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Bird flocks are a paradigmatic example of collective motion. One of the prominent traits of
flocking is the presence of long range velocity correlations between individuals, which allow them
to influence each other over the large scales, keeping a high level of group coordination. A crucial
question is to understand what is the mutual interaction between birds generating such nontrivial
correlations. Here we use the Maximum Entropy (ME) approach to infer from experimental data
of natural flocks the effective interactions between individuals. Compared to previous studies, we
make a significant step forward as we retrieve the full functional dependence of the interaction on
distance, and find that it decays exponentially over a range of a few individuals. The fact that
ME gives a short-range interaction even though its experimental input is the long-range correlation
function, shows that the method is able to discriminate the relevant information encoded in such
correlations and single out a minimal number of effective parameters. Finally, we show how the
method can be used to capture the degree of anisotropy of mutual interactions.



I. INTRODUCTION

Large groups of animals - such as bird flocks, fish schools and insect swarms - display a remarkable degree of
collective coordination. Several experimental studies in the last decade quantified the spontaneous emergence of
global order [1-3], the presence of strong behavioral correlations between individuals [4, 5], and the swift transfer of
information through the group [2, 6-8]. Such findings stimulated a multi-disciplinary interest in this kind of systems.
On the one hand, animal groups can be considered as instances of active matter [9, 10], and can be expected to
display some of the non trivial properties observed and predicted for several living, soft and granular active systems
on the micro-scale. On the other hand, there are important features that make animal groups more complicated to
understand. First, the way individuals coordinate with one another are not only determined by physical mechanisms,
as for rods or hard discs, but also (and often mainly) by exquisitely biological processes (including cognitive). As
a consequence, any speculation about the nature of mutual interactions in a group cannot be taken for granted.
Besides, animal aggregations form large, but not infinitely large groups: they are not in the thermodynamic limit,
but rather live in an intermediate regime where finite size effects can be important [5]. Understanding collective
animal behavior therefore implies understanding what is the nature of interactions, what are the effective features of
such interactions that are relevant on the scale of natural groups, and how they determine the collective properties
that we observe.

One of the most intriguing features of collective animal motion is the presence of long-range correlations. The
correlation function of the velocity fluctuations has been found to be long-range both in polarized groups such as bird
flocks [4] and in disordered ones, such as insect swarms [5]. These results suggest that, rather than ordering, what
is truly characteristic of collective behavior in biological systems is the ability of individuals to correlate changes in
behavior and influence each other over the large scales. It is therefore important to understand what are the features
of the interactions granting such strong correlations.

We know from statistical physics that short-range interactions are sufficient to produce spontaneous symmetry
breaking and system-level coordination. Models of self-propelled particles [3, 11-15] and hydrodynamic flocking
theories [10, 16] have shown numerically and analytically that also in active systems short-range interactions can
produce global ordering and long-range correlations. Indeed, there now seems to be some consensus in the field
of collective animal behavior that interactions are short-ranged [18]. However, long-range interactions do exist in
nature, so we cannot rule them out a priori. Moreover, to create long-range correlations out of short-range interactions
one normally needs some special conditions: either there is a continuous spontaneously broken symmetry (Goldstone
theorem), or the system is in the scaling region of a critical point. From a biological perspective, one could legitimately
object that a reasonable long-range interaction is a better explanation of long-range correlations than some arcane
physical theorem, not to mention criticality. For example, birds’ vision is likely to span the entire size of a flock. It is
worth noticing that, despite the short-range consensus, it has been recently proposed that a long-range interaction is
at the basis of flocking behavior [19]. Hence, the notion that short-range interactions rule collective behavior, albeit
reasonable, is still far from being an established fact, even in those systems that have been most intensively studied
experimentally.

The recent access to large scale empirical data on animal groups has considerably advanced our understanding of
the problem. However, a direct and unbiased proof of whether interaction is short- or long-ranged has been lacking
so far. Significant results have been obtained by fitting biological models to the data [20-23]. Yet, the problem with
model fitting is that it may be tricky to distinguish the intrinsic properties of the system under investigation from
the a priori ingredients of the model used to fit the data. Alternatively, the interaction has been assessed by using
some structural proxy of it. For example, in [25] the authors measured experimentally the anisotropy in the spatial
distribution of the neighbors around a given bird, and found it to decay over a range of a few individuals (~ 7).
Since this anisotropy can only be determined by the interaction, the authors concluded that interactions must be
short range and decaying over approximately the same range. However, through this kind of structural proxies one
does not attain direct access to the interaction.

In this paper we follow a different approach and use the maximum entropy method [24] to infer the interactions
directly from the data. The philosophy of this method is different from standard model fitting in that, as we will
discuss, the model it designs for the system is dictated by the available experimental observables and it is not assumed
a priori. For bird flocks, we started this program in [26], with encouraging results. Using a very simple experimental
input, we inferred the effective number of individuals each bird is interacting with, and the average strength of such
interaction. Hence, in [26] it was assumed a step-like shape of the interaction, in order to keep the mathematical
complexity to a minimum. Here, we make a significant step forward and derive the full functional dependence
on distance of the effective alignment interaction between individuals. We call this function J(n), where n is the
topological distance between birds, i.e. their order of neighborhood [25]. We find that J(n) decays exponentially, on
scales much smaller than the system size, indicating that alignment interaction within a flock is short-range. The
experimental input of our calculations is the velocity correlation function, which is long-range. We show however



that much of the information captured by the correlation function is redundant and only correlations on a short scale
are sufficient to retrieve the interaction J(n). Hence, not only can we infer the effective interaction, but we only
need a small number of local experimental measurements. Thanks to the new method we are also able to study the
angular dependence of the interaction with respect to the direction of motion of the flock and shed some light on the
anisotropic spatial arrangement of neighboring birds found in past experimental studies [25, 28].

The paper is organized in the following way. In Sec.II we introduce and describe the Maximum Entropy approach,
we outline the mathematical structure of the computation and apply it to the case of flocks. In Sec.IIT we show the
results of the computation for the flocking events in our dataset; we compare them with previous work [26]; and we
further generalize the method to capture the possible angular anisotropy of the interactions. In Sec.IV we discuss
what are the effects of changing the number of experimental input parameters in the calculation and show that a
fair result is achieved when the inferred interaction does not depend on the number of input parameters anymore.
Finally, in Sec.V we discuss our results.

II. MAXIMUM ENTROPY APPROACH TO FLOCKS

Collective phenomena and ordering transitions have been widely studied in condensed matter. From the perspective
of statistical physics, one usually knows the microscopic interactions between particles, and wants to predict their
large scale properties. When dealing with biological systems we often face the opposite situation. We have access to
collective observables through experiments, but have scarce knowledge on the effective interactions generating them.
The problem is in this case an inverse one: to build a microscopic statistical model starting from the macroscopic
data. As mentioned in the Introduction, several approaches have been developed to deal with this task, from model
fitting to Bayesian inference [29]. Here we consider the Maximum Entropy (ME) approach. This method was
originally established by E. T. Jaynes in 1957 [24] and has strong connections with classical statistical physics. In the
last decade, it has been widely used to describe the collective behavior of biological networks, from neural assemblies,
to amino acids in proteins, biochemical and genetic networks and flocks of birds [26, 27, 30-32, 34-41].

The main idea of the ME method is to build the least structured statistical model - the maximum entropy model
- which is consistent with a given set of measured observables. In this section we explain how to construct a ME
model and how the method can be applied to the case of birds flocks. Before doing this, however, we would like to
make two remarks on the method, which are useful to understand its philosophy, appreciate its results and evaluate
its performance.

i) As compared to other approaches, the ME principle has the remarkable feature that it does not rely on a
priori assumptions on the system under study; this means that ME does not assume any form of the microscopic
interactions (at variance with model fitting). This does not mean that the ME does not make approximations in the
description of the system; in fact it does, but we have a way to control and evaluate them. As we shall see in detail
in this Section, the kind of model we get from the ME approach crucially depends on the experimental observables
we consider as input. Were we able to perform good measurements of many observables we would retrieve in an
accurate way the full probability distribution of the micro-states of our system. This is not however what happens
in real experiments, where typically only a few quantities can be measured, and not always in a robust statistical
way. What we know is that, given some observables, the ME model is the one that describes them best with the
least number of assumptions. In this sense, the effective interactions appearing in a ME model only come from the
experimental behavior of the system. Besides, once we construct a ME model based on some experimental input, we
have a way to test its predictive power. We can, for example, use the model to predict quantities other than the ones
used to build it, and compare to experiments. More systematically, we can compute the predictive gain acquired
when providing new experimental input and assess the information content of the ME model. What happens in
some cases is that a few experimental input observables give significant gains, and adding further experimental input
makes weak progress. We will discuss an example of this procedure in Sec.IV.

ii) If we consider as input observables quantities that are - at least on certain timescales - stationary, the ME
method provides a static ME model. As we shall see, in this case the ME distribution has the form of a Boltzmann
measure, which is particularly useful from a mathematical point of view to perform computations. This does not
mean, however, that the system is in equilibrium, nor that the ME distribution is an equilibrium one. In fact the
system can have an arbitrary off-equilibrium dynamics. In this case the ME method simply captures the effect of
this dynamics on the statistical distribution of a given set of observables. What is relevant to us in this paper is
that this distribution encodes how certain degrees of freedom effectively interact due to the microscopic behavior of
the system. We note that the ME approach is not bound to produce static Boltzmann-like measures. If we consider
as input observables time dependent quantities (such as multi-point time correlation functions), the resulting ME
model will consist in a time dependent distribution [40, 42-44]. Computations and inference of effective interactions
can be in this case much more complicated. For polarized self-propelled systems we showed that, as long as the
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network of positions does not rearrange too fast (which is the case of natural flocks [51]), static and dynamic ME
models give a very similar inference of the interaction parameters [40].

A. The general ME scheme

Consider a system whose micro-state at any instant of time is described by a set of variables {x1, X2, ..., X;, ..., Xy } =
X. When the size of the system N becomes large, the space of the X increases exponentially and it is experimentally
impossible to directly sample and reconstruct the probability distribution P(X). On the contrary, it is usually possible
to accurately measure aggregate observables, which require less statistics. Let us assume that we can measure several
observables f1(X), f2(X),...far(X), and let us denote their experimental averages by (fi)expts (f2)expts s (fM)expts
respectively. The maximum entropy (ME) method consists in finding the most random probability distribution
P(X) that is consistent with the observed experimental data. The distribution must therefore satisfy the following
constraint:

<fu>cxx)t = <f,u>P ) (1)

for all p = 1,2,...,M, and where (f,)p = > x P(X)f.(X) denotes the expectation value computed using the
probability distribution P(X). Many distributions satisfy Eq. (1). The maximum entropy principle [24] aims to
find the one which has as little structure as possible, i.e. is the most random, so that one can derive the minimal
consequences of the experimental observations on (f,)expt. As a measure of randomness of a given distribution we
consider its Shannon entropy [45, 52],

ZP )log P(X). (2)

In order to get the desired probability distribution, we then need to maximize S[P] under the constraints given
by Eq. (1). Besides the experimental constraints, there is an additional constraint, namely that the probability
distribution should be normalized )"y P(X) = 1. This is equivalent to say that we add to our list of observables
an extra function, the constant fo(X) = 1. This constraint maximization problem can be solved with the Lagrange
multiplier method [55] by finding the optimum of the generalized entropy function,

SIP;{N}] = ZA — (fudexpt) » (3)

where each Lagrange multiplier ), is associated with a constraint equation. Maximizing S[P;{\,}] with respect to
P(X), we get

P(X) = ({A} exp[ qufu 1 (4)

where Z({\,}) enforces the normalization and is obtained optimizing with respect to Ag

M
Z({\}) = exp(1 + Ao) = Zexp l—ZAMfM(X)] . (5)
p=1
Using Eq.(4) the generalised entropy (3) can be written as a function of the Lagrange parameters only,

S =log Z{A D) + D Al Fuexpr- (6)

p=1

One can now easily optimize with respect to A, to recover the original constraint equation (1),
0log Z({\,
——ii-ZP = (fu)expt- (7)

As we can see from Eq.(4), the maximum entropy distribution has the form of a Boltzmann distribution P(X) =
exp(—BH(X))/Z with an effective “Hamiltonian” H(X) = Zﬁil Ao fu(X) and temperature kg7 = 1. As we



previously discussed, this does not mean that the system we are looking at is in equilibrium nor that this Hamiltonian
is the true microscopic Hamiltonian of the system (if it exists). Nevertheless, one must not forget that the optimal
values of the Lagrange parameters, through Eq.(7), enforce consistency with experimental data. They describe the
effect of the microscopic dynamics on the statistics of the input observables. In this sense, they represent effective
interactions and mirror the structure of the microscopic behavior of the system through the filter of our experiments.
In this respect, the choice of which experimental observables to consider as input of the method is very important:
the more representative the set of {f,(X)} is of the collective behavior of the system, the more predictive the ME
model (4) turns out to be, the more informative the effective parameters are on the microscopic features of the system
that determine its behavior at the collective scale.

Keeping these considerations in mind, to investigate the nature of interactions in our system, we need to select a
good set of experimental input observables, compute the corresponding ME model, investigate its predictive content,
and finally look at the structure of the effective ME interactions.

From a mathematical point of view, to compute the ME model we need to solve Egs. (4) and (7). This means
computing Z({\,}), which represents the partition function of the Boltzmann-like distribution (4), a problem we
are fairly well-equipped to deal with (at the level of schemes and approximations) in statistical physics. There is,
however, a further obvious difficulty: Z is not a number, but a function of the Lagrange parameters, and must be
computed for any possible value of the {\,}. This is the essence of the inverse problem. In most cases this is a
hard step, which is achieved numerically. For flocks, which are very polarized groups, one can resort to a high-order
expansion and compute Z({\,}) analytically. Once this function is known, we can fix the values of the Lagrange
parameters by enforcing the constraint, i.e. by optimizing Eq.(7).

Interestingly, we note that the generalized entropy (7) is related to the likelihood of the experimental data £({\,}),
ie.

M
log L({A}) = (108 Plespt = —log Z({A}) = > Aulfudespt = —=S{N}) (8)

Hence, optimizing the generalized entropy (which - as can be shown - corresponds to a minimum in the parameters’
space) is equivalent to maximize the log-likelihood of the experimental data.

B. ME distribution for flocks

Let us now apply the ME method to flocks of birds. The first step is to identify the set of variables that defines
the microstate of the system under investigation (i.e. the variables {X} of the previous section). We are interested
in the interaction that is responsible for the alignment of the directions of motion of the birds. Hence we consider as
microscopic variables the orientation vectors, §; = ;/|0;|, where ¥; is the velocity of bird i = 1,..., N.

The second step is to select a set of observables, function of the variables §;, whose experimental value will be
used to constrain the probability distribution of the orientation vectors, P({s;}). The standard way to proceed
is to use moments (i.e. correlations) of this distribution, (5), (5 §),.... As one can easily see from Eq.(4), each
one of these m-points correlations will generate m-points interaction terms in the effective Hamiltonian. One could
naively think that the more correlations we consider, the better the corresponding ME model. In fact this is not
true, for several reasons. On the experimental side, the larger is m the larger is the statistics needed to get good
experimental estimates (in terms of number of measurements and sample size). Thus, using large m-point correlations
typically enhances the experimental noise. From a more conceptual point of view, not all correlations are in general
equally important. By considering too many of them we can introduce redundant information and risk to overfit the
parameters. The most economic prescription is therefore to use up to the minimum m-point correlation that allows
to predict the m + 1-point correlation.

Previous studies have shown that in flocks (as in other collective systems [30]) the use of pairwise interactions
(m = 2) allows to accurately predict the 4-points correlations [26, 27]. We then focus on pairwise correlations. In
a flock of birds we can in principle define the mutual correlation of the flight directions Cj; = §; - §; for any single
pair of individuals. However, these quantities wildly fluctuate in time and never reach a steady state. The reason
is obvious: birds are not on a fixed lattice; they move in space so to change position with respect to each other.
Therefore, the mutual distance of i vs j changes in time; but any reasonable social force (i.e. interaction) will depend
on the relative distance between individuals, rather than on their absolute identity. Hence, distance, rather than
identity, should be used as a label. The experimental proof of that is that the correlations computed as a function
of distance are stable in time over appreciable intervals. Besides, they exhibit a non-trivial scale free dependence,
signature of the collective behavior of the flock [4], which makes them a very good choice for our purposes.



We therefore consider as our experimental input observable the two-point correlation function,

. 1
C(n;{5:}) = N Z 8; - 85 0(kij —n) . 9)

ij=1

This quantity is the average correlation between a bird and its n'™® nearest neighbour (we use the hat notation to
distinguish this full correlation from the connected one - see below). Compared to previous studies [4], we measure
the correlation as a function of the topological distance (i.e. order of neighborhood), n, rather than of the metric
distance, 7 [25]. In Eq.(9) k;; is the topological distance of bird j relative to bird ¢: if j is the first nearest neighbour
of i, k;; = 1; if j is the second nearest neighbour of i, k;; = 2; and so on (k;; is nonsymmetric). This implies
> 0(kij —n) =N, and this is why the normalization in (9) is easier than in its metric counterpart [4, 46].

As explained in the previous section, the ME method consists in finding the probability distribution P({5;}) that
maximizes the entropy S[P] under the constraint that the distribution reproduces the experimental observables (9),
which in our case read

(C {8 D)) expt = {C(n: {5:}))p - (10)

This constrained maximization is achieved by introducing one Lagrange multiplier, J(n), for each experimental

quantity that we are fixing, C'(n). It is convenient to define J(n) as an intensive parameter so that, in the notation

of sec.Il A, J(n) corresponds to A, /N, and C (n) corresponds to f,. As we have explained, the distribution obtained
in this way has the form of an exponential of the product of the Lagrange multipliers times the observables

1 (n) L i3,
P({gz}) _ E eNZn ](n)c(n)E ezij J(kij) §i-5; , (11)

where Z is the normalizing partition function and J(ki;) = >, J(n)d(n — k;j). The probability distribution (11)
corresponds to the effective Hamiltonian,

H=-"J(kij)5 5 . (12)
ij

Therefore, the (discrete) function J(n) represents the strength of the effective alignment interaction between pairs
of birds at topological distance n. Once we solve the ME model and we compute J(n), we can therefore investigate
the nature of such interaction, how it decays in distance and understand whether it is short- or long-ranged.

Inferring the full function J(n) is a significant step forward compared to our previous ME calculations [26, 40],
where we assumed a step-like shape of the interaction. By doing that we only had to infer two parameters, intensity
and range of the interaction, so that we had no information about the form of the interaction. For this reason, the
question of short vs long range interaction in [26] was addressed in a rather indirect way, namely by checking that
the interaction range did not scale with the system size. Here, on the contrary, we will be able to calculate directly
how the interaction decays and to see explicitly that it is short range.

C. Maximization of log-likelihood

To retrieve the interaction function J(n) we need to solve the ME equations enforcing the constraints (10) or,
equivalently, maximize the log-likelihood of the data. In our case the log-likelihood function Eq.(8) is given by

log £ = (log P({8;}))exps = —log Z[J(n)] + N Y _ T (n)(C(n; 5)) expr- (13)

We therefore need to compute the partition function Z[.J(n)] and then perform the maximization with respect to
J(n). This is a non-trivial program. There are however a few tricks we can exploit to facilitate the task. We outline
here the main steps, details can be found in the Appendixes.

e The expression of the effective Hamiltonian can be simplified further. We can indeed rewrite H by introducing
the symmetrized interaction matrix Jj;,

H:—ZJijgi'gj (14)
i



where J;; = [J(ki;) + J(kj;)]/2. Interestingly, Eq. (14) describes the Hamiltonian of an Heisenberg model on
a network, whose topology is described by the interaction matrix J;;. In the strongly ordered phase - as flocks
are - this model can be solved using a well known low temperature expansion, the spin-wave approximation
(see Appendix). As a result, Z can be computed analytically and is entirely given in terms of the eigenvalues
{ay} of discrete Laplacian matrix A;; = d;; »_, Jir — (1 — 6;5)Ji;, giving

Z[J(n)] == logax + Y J(n) (15)

k>1 n

e In principle we need to consider all possible values of mutual distances n = 1.-- N, and optimize over N
distinct Lagrange parameters. This number can be however severely reduced. It turns out (see next section)
that correlations C'(n) for n > nq, are redundant and do not improve the computation. Thus, all the sums
appearing in Eq. (13) can be extended only up to n,q.. Besides, one can 'bin’ the integer values of topological
distances n in discrete intervals of size An, much as one would do with real values of the metric distance (see
Appendix B). In this way the number of effective variational parameters can be reduced even further, speeding
up the maximization procedure. The expression of the log-likelihood then becomes

log L = Zlog ay — NAnZ,J(n)(l —(C(n))expt)- (16)

k>1 n

where the primed sum indicates that we are summing over discrete bins, up to n,,qz-

e The derivatives of the second term of the log-likelihood with respect to the J(n) are trivial. However, differ-
entiating the partition function is far less trivial, as the eigenvalues aj are very complicated functions of the
{J(n)}. Luckily we can use perturbation theory (see Appendix C) and derive the exact expressions for the
derivatives w.r.t. to J(n).

In this way we finally get the ME equations

A B 1 1 Oap Tr[A=1y(n)]
<C(n)>expt =1- NAn kz>1 a_k 3J(n) =1- NAn ’ (17)
where the matrix v is given by
1 1
i (1) = 50 > (ki —n) + 6(kmi — 1)) | — 5 (1= 8i5)(8(kij —n) + 6(kji —n)). (18)

m

These equations can be exploited to efficiently maximize the log-Likelihood (16) numerically (see Appendix D for
details on the numerical procedure) and find, for each value of n, the optimal J(n). The results of this procedure
are discussed in the next Section.

IIT. RESULTS
A. Short range interactions vs long range correlations

Let us summarize the procedure explained so far. We considered a set of experimentally measured observables,
the velocity correlation functions Eq.(9), and built the ME distribution consistent with these observables. This
distribution is expressed in terms of effective alignment interactions between individuals, whose dependence in mutual
distances is described by the function J(n). The ME allows us to retrieve J(n) by maximizing the log-likelihood,

given the experimental input (C'(n))expt-

Let us now discuss the results of this procedure. We used an experimental dataset of 22 flocking events (see Table
I and Appendix E). Data were obtained from stereoscopic experiments in the field: large flocks of starlings (from
hundreds to thousands birds) were filmed with high resolution stereo-cameras and - thanks to innovative computer
vision techniques - individual 3D tracking was performed [4, 25, 49]. Given the difficulty of the problem, this dataset
represents to date the largest experimental dataset on large animal groups moving in three dimensions.

For each event, we measured the correlations (C(n))exps and used them as input for the ME computation. The
resulting J(n) is plotted in Fig.1, for two distinct flocks. As we can see from the figure, the interaction function (red



line) clearly decays to zero on a topological scale of few (order ten) individuals. To fully appreciate the result and
its consequences we also plotted in the same figure the connected correlation function (blue line), which measures
the decay of correlations between birds. So far we always considered the nonconnected velocity correlation function
C(n), Eq.(9). Flocks are however in the ordered phase (they have nonzero polarization), hence C'(n) does not decay
to zero. This is simply a consequence of the emergence of long-range order: all birds fly on average in the same
direction and there is a trivial contribution of the center of mass motion to the full correlation function. For this
reason, if we want to describe how correlations decay, we need to consider the connected correlation function, which
is defined by using the velocity fluctuations

Cn) = % S 65 - 65 0(kiy — 1) (19)
4,7

where 05; = 55— (1/N) >_,. 5k. C(n) is basically the full correlation minus the order parameter squared and measures
how much individual deviations from the average motion are correlated with each other.

For very large systems (i.e. in the thermodynamic limit) C'(n), unlike C'(n), decays to zero for large distances,
signaling the physical fact that fluctuations must be uncorrelated when their distance tends to infinity. In finite
systems, however, the behaviour of the connected correlation function depends on the nature of the correlation in
the system. In systems with short-ranged correlations, namely systems where the correlation length £ is always
smaller than the systems size, C(n) decays to zero as in an infinitely large system; this means that not only the
function reaches the zero axis at a distance of the order of the correlation length, but it also stays zero beyond this
distance and the correlation function does not depend much on the system’s size. Bird flocks, however, have been
found to belong to a very different class, namely systems with long-range correlations, also called scale-free systems
[4]: in this case, the correlation length ¢ scales with the system’s size and the infinite size form of the correlation
function is a power law. This fact that has several implications; first, in a scale-free system the zero of the connected
correlation function, which is the best proxy of a correlation length, scales with the systems size; second, because
of the definition of connected correlation, where fluctuations are calculated by subtracting the spatial average, the
function C(n) crosses the zero axis in correspondence to the correlation length, without leveling to zero after this
point (for an extended discussion of this point see [4]). Only for very large systems one would see the power-law for
of the correlation function.

In Fig. 1 a,c we can compare the behavior of C'(n) (the input) with the inferred effective interaction strength, J(n)
(the output). What we find is that, in contrast with the correlation, the interaction J(n) is very much short-ranged.
The difference between C(n) and J(n) is quite striking (Fig. 1, left). We find that J(n) decays exponentially with
the topological distance (Fig. 1 b,d),

J(n) = Jy e /" (20)

where the decay constant n. provides a measure of the interaction range. The mean value of n. over all 22 analyzed
flocks is,

n.=380+0.5 (std error), (21)

to be compared with the estimate n, = 6.5 £ 0.9 (std error) given in [25] using spatial structure as a proxy of the
interaction. Plots of J(n) for several other analyzed events are displayed in Fig.2, while the values of n. for all events
can be found in Table I. In all cases the interaction decays exponentially and the interaction range n. is much smaller
than - and not dependent on - the system’s size N (see Table I). In terms of metric distances, in all cases these
ranges correspond to distances much smaller than the extension of the flock (and well below its shorter dimension)
- see Table I. We therefore find that the effective alignment interaction in starling flocks is short-ranged [50].

We notice another interesting aspect of Fig.2: these plots all have the same scale on the abscissa, meaning that in
all flocks the interaction decays over a similar range of the topological distance n. But these flocks have significantly
different densities, therefore if we wanted to plot J as a function of the physical, metric distance r we would need
widely different scales. This is yet another demonstration of the previously discovered fact [25, 26] that interaction
in bird flocks is based on topological, rather than metric distance [50].

B. Comparison with the step-interaction case

As mentioned in the Introduction, a first, simpler, maximum entropy computation on bird flocks was performed
by some of us in [26]. Let us now compare the present approach with the one of [26], and discuss the present step
forward compared to previous results.
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FIG. 1. Left Connected correlation function C'(n) compared to the interaction J(n) (both normalized by their n = 0 value to
be displayed on the same scale). Right Close-up of the interaction, J(n). The full line is an exponential fit to the data (see
text). Inset: Semi-log plot of the same quantity. Top. Event 31-01, N = 2126; Jo = 5.63, and n. = 6.11. Bottom. Event
21-06, N = 717; Jo = 25.63, and n. = 7.41.

The experimental input used in [26] was also related to velocity correlations. However, it was not the correlation
as a function of distance C'(n), as in the present paper. Rather, we considered a single scalar, Ci,, describing the
average degree of correlation between a bird and its interacting neighbors

. 1 1 .
Cint:N;n_c;Si'sjv (22)

where the sum is carried out over the first n. neighbours of i. We can recast this quantity in the language of the
present paper by noting that,

N L o
Zi,j:l 8i - 85 ©(kij — ne)
N )
Zi,j:l O(kij —ne)
where O(z) is the Heaviside step function. By using the formalism that we developed above, it is easy to see that

this construction is equivalent to assume that the interaction function has a step-like behavior, being constant up to
neighbour n. and zero beyond that, namely,

Cint =

(23)

J(n) = Jy ©(n. —n). (24)

In [26] Jy - the (average) strength of the interaction - naturally appeared as the Lagrange multiplier associated to
Cint, so that the entropy was maximized w.r.t. it. On the other hand, n. - the width of the step-like interaction -
was not the Lagrange multiplier of any given observable, so it remained in the likelihood even after maximization
w.r.t. Jy and was determined through a maximum likelihood principle. This means that the calculation of [26] in
fact assumed some parameter-dependent form of the model (namely the step interaction form (Eq. (24))), and did
not exclusively rely on entropy maximization.

How does the calculation of [26] compare to the one we developed above? First of all, we see from Fig. 2 that the
old step-interaction is always compatible with the new exponential interaction, so there is a nice consistency between
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FIG. 2. The alignment interaction strength J(n) for six events different from those in Fig.1: event 57-03 (a), event 58-06
(b), event 63-05 (c), event 69-10 (d), event 20111125-2 (e), and event 20111215-1 (f) (See the Table. I for the details of the
events). Circular symbols (red) are the result of the ME method, while black solid lines are the exponential fit to the data.
Step functions (blue) are the interaction strengths computed using the ME method described in [26]. Insets are semi-log plots
of J(n) for the respective events. All of them show reasonably clear exponential decays.

the two cases. For a more quantitative comparison, let us call Jgtep and nS'P the strength and the range of the

interaction of the step model of [26], and J5 and n&*P the parameters of the exponential fit of the J(n) that we
calculated in the present work. It is reasonable to expect two things:

1. the total interaction strength, that is >, J(n), should be the same in the two cases. From this condition we
et nexp JoXP — nstepJStCP.
g c 0 c 0o

2. if we interpret w(n) = J(n)/ Y., J(m) as the (normalized) weight of the n'" neighbour, the average of n, i.e.
>, w(n)n should be the same in the two cases.

These two conditions give,

N = /2, (25)

c

O — oy (26)

The data in Fig. 3 indicate that these two relations are indeed satisfied. Notice that the fact that the step-like
parameter n'°P is twice as large as the exponential decay range can (at least partially) explain the discrepancy

between nS'°P (which was found to be = 21.6 in [26]) and the previous estimate of the interaction range given in [25]

(ne = 6.540.9).

C. Longitudinal vs transverse interaction

In natural flocks the distribution of neighbors around a given individual was found to be anisotropic [25]. This
suggests that there might be a certain degree of anisotropy in the interactions between birds. We can use the ME
approach to investigate this question. We know that the more detailed the experimental input we use, the more
detailed the corresponding ME model will be. In the previous section we discussed how increasing the amount of
experimental information can lead to an increase in knowledge about the interactions: using only Cj,: [26] allows
inferring an effective interaction range and strength, while using the correlation function C (n) allows inferring the
full dependence of interaction on distance. In the same way, to probe the angular dependence of interactions we now
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FIG. 3. (a) Interaction range n. and (b) interaction strength Jo: Comparison of the step model vs the present work; the full
lines are the predictions of Eq. (25) and Eq. (26).

consider correlation functions, which not only depend on distance, but also the on angle with respect to the direction
of motion.

Given a bird, i, we partition the space around it into two sectors, the longitudinal one and the transverse one:
consider a neighbor j of i, and let §;; be the angle formed by ;; (the vector joining ¢ to j) and the flock’s direction

of motion V; then j is in the longitudinal sector of i if | cos(6y;)| > 1/2; otherwise it falls into the transverse sector
(this relationship is symmetric). Notice that with this definition the two sectors have the same 3d volume. We then
define the longitudinal (L) and transverse (T) correlation functions, which are simply the average correlations in
their relative sectors,

Zm §; - 8;0(kij —n)O (x| cos(05)| F 1/2)
>0 0(kij —n)O ([ cos(6;5)| F1/2)

where ©(z) is the Heaviside step function. When computing these correlations on flocks data, we find that the
transverse correlation is slightly but systematically larger than its longitudinal counterpart at small topological
distances: the percentage of times where CT(n = 1) > CE(n = 1) is 64% (over all frames and events), and is
above 50% in 91% of events. Starting from these new observables, one can apply the maximum entropy method as
explained in the previous sections and get a ME distribution with effective Hamiltonian;

CPT(n) = (27)

H = =N 3 [pHn) T4 m)C* (m) + 5" (n)I7 ()7 ()] (28)

Here, the Lagrange multipliers JZ(n) and JT (n) represent the alignment interaction strengths of a bird with its n-th
neighbour in the longitudinal and transverse direction respectively. The pT are the fraction of neighbors that lie
in longitudinal and transversal sector and are defined as p*%'(n) = (1/N) Y, ; 0(kij —n)O(£| cos(0;;)| F1/2). These

quantities of course satisfy the relation p*(n) + p” (n) = 1. We note that, despite the constrains:
C(n) = p"(n)C*(n) +p" (n)C" (n), (29)

the link between .J(n) and J%7T (n) is not trivial. In this case we match at the same time C*(n) and C7T (n), in the
isotropic case C' (n) only. However there are many different combinations of cr (n) and cT (n) that correspond to the
same global C'(n) (Eq. (29)). This means that we can have many combinations of J=7 (n) consistent with the same
J(n). Special cases occur only when the correlation functions of the two sectors are the same cr (n) = cr (n) (in this
case JE(n) = JT(n) = J(n)) or when there are no neighbors in one of the sectors (if p”(n) = 1 then J¥(n) = J(n)
and J%(n) is indeterminate, and viceversa — as it should be).

To find the J&T'(n) consistent with experimental data we proceed along the lines explained in the previous sections.
Also in this case the Hamiltonian (28) can be recast in an Heisenberg-like form, which allows computing analytically
the partition function to get an explicit expression of the log-likelihood in terms of JL(n) and JT (n) (see Appendix
B). The transverse and longitudinal interaction functions can then be retrieved by maximizing the log-likelihood.

The result is shown in Fig. 4, where we plot the values of J7(n) and JZ(n) for n = 1 and n = 2 for all the analyzed
flocking events. The interaction between nearest neighbors in the transverse direction is detectably stronger than
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FIG. 4. Log-log plot of J¥ vs JT for n = 1, and n = 2 for all the analyzed flocks. The full line is the identity. The computation
of both correlations and inferred interactions in the anisotropic case requires a larger statistics, because only half of birds pairs
are on average used to get J7(n) and C’L’T(n). For this reason, events where the size is too small or that are too short in
time are too noisy and have been not included in the analysis (events 77-07, 72-02, 1214-4-1,1214-4-2, 58-07 - see Table I)

that in the longitudinal direction. On an average, JZ(n = 1) is 20% larger than J*(n = 1). More precisely,
JT(1) and J*(1) are linearly correlated with Pearson correlation coefficient p > 0.99, the best linear fit giving
JT(1) = (1.208 £0.058)JL(1) (statistical confidence p-value < 1.0e —6). This anisotropic character of the interaction
is very short-ranged, though, as it already disappears by the second nearest neighbor, J%(n = 2) ~ Jl(n = 2)
(Fig. 4).

The anisotropy that we find is not strong, but it is interesting. Let us discuss more in details its possible origins
and consequences.

First, remember that we are studying the alignment interaction, hence our result tells us that a bird is more keen
to align its direction of motion with the neighbor on the side, rather than with that directly in the front. One may
speculate that this is due to the fact that misalignment with a side neighbor has more severe consequences (in terms
of collision) than that with someone along the direction of motion. On the other hand, for what concerns speed
control one would expect the opposite: a stronger interaction in the longitudinal direction would be more useful to
avoid bumping into each other. Some recent progress has been made in working out the speed interaction in flocks
[27]; it would therefore be interesting to extend the present calculation to the case of speed.

Even though the anisotropy concerns the directional degrees of freedom (the velocities) it can have an impact on
the spatial arrangement of neighbors. One can argue that individuals who better coordinate flight directions tend
to keep the same mutual distance, and consistently maintain their neighborhood relationship. In this respect, our
result is consistent with the finding of [25], where it was found that the closest neighbors of a bird are more easily
found in the transverse than in the longitudinal direction (i.e. the nearest neighbors are typically on the side rather
than in the direction of motion). Understanding how interactions between flight directions are related to the spatial
structure of the group is a complex problem. There could be positional attraction-repulsion forces between birds,
which we did not consider in our ME analysis, and that can influence the spatial arrangement of individuals (see
[15, 53] for a discussion in numerical models). Recent analysis [41] however suggest that in systems with topological
interactions velocity alignment has an important role in the structure, which is why our result can help to understand
this issue.

Finally, a word of caution is required. There is an important anisotropy present in polar active systems, which is a
consequence of symmetry breaking and dynamics and is not due to anisotropic microscopic interactions. Flocks are
polarized groups, as such velocity fluctuations orthogonal to the global velocity are much stronger than longitudinal
fluctuations, due to the presence of soft modes (see Appendix A). In self-propelled systems this causes anisotropic
diffusion exponents and a non trivial scaling of correlations in the large scale hydrodynamic regime [17]. Natural
flocks exhibit their collective behavior on much shorter scales - both in terms of sizes and time [7]. Still, it might be
that the anisotropy captured by the ME model in part describes the effect of the microscopic anisotropic diffusion
on the scale of the experimental observations.
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FIG. 5. (a) The interaction strength J(n) is plotted for different nmaz (event 21-06). With increasing nmax, the form of J(n)
saturates. (b) Entropy S vs nmax for the same event. In the large n regime the entropy decays very weakly; in this regime we
are merely fitting the noise.

IV. DEPENDENCE ON THE NUMBER OF INPUT VARIABLES

When we introduced the ME approach in Sec.IT we briefly discussed the role of the number of input experimental
observables. The more observables we consider, the more detailed the corresponding ME model. Indeed, the number
of parameters that we infer through the method is equal to the number of experimental observables that we use to
constrain the entropy maximization. In principle, increasing the amount of experimental input should lead to a more
complete knowledge of the effective interactions in the system (see e.g. Sec.III B, IITC). This is not however always
true. There are cases where the relevant information is captured by a small number of observables, and one just
needs these few observables to get a very effective description of the system. Our case is precisely of this kind, and
offers a very nice example where the predictive power of a ME model can be clearly quantified.

In our work we use the correlation function C'(n) as reference observable. The topological distance n between two
birds can go up to nmax = N. This means that the correlation function (9) is a set of N numbers, so that we should
in principle use N Lagrange multipliers, J(n) with n = 1,..., N, to maximize the entropy. The very long-range
nature of C'(n) seems to suggest that there is indeed information to be exploited in this whole function, up to the
maximum possible values of the topological distance. In fact, the situation is very different.

What we find is that if we use values of C'(n) up to a maximum distance 7nmax, the inferred interaction stabilizes
for nmax < N. To see this we maximized the entropy for different numbers of Lagrange multipliers, that is we
calculated J(n), with n = 1,. .., nyax, for different values of ny.x (Fig. 5a). What we see is that for very small nyax
the function J(n) is unstable, so that the whole interaction changes drastically when increasing n,.x. However, when
Nmax becomes large enough the full interaction J(n) stops depending on my,ax and the only effect of feeding more
correlations and adding new parameters to the calculation is to obtain negligible and noisy couplings. This means
that beyond a certain distance, the ME calculation simply refuses to switch on any more couplings, even though the
long-range correlation function that we feed as an input still seems ripe of information at that distance. This is an
indication that the ME method works with remarkable economy.

The role of nyax can be understood also at the level of the entropy. The value of the entropy as a function of
Nmax after maximization tells us how much information we gain [45] by adding more experimental data (C'(n)) and
by inferring more parameters (J(n)). We can see from Fig. 5b that the entropy decays very fast up to a certain
Nmaz =~ 15, and then the decay becomes slower and linear. This means that we are gaining real information for
Nmax < 15, but after that we are simply fitting the noise and there is no more useful information to be gained by
increasing nmax. For infinitely large IV, that is for infinitely accurate experimental averages, we expect the large n
weak decrease of the entropy to become a real plateau, signifying that there is really nothing to gain (not even in
terms of noise fitting) by adding more parameters than those really required by the short-range interaction.

To better understand the role of the entropy and fully appreciate the meaning of the change of behavior displayed
in Fig. 5 we need a Bayesian analysis. If we want to infer a good model, a model that tells us something about the
behavior of the system, our purpose is not simply to fit well the data. Rather, our goal is to find the minimal set of
parameters able to reproduce the experimental data. Within a Bayesian framework this goal can be mathematically
formalized. Let us call P(npyax|D) the probability of a model with n,.x parameters, given a certain dataset D. It
can be shown that [29]

P(nmax| D) = P(D|nmax)V (Nunax) ~ =3 (Mmax) g=@mmax (30)
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The first term in the r.h.s. is the maximized likelihood, i.e. the probability of getting the data with a model with
Nmas Parameters, and is given by the exponential of the ME entropy (Eq. (13)). The second term, which is called
Occam factor, V(nmax), is equal to the ratio between the posterior accessible volume in the space of parameters and
the prior accessible volume [29]. Typically, the Occam factor decays exponentially with the number of parameters,
V (Nimax) o< € ¥Mmax,

Hence, in general when we increase the number of parameter ny,x of the model we have a trade-off: on one hand
it improves the fit, hence it increases the likelihood; on the other hand, it decreases the Occam factor. Because
of this trade-off, when the number of parameters increases beyond a certain value, the suppressing contribution of
the Occam factor compensates the decay of the entropy, and therefore the growth of the likelihood. For this reason
P(nmax|D) reaches a maximum for a finite value of parameters, nmax = nY, Fig. 6(b).

Unfortunately, the Occam factor depends on the prior probability of the parameters, which is always an obscure
thing. For this reason the position of this maximum is not clearly defined. However, it is possible to show that this
fact produces only a small ambiguity in the location of n%% . First of all, the contribution of the Occam factor to
P(nmax|D) depends only logarithmically on the prior probability: major changes in the prior leads to a small change
in Occam factor. Moreover, when we increase ny.x after we reach the optimal value, the slope of entropy changes
suddenly: in fact, we move from the regime nya, < n%/. , where adding each new observable implies a considerable
increase of information, to the regime ny,a. > n°/, , where instead adding new observables only marginally increase

max’
the total information. nSf is determined by the condition 0S/0nmax = 910g V (nmax)/OMmax, which means that
the solution is the crossing point between red and blue line in Fig. 6(c). Varying the prior, the blue line moves up
and down and this moves n2P%_ by an amount Anyax. As we can see from the figure, the faster the change of slope
of entropy, the smaller the range Anpyax. Then, typically, big changes in the prior leads to little change in n% .

V. CONCLUSIONS

In this paper, using the ME approach, we have provided rather direct evidence that the effective alignment
interaction between starlings within real flocks is short-range. This result is interesting for two reasons.

First, from a biological perspective, we believe this is the first time that a short-range interaction is found without
being an a priori ingredient of the model used to fit the data. In general, it is difficult to formulate a model where
a qualitative crossover from short to long-range interaction occurs by tuning a parameter. Hence, what is normally
done is that a certain, fixed, functional form is assumed, and its parameters fitted. Here, on the other hand, we
assumed no a priori functional form of the interaction, so that the final result is completely ruled by the experimental
data. We believe that short-range interaction (at least in starling flocks) can now be considered as a rather well
established fact.

Secondly, our result is relevant for the maximum entropy method itself, which is increasingly used in biological
inference [30-39]. A common objection to the ME method is that it is just another kind of model fitting procedure,
so that, ultimately, one is prone to obtain as a qualitative output of the method what one feeds into the method.

FIG. 6. (a): Entropy as a functions of number of parameters for one real event. (b): Contributions of log-likelihood and
Occam factor to probability of model P(nmax|D). (¢): Red line is derivative of entropy and each horizontal blue lines represents
derivative of logarithm of Occam factor for different values of prior.
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We believe that what we have found here proves otherwise. The difference between long-range and short-range
interaction is a qualitative one, with deep consequences on the physics of the system. Yet we have seen that long-
range correlation is turned into short-range interaction by the ME method, with the entropy pointing out what is
the minimal number of parameters that need to be switched on, given the data. This suggests that the maximum
entropy method manages to extract information from a data set with minimal bias.

We thank William Bialek for many discussions and suggestions. This work was supported by grants IIT—Seed
Artswarm, ERC-StG n.257126 and US-AFOSR - FA95501010250 (through the University of Maryland).

Appendix A: Partition function in spin-wave approximation:

In order to calculate the log-likelihood we need to compute the partition function Z (Eq. (13)). In general, the
exact analytical calculation of the partition functions is very hard. In the case of flocks, however, this can be done
thanks to the spin-wave approximation [26]. Flocks are very ordered, with magnetization (i.e. polarization) close
to 1, we can therefore expand the Hamiltonian in the small fluctuations around the mean direction of motion. The
partition function can be written as,

Z = /D§' [H o(]si| — 1)] oxp | Y JijSi - 55 (A1)
; i

where D5 = [], ds;, and the d—function is enforcing the constraint that each spin has unit length. We define the

global order parameter, V = >, 8i/N = ®n, where 7 is the unit vector and ® = |V| is the polarization of the flock.
Each spin s; can be rewritten in terms of the global orientation direction 7 and a perpendicular component to 7,
that is §; = si'A + 7. By construction, they satisfy the following relations:

Tioh=0, %Xi:sf_fb, Zi:ﬁi:o. (A2)

The partition function can be rewritten as,

Z = /DsLDﬁ lH(S (N/(SW + |72 - 1)] ) (Z ﬁi> exp Z Jij(sfsh + @ 7)| (A3)

where Ds =[], dsF and D7 =[], d#;. The delta functions are taking care of the constraint on the length of each
spin and of the global constraint on the 7;. For strongly ordered flocks, ® ~ 1 and |7;| < 1. Then, at second order,
sk ~1—|7|?/2. Performing the integral over s, the partition function becomes,

1
Z= | DR|[] —==|0 7 =N Ay -7y Jii | A4
e g (55) oo |- Znen e !
where
Aij = i <Z Jik> — (1 = 8i5)Jij. (A5)
k

For strongly ordered flocks, the product [[,1/4/1 — |7;|? can be neglected (we have explicitly checked that the
corrections due to this term are indeed negligible). Therefore, we can write

Z:/Dﬁé <Zﬁi> exp | =Y Ay T+ > Jij| - (A6)
i @7 @]

Since J;; = Jj; (and then A;; = Aj;) we benefit from the spectral theorem for symmetric matrices. The matrix A;;
is diagonalizable, its eigenvalues are real and its eigenvectors form an orthonormal basis. Moreover, the condition
>_;Aij = 0 means that the matrix A4;; is a positive semidefinite matrix having the smallest eigenvalue a; = 0, and
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all other eigenvalues positive. Let a; be the eigenvalue corresponding to the eigenvector wy. The eigenvector wy,
satisfies the usual relation,

ZAijwf = apwl. (A7)
J

It can be easily seen that the eigenvector w' corresponding to a; is constant and it is given by (1/VN,1/V N VN, .., 1 /VN).
N

We can rewrite the integral in the orthonormal basis defined by w!, w2, ..., w

N
Z=/D7;’ 6(7;’1)exp —Zak|7;’k|2+ZJij ; (A8)
k=1 i,

where 7/ =D wfﬁi. From this form it is clear that the role of the §-function over the 7/ 1 is exactly to eliminate
the zero mode from the integral. Performing the Gaussian integral in two dimensions, we obtain,

log Z = Z log ar, + Z Jijs (A9)

k>1

where the irrelevant constant terms have been neglected.

Appendix B: Coarse-graining

The experimental observable we consider in flocks is the correlation function C (n). In principle, this correlation
function can be computed for each value of the topological distance n but, as discussed in the paper, it is safe to
consider only C(n) up to n = npmax < N Furthermore, in order to decrease the number of parameters and speed up
the numerical task, we can consider a “coarse grammg” that is a binning of n with generic increment An > 1. This
means that we 1nclude in the same observable C (n) contributions from the distances n,n+1,...,n+ An — 1. Hence,
we have,

i 585 S (ki —
O = 2 ),
Zi,j (kij —n)

where {s;} are unit vectors and k;; = n if j is the n" neighbor of i. §(k — n) is a “modified” Kronecker’s § that
takes into account the binning of n,

(B1)

_J1if n<k<n+An,
ok —n) = { 0 otherwise. (B2)

Note that for An =1 the model reduces to the one described in the main text.
For each observable C'(n) the associated Lagrange multiplier is denoted by A,,. The maximum entropic Hamiltonian
consistent with these observables is

H=>Y""\C(n), (B3)

where the symbol Zl means that the sum stops at nm,ax and that we sum only over the “bins” of the coarse graining,
thatisn = 1,14+ An, 14+2An, ..., nmax. Physically, A, is the total interaction strength for bin n for a flock (extensive),
whereas the interaction strength J(n) defined in the main text is the strength for an individual pair within bin n
(intensive) and hence J(n) = —A,/(NAn).

Using coarse-grained variables does not change formally the computation, as outlined in the main text. Indeed if
we define J(k;;) such that

)= J()8(ks = n), (B4)

(note that with An =1, J(ki;) = J(kij)), we can easily verify that Eq. (B3) reads as a classical Heisenberg model

H({5}) ZJ i) S5 = =) Jijsics;. (B5)
4,J
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where the symmetrized interactions matrix J;; are given by
1.2 A 1 /
Jij = lJ(kig) + I (kji)] = 5 > T()[6(kig —n) + 6(kyi — )], (B6)

The partition function can be computed using the spin-wave expansion, as described in Appendix A, where, now,
the eigenvalues ay, refer to the matrix J;; in Eq. (B6). The log-likelihhood takes the form

log £=—10gZ — A (C(n))expt = — log Z + NAnZ/J(n)<C(n)>expt (B7)

The coarse graining procedure can be easily generalized to the anisotropic case. We consider the transverse and
longitudinal coarse grained correlations (see Eqgs. (27))

X530 (ky — ) (cos (B:)] — 1/2)
) = = - >@<|cos<9ij>|—1/2> ’ (B8)
oSS (ks — O (12— [cos (6:7))
) = =, — B (12— os (B))) (B9)

where, we remind, 6;; is the angle formed by 7;; = (7; —7) and the flock’s direction of motion V =1/N > 5i- O(x) is
the Heaviside step function and the factor 1/2 divides the space evenly between the two sectors. The d-function bears
the same meaning as in (Eq. (B2)) and identifies pairs belonging to the same bin centered around the topological
distance n and of width An.

Following the same method as above, when using coarse grained correlations we need to introduce different Lagrange
multipliers AL-T for each bin (rather than for each discrete value of n). The ME Hamiltonian then reads

H= Z ALCE(n) + XECT (n) (B10)
Also this Hamiltonian can be written as an Heisenberg-like Hamiltonian. The procedure is slightly more complicated

than in the isotropic case.
We first define the fraction of neighbors that lie in the longitudinal and transversal sector for each bin around n,

pH(n) = j 0(kij —1)O (|cos (0i5) — 1/2), (B11)

pr(n) = j O(kij —n)© (1/2 — [cos (6i5)]) , (B12)

(B13)

These quantities of course satisfy the relation pl(n) + pT(n) = 1. At this point, we can express the Lagrange

multipliers ALT (defined for a given bin) in terms of the effective longitudinal and transversal interactions J%7 (n)

(defined for each pair of individuals at distance n). We have J=T(n) = — AT /(pl"T(n)NAn). Then, as above,
we introduce the pairwise interactions J&7T (k;;)

JET (ki) = 57 TET ()6 (ks — n)OLT, (B14)

n

where @iLj’T = O(=%|cos (0;;) |F1) and selects pairs that contribute to, respectively, the longitudinal and the transverse
sectors. With these substitutions the Hamiltonian acquires an Heisenberg form,

HU{SY) = —Z{jL(kij)—i—jT(k ]s &= —ZJUSZ B (B15)

where J;; is now the symmetric part of the matrix J*(ki;) 4+ J7 (kij)
The log-likelihhood then becomes

log £ = —logZ — A£<OT(n)>eXPt )‘L< ( )>eXpt

—log Z + NAn Y [p ()7 (n) (€7 (1)) expr) + P (m) T (0) (CF () )| (B16)

All figures displayed in this paper are obtained using a coarse graining with An = 2 for n = 2, nyax, and
An =1 for n = 1. We also used An = 1, results are fully consistent with the larger coarse graining, just more noisy.
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FIG. 7. Stability and convergence of the numerical method: three very different initial guesses lead to the same value of J(1)
(this is generically true for all other J(n)). Inset: also the log-likelihood reaches the same asymptotic value with different
initial conditions. This implies that it exists a stable and unique global maximum of the log-likelihood.

Appendix C: Computing the derivatives of the Log-Likelihood

Using the analytical expression of the partition function Eq. (A9), we can write the expressions of the log-likelihood
(Eq. (8)) for the case of full interaction,

log £ =—1log Z+ NAn > " J(n)(C(n))expt = »_logar — NAn Y "J(n)(1 = (C(1))expt)- (C1)

n k>1 n

Similarly, the log-likelihood function for the anisotropic case is given by,

lOgﬁ Zlog ajp — NATLZ p (n)(l - <é ( )>expt NA”Z p (1 - <C (n)>expt)- (02)

k>1

The condition for maximizing the log-likelihood is dlog £/0J(n) = 0. Let us consider, for the moment, the isotropic
case. The derivative of the second term of the log-likelihood with respect to J(n) is trivial. However, differentiating
the partition function is far less trivial, as the eigenvalues aj are very complicated functions of the {J(n)}. We
will caleulate day/0J(n) by using perturbation theory. Suppose that we perturb J(n) by some small amount,
J(n) — J(n) + ¢, where € is infinitesimal. The perturbation makes A;; change into,

Zij(e) = Aij + €vi5(n), (C3)
where we introduced a symmetric matrix
0A;; 8Jlm
ij C4

Due to this small perturbation the eigenvalue a;, and its eigenvector w”* change by small amount,

ar(€) = ay + €& + O(€2), (C5)
@t (e) = wk + egh + O(2). (C6)

For the A(€) matrix we can write,

Through some algebra it is quite straightforward to show that,

€)=ar+e Z”yu(n)wfwf + O(€?). (C8)
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Therefore, the derivative of the eigenvalue a; can be written as

Oay, . ag(e) —ag k ok
= lim — = Z%j (n)w;wy. (C9)
i

0J(n) €0

To obtain the form of matrix v;;(n) we use first Eq. (A5) and Eq. (B6) from which

04ij _ s (5. (1— 8.5,
Jim = il (51.7 (1 51])6.7 ) (ClO)
St = 5180k =)+ 8(ka )]
then from Eq. (C4)
Yij(n) = %5@' lzw(’fim —n)+ 0(kmi — n))] - %(1 — 6ij)(6(ki; —n) + 6(kji —n)). (C11)

In the same way, using the expression for the anisotropic J;; we obtain ’}/leT(’rL) for the anisotropic case,

- l(1 —6ij)(8(kij —n) + 6(kj —n))OLT.  (C12)

2 i

157 () = 54 lZ(&(km — 1) + 6(kmi —n))OLT

m

Now, using Eq. (C9), it becomes easy to calculate the derivatives of the log-likelihood (Eq. (C1)) w.r.t each of its
variable J(n). Imposing its maximization we obtain,

A 1 1 darp  Tr[A 'y(n)]
Similarly, for the anisotropic case the maximization of Eq. (C2) gives,
A 1 1 Oay Tr[A= LT (n)]
1 (CLT () ys = - - , 14
(T () expt pLT(n)NAn ; ap, 0JLT(n) pLT(n)NAn (C14)

Appendix D: Numerical maximization of the log-likelihood

The analytical expressions of the partition functions and its derivatives are not enough to analytically optimize
the log-likelihood (Eq. (16), Eq. (C2)). The reason is the following: the partition function and its derivatives are
functions of the eigenvalues and eigenvectors of the network matrix A;; and it is not possible to diagonalize such
N x N matrix (N is the number of birds of the flock) without the help of any numerical method. However, as we
discuss in this section, knowing explicitly the derivatives enormously simplifies the numerical procedure.

Finding numerically the optimum of a multidimensional function is always tricky. Two practical issues must be
addressed. First, the solution must be stable, i.e., different initial guesses should lead to the same solution. Second,
the computation should be numerically efficient. There are two ways to approach such problem: (i) without providing
the analytical expressions of the derivatives; (ii) providing the analytical expressions of the derivatives. In the first
case the number of iterations needed for the optimization is much larger than in the second case, as we provide less
information. The reason is the following. Given an initial guess (i.e. a set of {J(n)}) the numerical optimization
algorithm must explore the space of the parameters J(n) around the initial values to find the direction leading to
the maximum. This practically means computing the derivatives of the log-likelihood. To compute numerically
such derivatives the algorithm must evaluate the log-likelihood not only at the starting point, but also for for small
increments of the {J(n)}. Since the log-likelihood depends on the eigenvalues of A;;, this in turn implies that this
matrix must be diagonalized more than once. On the contrary, if the analytical expressions of the derivatives are
provided, only the eigenvalues and the eigenvectors of A;; at the starting point are required (see Appendix C) and
A must be diagonalized only once. During each optimization step the most time-consuming part is precisely the
diagonalization of the matrix A;;. Therefore the optimization time is significantly smaller with method (ii) than
with (i), and the whole computation gets much more efficient. Furthermore, as the dimension of the log-likelihood
function gets larger, the number of iterations in the first case increases very rapidly. Finally, among all optimization
algorithms currently available the most performing ones (in terms of robustness and speed) are the ones that use the
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EVENT | N | & [L (m)|no® [ng'? [r&®(m)
2106 | 717 ]0.973] 32.1 [ 7.41 [11.73] 2.00
2510 |1047]0.991] 33.5 | 9.56 [14.30] 1.93
2511 |1176]0.959| 43.3 [12.01]15.03] 1.99
2810  |1246]0.982] 36.5 | 4.92 [10.21] 1.27
2903 | 440 |0.963] 37.1 | 4.46 | 7.67 | 1.94
3101 |2126]0.844] 76.8 | 6.1 [12.37] 2.97
3206|809 ]0.981] 22.2 | 7.43 [12.50] 1.39
4203 | 431]0.979] 20.9 | 7.79 [14.60] 2.08
4905 | 797 0.995] 19.2 [ 6.18 [11.25] 1.24
5703 |3242]0.978] 85.7 | 8.51 [14.19] 2.67
5806 | 442 ]0.984] 23.1 | 7.39 [12.89] 1.63
5807 | 554 ]0.977] 19.1 | 7.23 [13.79] 1.63
6305 |890]0.978] 52.9 | 5.26 [10.21] 1.98
6909 | 239]0.985] 17.1 [10.56]16.91| 1.92
69-10  |1129]0.987] 47.3 [ 9.1 [15.30] 2.39
69-19 | 803 ]0.975] 26.4 [14.76[21.56] 1.97
7202 | 122]0.992] 10.6 |8.62 [11.37] 1.32
7707 | 186 |0.978] 9.1 |5.97 [12.36] 1.17
20111125-2 | 505 0.972] 34.4 [11.31[16.36] 1.84
20111214-4-1] 139 [0.985| 32.8 | 5.24 | 9.97 | 1.64
20111214-4-2] 156 |0.983| 31.5 | 8.13 [10.23] 2.52
20111215-1 | 394 [0.994] 49.8 | 8.48 [20.62] 1.68

TABLE I. Flocks Data: Each line represents a different flocking event. N is the number of individuals in the flock, ®
the average polarization, L the size of the flock (maximum distance between two birds), ngP the exponential decay range
computed in this work and n'°® the interaction range of the step model of [26]. Finally, r&*" represents the typical metric

distance corresponding to the topological distance ng*P: it can be seen that it is always much smaller than the flock’s size.

analytical derivatives. Practically speaking, for the largest flocks method (ii) is more than 10 times faster than (i).
Therefore, the analytical expressions of the derivatives that we have (painfully) worked out in the previous sections
are very useful to obtain a stable numerical solution in an efficient way.

We use the minimizing routine gsl multimin fiinimizer nmsimplex2, belonging to the gnu scientific library [56].
This optimization algorithm is based on Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [57]. We provide as
an input of the routines the analytical expressions of Z and of the derivatives of Z with respect to J(n) (or to JL(n)
and J7(n)). For the diagonalization, we use the gsl eigen symmv belonging to the gnu scientific library [56].

In Fig. 7, we plot the behavior of the parameter J(1) and of the log-likelihood vs the iteration time, for three
different initial conditions of J(1). It is clear that the solution is very stable and it is also reached very quickly.

Appendix E: Data set

Experimental data were obtained from field observations on large flocks of starlings, (Sturnus vulgaris), in the field.
Three dimensional trajectories of positions and velocities of each bird are obtained using stereometric photography
and computer vision techniques [4, 7, 25, 28, 47-49]. As summarized in Table I, we have analyzed 22 distinct flocking
events, with sizes ranging from 122 to 3242 individuals and linear extensions from 9.1 to 85.7 m. All these events
belong to two different sets. The first set (events from 21-06 to 77-07 in Table I) was taken in the period 2005-2008,
with cameras shooting at 10 frames-per-second (fps). [25, 28]. The second set (last 4 events in Table I) was collected
in the period between 2010-2012, with cameras shooting at 170fps [7, 49]. All the events correspond to strongly
ordered flocks, with polarization between ® = 0.844 and ® = 0.995, hence justifying the spin wave expansion. The
duration of the observed events is on average 6 seconds and it ranges between 2.8 and 11.6 seconds. The number of
frames varies between 14 and 58 frames per event (with mean 30). These scales are set by experimental constraints.
In a stereoscopic experiment a flocking event is filmed by several machine vision cameras located at different positions.
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To reconstruct the individual 3D trajectories the flock must be in the common field of view of all the cameras: given
the flock’s typical distance from the apparatus (100-300 m), after 10-12 seconds at most the flock is out of the field
of view (this time being shorter the larger/closer is the flock). Besides, the amount of digital information per second
that can be grabbed by a high resolution stereo set-up is limited, which also sets a constraint on the amount of
consecutive digital images that can be retrieved at high frequency. We note that these time durations represent
significant scales in terms of the collective motion of natural flocks: starlings fly at approximately 10 m/s and a flock
of thousands birds can perform a collective turn (global change of direction) in just a few seconds [7].
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