typically participate in each of these avalanche events.

insignificant flows and conductivities orders of magnitude smaller. We will refer to the former

as ‘used edges’ and the latter as ‘unused edges’. The event that an edge changes from being

used to being unused can seemingly happen at any time, even after a long period of slow

dynamics.

These repeatedly occurring selection and rearrangement processes disturb the dynamical
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system during its equilibration and change the final adapted state of the network. In general,

the occurrence of these perturbations may prevent the system from reaching a final ground

state in finite time, as can be the case in jammed or glassy dynamics. This kind of final state

has been called a ‘quasi-attractor’ or, in the context of adaptive networks, a ‘quasi-optimal

solution’ elsewhere [1, 14]. It remains to be investigated how the frequency of these rapid

rearrangements depends on the network size.

III. DEPENDENCE ON INITIAL CONDITIONS

Meanwhile, the exponent γ of the sigmoidal feedback function also acts on the dynamics

of the conductivities independent of the underlying topology class. The importance of γ

as a control parameter has been widely discussed previously (see [9, 15, 16] and references

therein), and γ = 1 has been identified as a transition point where the nature of the network

(adaptive [9] or optimized [15, 16]) qualitatively changes. A constant feedback function

(γ = 0) uncouples the system of equations, leading to the same solution form Cij(t) for

every edge in the network, independent of the flows:

Cij(t) =
1

2
+

[
Cij(0)− 1

2

]
· e−t ∀ {i, j} ∈ E.

Clearly, limt→∞Cij(t) = 1
2

and hence all edges are used the same amount with no

separation events. With increasing γ the feedback becomes flow dependent and the coupling

between the transport and the adaptation rises, resulting in full dynamics with increasing

conductivity separation and initial value dependency (Fig. 1). This is demonstrated in

Fig. 2, where we plot the time dependence of the squared euclidean distance between the

conductivity values of two datasets for γ = 1.4 with the same topology but different initial

conditions, defined as:

Ḡ(t) = 〈G(t)/G(0)〉 (5)

where

G(t) =
∑
{i,j}

|C1,ij(t)− C2,ij(t)|2 (6)

and the average is over different topologies. C1,ij andC2,ij represent the conductivities at

time t of two networks with different initial conditions, indicated by the index 1 and 2. The

quantity Ḡ(t) does not approach zero, but instead equilibrates to a finite value, indicating

an initial value dependency of the final topology for all network types examined (Fig. 2).
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FIG. 2. (Color online) Time dependence of distance between datasets with same topology but

different initial conditions G(t) for γ = 1.4 (a) average of ER topologies, (b) average of BA

topologies and (c) average of WS topologies. G(t) does not relax to zero, indicating a dependence

on the initial conditions.

Interestingly however, this behavior is not observed for all non-zero values of γ. Instead,

all edges are still in use for 0 < γ < 1 and the final conductivities are not dependent on

the initial values, but only determined by the edge’s topological position in the network.

In Fig. 3 we plot Ḡ(t) for γ = 0.9 ER, BA and WS networks, and see that Ḡ(t) quickly

approaches 0, indicating that there is no initial value dependence as t � 1. All random

initial value sets lead to the same final state. On the other hand, for γ > 1 edges can

become unused and the underlying topology of the adapting network effectively changes

each time this occurs. As a consequence, the final state changes and the final conductivities

are sensitive to the initial conditions.

Meanwhile, higher exponents γ � 1 sharpen the feedback function and the conductivity

8



G
(t

)
G

(t
)

G
(t

)

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0       20       40        60      80      100

(a)

(b)

(c)

FIG. 3. (Color online) Time dependence of distance between datasets with same topology but

different initial conditionsG(t) for γ = 0.9(a) average of ER topologies, (b) average of BA topologies

and (c) average of WS topologies. G(t) decreases to zero in all cases, indicating independence of

initial conditions

values separate further culminating in a complete, binary separation for γ →∞ where

Cij(t) = 1 + [Cij(0)− 1] · e−t,

for edges that remain used at all times and thus limt→∞Cij(t) = 1 for this class of edges.

However, these edges are not separable by an initial conductivity threshold value as might

be expected. Instead, the initial value interval of the edges in use throughout overlaps that

of those that become unused. It is therefore likely that the topological role of an edge is a

primary contributor to its final use status.
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FIG. 4. (Color online) The development of a self-assembled backbone in the network conductivities

under the action of the sigmoidal local feedback function. (a) left panel: The initial state of an

ER network, with the top 10 % conductive edges shown in red. These edges are randomly placed

around the network with no additional underlying structure or connectivity. middle panel: The

same network during the initial transient dynamics (t = 5). Some rearrangement has occurred

among the most conductive edges but no clear structure has yet emerged. right panel: The network

final state (t = 1000), after avalanche events have apparently ceased. The most conductive edges

now form a contiguous chain. (b) Initial, intermediate and final state for a BA network. (c) Initial,

intermediate and final state for a WS network. (d) Normalized average shortest path length s(t)

for WS, BA and ER graphs. s(t) decreases as the backbone is formed. The inset shows s(t) in log

scale in the initial stages of the dynamics.
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IV. FORMATION OF A BACKBONE

To understand the influence of the adapting conductivities on the network architecture,

it will thus be useful to relate them to their topological role. For that purpose, Fig. 4(a)

shows visualizations of an ER adapting network at different times in the evolution of the

network dynamics. The plots were obtained by applying a spring layout algorithm [17, 18]

to the adapted state, for node positioning (black dots). The red dashed lines highlight the

top 10 % of all edges in the network. In the initial transient phase the most conductive edges

are disconnected edges at random positions. In the following adaptive phase, these edges get

rearranged to different topological positions and create connected transportation backbones

in the equilibration phase, indicating self-organized formation of hierarchical structure in

the adapting network. Again, this behavior appears to be independent of the underlying

topology class and the initial conductivity values (see Fig. 4(b) and (c)).

To demonstrate more clearly the topological role of the backbone, in Fig. 4(d) we plot

the normalized average shortest path length

s(t) := S(t)/〈Srand(t)〉 (7)

for WS, BA and ER adapting networks. S(t) is the average shortest path length of the graph

with edge weights 1/Cij(t) and 〈Srand(t)〉 is the mean average shortest path length over 400

graphs generated by randomizations of the graph weights. The normalization is necessary to

decouple the effect of the adaptation of the conductivity magnitudes on the transportation

efficiency of the network from the backbone creation. Removing the effects of the topology,

achieved by averaging by the average shortest distance of a network with randomized edge

weights 〈Srand(t)〉, a short average shortest path length effectively identifies the presence of

a backbone that spans the network, as segments of the strong backbone will be utilized by

most paths to minimize their total inverse weight.We observe that in all the topologies we

considered, s(t) decreases rapidly as a path minimizing backbone is formed.

In addition to its role in the temporal conductivity dynamics, γ also affects the topological

character of the evolving network. Keeping the number of nodes in the network constant,

the number of fundamental loops L [19] changes with γ as well, if only used edges, E, are

considered, since L ∼ E. This allows a further characterization of the feedback threshold

effect. Figure 5 shows the mean and the standard deviation values of L(γ) from all performed

simulations. Several underlying topologies for each class and multiple initial conductivity
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FIG. 5. (Color online) The dependence of the evolved ’loopiness’ of a network on the exponent,

γ, in the sigmoidal feedback function. ER, WS, BA, and 4-regular initial underlying network

topologies are all considered. In all cases there is a threshold value, γ∗ ≈ 1 (marked with a gray

line) below which loop evolution does not occur. Above γ∗ all networks rapidly shed loops until

L/max(L) approaches a constant value < 1, and significantly < 1 in the case of the BA topology.

value sets are included. To compare across different topology classes the values have been

normalized by the according maximum number of loops under the assumption that every

existing edge is used. The relatively sharp threshold at γ∗ ≈ 1 appears to describe a

transition point between a phase with L = max[L], independent of the underlying topology,

for γ < γ∗ and a topology dependent phase for γ > γ∗. The BA networks show a sharper

transition with significantly lower L values for γ > γ∗ than the rest, using only half of

the available loops for the adapted network architecture in the limit where the feedback

function is step-like: L(γ → ∞) ≈ 0.5 · max[L]. To compare the randomly generated

network topologies (BA, ER, WS) with a completely regular structure, Fig. 5 also includes

data simulated on a two-dimensional grid with periodic boundary conditions (4-regular grid).

The regular grid produced an adapted state with very few unused edges, expressed in a high

number of loops L(γ → ∞) ≈ 0.9 ·max[L]. It is remarkable then that the topologies with

high clustering coefficients and average degrees – as well as low average path lengths – also

show a higher number of final-state loops and vice versa, including the regular grid.
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V. CONCLUSIONS

We have demonstrated that a transport network evolving under the influence of local

information can and generically does exhibit very rich behavior, from the emergent self-

assembly of a conductivity backbone with topology-dependent hierarchical scaffolding in

the network’s architecture to a phase transition-like sensitivity to the control exponent in

the feedback function and glassy-like dynamics complete with separation of timescales and

avalanches of conductivity rearrangements. Ultimately, these features together with the

dynamical richness in the system may help provide insight to many adapting or developing

distribution networks that leverage this kind of ‘local-yet-global’ information such as the

Physarum polycephalum slime mold, mesoscale angiogenesis, or social networks.

Despite our choice of a Hagen-Poiseuille fluid flow model for our study, we believe the

scope of the phenomenon described in this paper to be general. Therefore, with an aim to

deepening our understanding of the universal features of self-organized adaptation in trans-

port networks we have begun to expand our attention to other relevant models for distri-

bution networks, such as a shortest-path usage model, and a capacity based Ford-Fulkerson

maximum flow model [20]. An understanding of the fundamental physical differences be-

tween local update rulesets and how those differences play out in a network’s adaptation

dynamics is an important first step in both describing these complex systems and in design-

ing computational or communicational analogs.

Appendix: Adaptive algorithm

Solving the system of equations 1-4 means calculating the time evolution of Cij(t), p
kl
i (t)

and Qkl
ij (t) for every edge or node, respectively. Numerically, this can be done with an

iterative approach by repeatedly performing the following steps:

1. Calculate all the instantaneous transportation variables pkli (t) and Qkl
ij (t) with Cij(t)

and ϑ for the whole network, for every source and sink configuration (k, l) ∈ P respec-

tively using Eq. 1 and 3.

2. Calculate 〈|Qij(t)|〉 from the Qkl
ij (t) values for all the transportation processes created

by the different source and sink positions.

13



3. Calculate the resultant Cij(t+ ∆t) from 〈|Qij(t)|〉 and Cij(t) with Eq. 4.

In order to perform the first two steps, the flow values Qkl
ij (t) are calculated for all (k, l) ∈ P

pairs by inserting Eq. 1 into Eq. 3, solving the resulting system of linear equations (Eq. A.1)

for the pressures pkli (t) and then reinserting back into Eq. 1:

(δik − δil) · ϑ
(3)
=

N−1∑
j=0

Qkl
ij (t)

(1)
=

N−1∑
j=0

Cij(t)
[
pkli (t)− pklj (t)

]
=

N−1∑
j=0

Cij(t)p
kl
i (t)−

N−1∑
j=0

Cij(t)p
kl
j (t)

=
N−1∑
j=0

δij
N−1∑
m=0

Cim(t)︸ ︷︷ ︸
=:Sij(t)

−Cij(t)


︸ ︷︷ ︸

=:Lij(t)

pklj (t)

=
N−1∑
j=0

Lij(t)p
kl
j (t) (A.1)

⇒ pkl0 (t) := 0 & pkli (t) = ϑ
N−1∑
m=1

L−1im(t)(δmk − δml)

= ϑ ·
[
L−1ik (t)− L−1il (t)

]
(A.2)

(A.2)
= ϑCij(t) ·


[
L−1jl (t)− L−1jk (t)

]
: i = 0[

L−1ik (t)− L−1il (t)
]

: j = 0[
L−1ik (t)− L−1il (t) + L−1jl (t)− L−1jk (t)

]
: else

. (A.3)

The introduced Lij(t) are the elements of the weighted Laplacian matrix of the network,

composed of the weighted degree (or strength) matrix S(t) and the known weight matrix

C(t):

L(t) := S(t)− C(t).

Using the obtained Qkl
ij (t) values, the mean flow 〈|Qij(t)|〉 can be calculated with Eq. 2,

leaving an Euler integration step of width ∆t to be performed on the differential equation 4

for the last step of the proposed iterative approach scheme.
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It is important to note that although the individual flows Qkl
ij (t) as well as their means

〈|Qij(t)|〉 are defined as local quantities on the edge between the nodes i and j, they do

in fact contain information about every edge in the network through the elements of the

inverse Laplacian matrix (cf. Eq. A.1). This is caused by the conservation of flows (Eq. 3),

which effectively functions as a long range interaction mechanism between all edges in the

network.

Starting from uniformly distributed, random initial conductivities in the interval Cij(t =

0) ∈ [0, 1], the whole procedure is repeated until the relative conductivity changes [C(t +

∆t) − C(t)]/C(t) are sufficiently small. To avoid artificial signatures of the discretization

of Eq. 4, the algorithm was tested with different step widths ∆t. A value of ∆t = 0.1 was

found to be sufficiently small and therefore used for all simulations.

The implementation of the algorithm, as well as the analysis and the visualization of the

results was done in the programming language Python, using the software packages NumPy

[21], SciPy [22], NetworkX [18] and matplotlib [23].
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