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Intrinsic noise arising from the stochastic opening and closing of voltage-gated ion channels has
been shown experimentally and mathematically to have important effects on a neuron’s function.
Study of classical neuron models with stochastic ion channels is becoming increasingly important,
especially in understanding a cell’s ability to produce subthreshold oscillations and to respond to
weak periodic stimuli. While it is known that stochastic models can produce oscillations (quasicycles)
in parameter regimes where the corresponding deterministic model has only a stable fixed point,
little analytical work has been done to explore these connections within the context of channel noise.
Using a stochastic hybrid Morris-Lecar model, we combine a system size expansion in K+ and a
quasi-steady state (QSS) approximation in persistent Na+ in order to derive an effective Langevin
equation that preserves the low-dimensional (planar) structure of the underlying deterministic ML
model. (The QSS analysis exploits the fact that persistent Na+ channels are fast.) By calculating
the corresponding power spectrum, we determine analytically how noise significantly extends the
parameter regime in which subthreshold oscillations occur.

PACS numbers: 87.19.lc, 87.10.Mn, 05.40.-a

I. INTRODUCTION

Noise has emerged as a key component of a wide range
of biological systems [1]. In the particular case of neuro-
science, noise is present at all levels, yet neural networks
are still able to perform complex computations reliably
[2]. The most dominant source of intrinsic noise in neu-
rons is ion channel noise [3, 4]. The membrane potential
of a neuron changes as ions such as Na+ and K+ pass
in and out of the cell through voltage-dependent chan-
nels within the membrane, and the opening and closing
of the channels is stochastic due to thermal fluctuations
[5]. In classical approaches, the number of ion channels
is assumed to be very large, and thus the fluctuations in
membrane potential from individual stochastic channels
is ignored in favor of a deterministic average. More recent
work has questioned this assumption. It has been shown
that channel noise indeed produces membrane potential
fluctuations that are large enough to affect action poten-
tial timing [6–11] and increase the range of spiking be-
havior exhibited in some neural populations [3], with the
effects of channel noise increasing dramatically as neu-
rons become smaller. However, even when large num-
bers of stochastic ion channels are present in a neuron,
fluctuations can become critical near the action poten-
tial threshold [2, 13]. In addition, sodium channel noise
places structural limits on neural anatomy [14], since in
the case of very small neurons, significant channel noise
would disrupt signal transmission [15].

Ion channel noise has also been implicated in
subthreshold membrane potential oscillations (STOs).
These are observed in a variety of neural cell types - stel-
late cells in the entorhinal cortex, hippocampal cells, and
mitral cells in the olfactory bulb, to name a few. Intrin-
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sic ion currents are sufficient to produce oscillatory ac-
tivity [16]. Tetrodotoxin (TTX) blocks STOs, implicat-
ing a persistent Na+ current in the generation of oscilla-
tory activity [17–21]. Using dynamic clamp technique, it
has been shown that stochastic flicker of these persistent
sodium channels is crucial for subthreshold oscillations
and phase locking to weak periodic stimuli in entorhinal
spiny stellate cells [14]. Hyperpolarization is due to a
non-inactivating outward current, for example, a TEA-
sensitive M-current in layer V pyramidal cells [21]. In
addition to the phase locking of periodic stimuli, it has
been shown experimentally and theoretically that noise
can enhance weak signal transduction in sensory neurons
via tuning intrinsic subthreshold oscillations [22]. White
et. al [19] showed that the presence of channel noise
alters the dynamical behavior of a medial entorhinal cor-
tical cell model; in particular, subthreshold oscillations
are most easily generated for intermediate noise levels.
In these cells, it is predicted that there are only on the
order of 1000-5000 persistent Na+ channels - a surpris-
ingly small number that does not match the assumptions
of classical deterministic neuron model approaches.

Deterministic, conductance-based models of a single
neuron such as the Hodgkin-Huxley model have been
widely used to understand the dynamical mechanisms
underlying membrane excitability [23]. These models as-
sume a large population of ion channels so that their
effect on membrane conductance can be averaged. As a
result, the average fraction of open ion channels modu-
lates the effective ion conductance, which in turn depends
on voltage. It is often convenient to consider a simplified
planar model of a neuron, which tracks the membrane
voltage v and a recovery variable w that represents the
fraction of open potassium channels. The advantage of
a two-dimensional model is that one can use phase-plane
analysis to develop a geometric picture of neuronal spik-
ing. One well-known example is the Morris-Lecar (ML)
model [24]. Although this model was originally devel-
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oped to model Ca2+ spikes in molluscs, it has been widely
used to study both type I and type II forms of neural ex-
citability for Na+ spikes [23], since it exhibits many of
the same bifurcation scenarios as more complex models.
The ML model has also been used to investigate STOs
due to persistent Na+ currents [25].

Another advantage of the ML model is that it is
straightforward to incorporate intrinsic channel noise
[26–28]. In order to capture the fluctuations in membrane
potential from stochastic switching in voltage-gated ion
channels, the resulting model includes both discrete jump
processes (to represent the opening and closing of ion
channels) and a continuous-time piecewise process (to
represent the membrane potential). This is an example
of a stochastic hybrid system with piecewise deterministic
dynamics. There has been much recent interest in such
systems, both within the context of conductance-based
models as well as gene and biochemical networks [1].

In this paper we use a stochastic hybrid ML model
of a persistent (noninactivating) sodium current and a
slower outward potassium current to investigate analyti-
cally the role of channel noise in the generation of STOs.
Previous computational studies have shown how channel
noise can significantly extend the parameter regime over
which STOs occur [19, 29]. We show that such a phe-
nomenon can be analyzed in terms of the emergence of
so-called quasicycles below a supercritical Hopf bifurca-
tion point of the corresponding deterministic model. The
emergence of quasicycles in a stochastic model – periodic
oscillations that arise outside the limit cycle regime of
a deterministic system – has been studied in various bi-
ological applications; see [30–34]. In some cases, such
as calcium oscillations, the addition of noise serves to
expand the range of parameter values for which limit cy-
cle behavior is observed [30]; it is also possible in some
reaction networks to induce oscillations where there are
no limit cycles anywhere in the parameter space of the
deterministic system [31].

In addition to providing an analytical framework
for understanding noise-induced STOs, we introduce a
new mathematical approach to studying quasicycles in
stochastic hybrid systems. Typically, the emergence of
quaiscycles in a jump Markov process is handled by carry-
ing out a system-size expansion of the underlying master
equation. This generates a Fokker-Planck (FP) equation,
whose corresponding Langevin equation can be linearized
about the fixed point solution of the deterministic system
below the Hopf-bifurcation point. If the resulting power
spectrum exhibits a significant peak at a non-zero fre-
quency, then this indicates the existence of a quasicycle.
In the case of the stochastic ML model, one could carry
out a double system-size expansion with respect to the
total number N of Na+ channels and the total number
M of K+ channels. However, this would lead to a mul-
tivariate Langevin equation in three stochastic variables:
the voltage v, the fraction w of open K+ channels, and
the fraction A of open Na+ channels. Instead, we would
like to preserve the low-dimensional (planar) structure

of the ML model by deriving a Langevin equation for v
and w alone [35]. We show how this can be achieved by
exploiting the fact that the opening and closing of the
persistent Na+ channels is much faster than the dynam-
ics of the voltage and the K+ channels. We thus combine
a quasi-steady state (QSS) analysis of the Na+ dynamics
and a system-size expansion of the K+ dynamics to derive
a Langevin equation for the pair (v, w), and relate the ex-
istence of noise-induced STOs to the power spectrum of
the resulting stochastic voltage. We briefly review the
deterministic ML model in section II, with parameter
values chosen so that the model supports subthreshold
oscillations via a supercritical Hopf bifurcation, rather
than the more familiar spiking via a subcritical Hopf bi-
furcation. The stochastic version of the ML model is
introduced in section III, which is then systematically
reduced by carrying out a system-size expansion with re-
spect to K+ (section IV) and a QSS approximation with
respect to Na+ (section V). The emergence of quasicycles
(noise-induced STOs) is then established in section VI.

II. DETERMINISTIC MODEL

A version of the deterministic Morris-Lecar model [24]
has previously been used to understand the initiation and
behavior of STOs [25]. The model consists of a persistent
sodium current (Na+), a slow potassium current (K+),
a leak current (L), and an applied current (Iapp). For
simplicity, each ion channel is treated as a two-state sys-
tem that switches between an open and a closed state
- the more detailed subunit structure of ion channels is
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FIG. 1. (Color online) Bifurcation diagram of the determin-
istic model. As Iapp is increased, the system undergoes a
supercritical Hopf bifurcation (H) at I∗app = 183, which leads
to the generation of stable oscillations. The maximum and
minimum values of oscillations are plotted as black (solid)
curves. Oscillations disappear via another supercritical Hopf
bifurcation.
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FIG. 2. (Color online) Phase plane diagrams of the deterministic model for (a) Iapp = 170 pA (below the Hopf bifurcation
point) and (b) Iapp = 190 pA (above the Hopf bifurcation point). The red (dashed) curve is the w-nullcline and the solid
(gray) curve represents the v-nullcline. The intersection of nullclines is the fixed point v∗, w∗. (c,d) Corresponding voltage time
courses.

neglected [11, 26]. The membrane voltage v evolves as

dv

dt
= a∞(v)fNa(v) + wfK(v) + fL(v) + Iapp

dw

dt
= (1− w)αK(v)− wβK ,

(2.1)

where w is the K+ gating variable. It is assumed that
Na+ channels are in quasi-steady state a∞(v), thus elim-
inating Na+ as a variable. For i = K,Na,L, let fi =
gi(Vi−v), where gi are ion conductances and Vi are rever-
sal potentials. Opening and closing rates of ion channels
depend only on membrane potential v are represented by
α and β, respectively, so that

a∞(v) =
αNa(v)

αNa(v) + βNa(v)
. (2.2)

For concreteness, take

αi(v) = βiexp

(
v − vi,1
vi,2

)
i = K,Na, (2.3)

with βi, vi,1, vi,2 constant. Parameters are chosen (see
Table I) such that there is no well-defined threshold above
which an action potential is generated; rather, stable
small-amplitude oscillations arise for sufficient value of

applied current (this appears in the model as a super-
critical Hopf bifurcation). This corresponds well to ob-
served behavior of STOs and is not meant to function
as a traditional spiking neuron model. Limit cycles in
a traditional spiking model often appear via a subcriti-
cal Hopf bifurcation. We do not provide further analysis
for the subcritical Hopf case in this work; however, in
the presence of noise, transition to oscillatory state has
also been observed to shift in the vicinity of a subcritical
Hopf bifurcation (see for example [12]). Thus, it is not
unreasonable to expect that similar results may hold.

By evaluating the eigenvalues of the Jacobian of Eq.
(2.1), it is straightforward to show that there is a unique
steady state (v∗, w∗), which is linearly stable for Iapp <
I∗app [23]. At I∗app a supercritical Hopf bifurcation oc-
curs; (v∗, w∗) becomes unstable and a stable limit cycle
emerges (see Fig.1). Fig. 2 shows the phase plane of
the deterministic system; here one can see how oscilla-
tions arise in the membrane potential v(t) as the applied
current is increased.

III. STOCHASTIC MODEL

The deterministic ML model holds under the assump-
tion that the number of ion channels is very large, thus
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Sodium

gNa 4.4 mS

VNa 55 mV

βNa 100 ms−1

vn,1 -1.2 mV

vn,2 18 mV

Leak
gL 2 mS

VL -60 mV

Potassium

gK 8 mS

VK -84 mV

βK 0.35 ms−1

vk,1 2 mV

vk,2 30 mV

TABLE I. Model parameters to generate subthreshold oscil-
lations via a supercritical Hopf bifurcation. Note that we
assume capacitance C=1 µF.

the ion channel activation can be approximated by the
average ionic currents. However, it is known that channel
noise does affect membrane potential fluctuations (and
thus neural function), and the number of persistent Na+

channels is on the order of 103 [3, 19]. In order to account
for ion channel fluctuations, we consider a stochastic ver-
sion of the Morris-Lecar model [26–28], with M K+ chan-
nels and N Na+ channels. Let m(t) denote the number
of open K+ channels and n(t) the number of open Na+

channels at time t. Since it follows that the number of
closed channels at time t is M − m and N − n respec-
tively, there is no need to also track the number of closed
channels. Then, for m(t) = m and n(t) = n, the voltage
evolves according to the equation

dv

dt
=

n

N
fNa(v) +

m

M
fK(v) + fL(v) + Iapp. (3.1)

We assume that the state transitions of the ion chan-

nels are given by a discrete Markov process, that is, ion
channels are memoryless and probability per unit time
of changing states depends only on the current state, not
on any past events (including the amount of time spent
in the current state). In this case, sodium and potassium
channels switch between open (O) and closed (C) states
as follows:

C
αNa(v)/ε

�
βNa/ε

O, C
αK(v)

�
βK

O. (3.2)

The opening and closing of these channels is a birth-death
process, where n and m evolve according to

n→ n− 1 ω−n = nβNa,
n→ n+ 1 ω+

n = (N − n)αNa(v),
m→ m− 1 ω−m = mβK ,
m→ m+ 1 ω+

m = (M −m)αK(v).

(3.3)

The above model is an example of a stochastic hybrid
system based on a piecewise deterministic process. That
is, the transition rates depend on v, with the latter cou-
pled to the associated jump Markov process according
to equation (3.1), which is only defined between jumps,
during which v(t) evolves deterministically. Furthermore,
we assume that Na+ channels open and close much faster
than K+ channels. We define ε = O(10−2) as a timescale
variable for Na+. Define P (v, n,m, t)dv = Prob[n(t) =
n,m(t) = m; v ≤ v(t) ≤ v + dv] at time t, given initial
conditions v(0) = v0,m(0) = m0, and n(0) = n0. Drop-
ping explicit dependence on initial conditions, this prob-
ability density will then satisfy the differential Chapman-
Kolmogorov (CK) equation

∂P

∂t
=− ∂

∂v

[( n
N
fNa(v) +

m

M
fK(v) + fL(v) + Iapp

)
P (v, n,m, t)

]
(3.4)

+
1

ε

(
ω+
n (v, n− 1)P (v, n− 1,m, t) + ω−n (v, n+ 1)P (v, n+ 1,m, t)

)
− 1

ε

(
(ω+
n (v, n) + ω−n (v, n))P (v, n,m, t)

)
+
(
ω+
m(v,m− 1)P (v, n,m− 1, t) + ω−m(v,m+ 1)P (v, n,m+ 1, t)

)
− (ω+

m(v,m) + ω−m(v,m))P (v, n,m, t).

The first line on the right-hand side represents the piece-
wise deterministic dynamics of v, whereas the second and
third lines represent the stochastic opening and closing of
Na+ and K+ ion channels, respectively. It is not possible
to obtain exact solutions of the CK equation, so some
sort of approximation is needed.

IV. SYSTEM SIZE EXPANSION OF
POTASSIUM

Suppose thatM is large (but finite). Then it is possible
to carry out a perturbation expansion in terms of the sys-
tem size M−1, which allows us to approximate the potas-

sium dynamics as a continuous process [1, 36, 37]. The
system size expansion is a standard technique in stochas-
tic processes that allows us to describe fluctuations about
the deterministic theory via second order terms in the
expansion. It was first introduced within the context of
stochastic ion channels by Fox and Lu [6], and further de-
veloped by Chow and White [7]. (More precisely, these
authors assumed that the stochastic dynamics of a large
population of identical ion channels can be approximated
by a Gaussian process and then calculated the mean and
variance based on single-channel properties.) First we
introduce rescaled variables

w =
m

M
, MΩ±(w) = ω±m(Mw), (4.1)
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and set pn(v, w, t) = P (v, n,Mw, t). In order for the sys-
tem size expansion to be valid, it is important to note

that the transition rates ω±m scale as specified. It is
straightforward to check that this condition is satisfied
for our model. Thus we rewrite Eq. (3.4) as

∂pn
∂t

=− ∂

∂v
[(In(v, w)) pn(v, w, t)] +

1

ε

(
ω+
n (v, n− 1)pn−1(v, w, t) + ω−n (v, n+ 1)pn+1(v, w, t)

)
− 1

ε

(
(ω+
n (v, n) + ω−n (v, n))pn(v, w, t)

)
−M ([(Ω+(v, w) + Ω−(v, w))pn(v, w, t)])

+M

([
Ω+(v, w − 1

M
)pn(v, w − 1

M
, t) + Ω−(v, w +

1

M
)pn(v, w +

1

M
, t)

])
,

(4.2)

where

In(v, w, t) =wfK(v) +
n

N
fNa(v) + fL(v) + Iapp. (4.3)

Note that for M sufficiently large, w can be treated as a continuous variable, where 0 ≤ w ≤ 1. Taylor expanding in
1/M to O (1/M) yields

∂pn
∂t

=− ∂

∂v
[In(v, w, t)pn]− ∂

∂w
[B−(v, w)pn] +

1

2M

∂2

∂w2
[B+(v, w)pn]

+
1

ε

(
ω+
n (v, n− 1)pn−1 + ω−n (v, n+ 1)pn+1

)
− 1

ε

(
(ω+
n (v, n) + ω−n (v, n))pn

)
,

(4.4)

where

B−(v, w) =Ω+ − Ω−, B+(v, w) = Ω+ + Ω−. (4.5)

Note that the system-size expansion has replaced the
jump-Markov process for the K+ channels by a contin-
uous diffusion-like process for the fraction of open K+

channels. The variance associated with the stochastic
K+ channels scales as σ2

K ∼ M−1. One could proceed
in a similar fashion for the Na+ ion channels by carry-
ing out a system-size expansion with respect to N . This
would then lead to a multivariate FP equation for the
three variables v, w, a, where a is the fraction of open
Na+ ion channels. Note, in particular, that the variance
associated with the stochastic Na+ channels would scale
as σ2

Na ∼ (εN)−1. Since ε � 1 and N � M , it im-
mediately follows that the main source of channel noise
arises from the persistent Na+. In this paper, we wish
to develop an alternative approximation of the stochastic
hybrid system, that preserves the planar nature of the de-
terministic ML. We will make use of the fact that the Na+

jump process is much faster than potassium or voltage to
perform a quasi-steady state (QSS) approximation, also
known as the adiabatic approximation [1, 27, 36].

V. QUASI-STEADY STATE DIFFUSION
APPROXIMATION OF SODIUM

Let Wnj(v) be the voltage-dependent transition matrix
for the Na+ jump process, that is,

Wnj(v) = ω+
n (v, n− 1)δj,n−1 + ω−n (v, n+ 1)δj,n+1

− (ω+
n (v, n) + ω−n (v, n))δj,n.

Rewrite Eq. (4.4) using this transition matrix:

∂pn
∂t

=− ∂

∂v
[In(v, w)pn]− ∂

∂w
[B−(v, w)pn] (5.1)

+
1

2M

∂2

∂w2
[B+(v, w)pn] +

1

ε

∑
j

Wnj(v)pj .

For fixed values of v, the transition matrix Wnj(v) is ir-
reducible . By the Perron-Frobenius theorem, W has a
simple zero eigenvalue, with all others having negative
real part. This implies that there exists a unique right
null vector ρn(v) such that

∑
jWnj(v)ρj(v) = 0. Fur-

thermore, (1, 1, . . . , 1)T is the left null vector of W , so∑
nWnj(v) = 0 for all n. For fixed v, w, it can be shown

that the Markov process for sodium

dpn
dt

=
1

ε

(
ω+
n (v, n− 1)pn−1 + ω−n (v, n+ 1)pn+1

)
(5.2)

− 1

ε

(
(ω+
n (v, n) + ω−n (v, n))pn

)
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has a globally attracting steady state ρ(v, n) = ρn such
that [28]

ρn =
N !

n!(N − n)!

αnNaβ
(N−n)
Na

(αNa + βNa)N
. (5.3)

Since Na+ is fast, there are many open-close transitions
in n while the voltage v and w change very little. Thus
we expect the system will converge to the sodium QSS
ρn, which will be perturbed as v and w evolve. This can
be analyzed using a QSS approximation.

First, we decompose the probability density pn such
that

pn(v, w, t) = C(v, w, t)ρn(v) + εxn(v, w, t), (5.4)

where∑
n

pn(v, w, t) = C(v, w, t) and
∑
n

xn(v, w, t) = 0.

Substituting Eq. (5.4) into Eq. (5.1), the CK equation
now reads

ρn
∂C

∂t
+ ε

∂xn
∂t

= − ∂

∂v
[CInρn]− ε ∂

∂v
[Inxn] (5.5)

+ Lw[ρnC + εxn] +
∑
j

Wnjxj ,

where

Lwψ(w) = − ∂

∂w
[B−ψ(w)] +

1

2M

∂2

∂w2
[B+ψ(w)] . (5.6)

Summing both sides over n and setting I =
∑
n Inρn

yields

∂C

∂t
= −∂CI

∂v
− ε

∂
∑
n Inxn
∂v

+ LwC. (5.7)

We rewrite Eq. (5.5) by using Eq. (5.7) for ∂C/∂t:

ε
∂xn
∂t

=

(
∂CI

∂v
+ ε

∂
∑
n Inxn
∂v

)
ρn −

∂CInρn
∂v

− ε∂Inxn
∂v

+ εLwxn +
∑
j

Wnjxj . (5.8)

Introducing the asymptotic expansion x ∼ x(0) + εx(1) +
ε2x(2) + . . . and considering only O(1) terms gives

∑
j

Wnjx
(0)
j = −∂CI

∂v
ρn +

∂CInρn
∂v

(5.9)

From the Fredholm alternative theorem, Eq. (5.9) has a
solution of the form

x
(0)
j =

∑
j

W †jn

(
−∂CI
∂v

ρn +
∂CInρn
∂v

)
, (5.10)

where W † is the pseudo inverse of W . Using this solution
for x(0) as a leading order approximation for xn in (5.7)
gives the Fokker-Planck equation

∂C

∂t
=− ∂

∂v

I − ε∑
n

I ∂
∂v

In∑
j

W †jnρn

− Inρn ∂
∂v

In∑
j

W †jn

C

 (5.11)

− ∂

∂w
[B−C] +

1

2M

∂2B+C

∂w2
+ ε

∂2

∂v2

∑
n,j

W †jnInρn(I − In)C

 .

Letting

µ1 = I − ε
∑
n

I ∂
∂v

In∑
j

W †jnρn


−Inρn

∂

∂v

In∑
j

W †jn

 , (5.12a)

µ2 = B−, (5.12b)

D =

 ε
∑
n,j

W †jnIρn(I − I) 0

0 B+/2M

 , (5.12c)

we can simplify the Fokker-Planck equation as

∂C

∂t
= −

2∑
i=1

∂

∂zi
µiC +

2∑
i,i′=1

∂2

∂zi∂zi′
Dii′C, (5.13)

which corresponds to the Langevin stochastic differential
equation (SDE)

dzi = µi(z)dt+

2∑
j=1

σij(z, t)dWj for i = 1, 2, (5.14)
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where z = (v, w) with

σ =

( √
2D11 0

0
√

2D22

)
, (5.15)

and Wj is a Wiener process such that 〈Wj(t)〉 = 0 and
〈Wj(t)Wj′(t

′)〉 = δjj′min(t, t′). In terms of the original
model parameters, we find that

D11 =
1

N
fNa(v)2a∞(v)[1− a∞(v)]2

and

D22 = wβK + (1− w)αK(v).

The latter result was previously obtained by Fox and
Lu [6] and the former by Keener and Newby [27]. Eq.
(5.14) can now be linearized about the stable rest state
by letting zj = z∗j + εηj(t) where µj(z

∗) = 0. Taylor
expanding to O(ε) yields

dηi(t) =

2∑
j=1

Aijηj +

2∑
j=1

σij(z
∗)dWj , (5.16)

where Aij is the Jacobian of the drift terms such that

Aij =
∂µi
∂zj

∣∣∣∣
z∗
.

Finally, introducing white noise processes ξj(t) such that
dWj(t) = ξj(t)dt with 〈ξj(t)〉 = 0 and 〈ξj(t)ξj′(t′)〉 =
δjj′δ(t− t′) allows us to formally write the SDE as

dηi(t)

dt
=

2∑
j=1

Aijηj +

2∑
l=1

σil(z
∗)ξl. (5.17)

VI. QUASICYCLES IN THE STOCHASTIC
MODEL

Using our linear SDE (5.17), we can now look for os-
cillations in either voltage or potassium dynamics by ob-
taining analytical expressions for the power spectra. Let
η̃j(ω) denote the Fourier transform of ηj(t), i.e.

η̃j(ω) =

∞∫
−∞

e−iωtηj(t)dt. (6.1)

Here we follow standard steps to derive power spectra, as
in [32, 33]. Taking the Fourier transform of (5.17) yields

η̃j(ω) =

2∑
i=1

Φ−1ij (ω)σij ξ̃(ω), (6.2)

where Φij = −iωδi,j − Aij . Recall that the power spec-
trum Pi(ω) is defined such that 2πδ(0)Pi(ω) = 〈|η̃j(ω)|2〉.

Using Eq. (6.2) we obtain the power spectrum for the
stochastic ML model

Pi(ω) =
∑
j

∑
k

Φ−1ij (ω)Djk(Φ†)−1ki (ω), (6.3)

where we have used Φij(−ω) = Φ†ji(ω). It is worth men-
tioning that when comparing the analytical power spec-
trum to one that is generated numerically, one must take
care to include a proportionality factor. This arises from
the use of the discrete Fourier transform when comput-
ing numerical spectra and is equal to time increment ∆t
in the time series. A peak in the voltage power spectrum
for ω 6= 0 indicates that the voltage is oscillating with
frequency ω.
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FIG. 3. (Color online) (a) The power spectrum of the volt-
age in the stochastic hybrid ML model for Iapp = 150. The
spectrum has a well-defined peak around the Hopf frequency,
ωc = 1.51 rad/s, indicating the presence of oscillations (qua-
sicycles) below the supercritical Hopf bifurcation point. Red
(dots) are from numerical simulations via the Gillespie algo-
rithm, whereas the black (solid) line is the analytical predic-
tion. Simulation values: N=103, M=104, 50 trials. (b) Time
domain response of voltage for a particular realization of the
simulation shows STO-like behavior.
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FIG. 4. (Color online) Channel noise increases the range of
applied current values for which subthreshold oscillations ex-
ist. It also increases the range of frequencies that the model
may produce. Frequency of oscillation ω is defined as the
maximum of the power spectrum P (ω) for a given Iapp. Here
N = 103,M = 104 and ε = 10−3.

As seen in Fig. 3, the spectrum of voltage when
Iapp = 150 in the model shows a maximum around the
Hopf frequency, ωc = 1.51. This means that the model
exhibits subthreshold oscillations at this frequency, de-
spite the fact that this is well below the supercritical Hopf
bifurcation point. In other words, channel noise from the
stochastic opening and closing of Na+ and K+ channels
is driving subthreshold oscillations outside the determin-
istic regime. We also compare our analytic power spec-
trum against numerical estimates of the power spectrum
obtained using the Gillespie algorithm [38] and find good
agreement. Next we explore the range of applied cur-
rent for which the membrane potential exhibits a sub-
threshold oscillation. With channel noise, we first see
emergence of oscillatory behavior for Iapp = 93. Includ-
ing channel noise from stochastic K+ and Na+ channels
increases both the range of applied currents for which
subthreshold oscillations are present as well as the range
of frequencies of these subthreshold oscillations (Fig. 4).
This analysis provides support for the claim that channel
noise increases a neuron’s ability to produce subthreshold
oscillations, particularly for stimuli that are weak.

As we already highlighted in section IV within the con-
text of a double system-size expansion, we expect the
contribution of Na+ channel noise to be dominant. This
is indeed found to be the case under our QSS approx-
imation. The relative contribution of Na+ versus K+

channel noise can be quantified by looking at the mag-
nitude of the respective diagonal terms in the diffusion
matrix D, see Fig. 5. With physiological parameter val-
ues (ε ∈

[
10−3, 10−2

]
, N ∼ 103), D11, the term in the

diffusion matrix affected by N and ε (and thus Na+) is
orders of magnitude larger than D22. Therefore, in this
parameter regime, Na+ channel noise is dominant. While
fixing N and ε, we asked whether there was a physiolog-
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FIG. 5. Comparison of the contribution of Na+ and K+ chan-
nel noise to the diffusion term in the SDE. (a) Comparing D11

and D22, with N = 103,M = 104, ε = 10−2. D11 (and thus
contribution of Na+ channel noise) is orders of magnitude
larger for all values of Iapp. (b) Fixing ε = 10−2, N = 1000,
there are no values of M > 10 such that the magnitudes D11

and D22 are comparable, i.e. the ratio Φ = D11/D22 is always
greater than 1 (dotted black line).

ically plausible number of K+ channels M that would
allow for Na+ and K+ channel noise to have comparable
effect. As shown in Fig. 5, the neuron would have to
have fewer than 10 K+ channels for this to be the case.
This leads us to the conclusion that fast Na+ channel
dynamics are the primary source of channel noise.

Another factor that could be important is the degree of
coherence of the noise-induced subthreshold oscillations
as a function of applied current; only sufficiently coher-
ent oscillations would allow for a synchronization code,
for example. One measure of coherence is the so-called
quality factor Q = ωc/∆w, where ∆w is the bandwidth
of the power spectrum and ωc is the peak. In Fig. 6
we plot Q as a function of Iapp for three cases: Na+

channel noise, K+ channel noise, and joint channel noise.
It can be seen that over a wide range of Iapp, the sys-
tem with stochastic K+ channels exhibits more coherent
oscillations than the one with stochastic Na+ channels.
Interestingly, the Q factor itself exhibits some form of
resonance, having a sharp peak at some critical value of
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FIG. 6. (Color online) The quality factor Q = ωc/∆ω for
the model with stochastic Na+ channels only (black dashed
line), stochastic K+ channels only (gray dotted line), and both
channel types stochastic (solid red line). ωc is the the critical
value of ω, i.e. the peak of the power spectrum P (ω), and ∆ω
is the bandwidth. With K+ channel noise, the oscillations
tend to be more coherent (larger Q factor). Same parameter
values as Fig. 4.

the applied current.

VII. DISCUSSION

In conclusion, we have shown how the noise-induced
formation of STOs can be modeled in terms of the emer-
gence of quasicycles in a stochastic hybrid ML model with
both persistent sodium and potassium channel noise.
This is consistent with biological data that show that
channel noise enables a neuron’s ability to generate sub-
threshold oscillations and enhance signal transduction
over a wide range of parameter values. From a mathe-
matical perspective, we have shown how one can preserve
the low-dimensional (planar) structure of the determin-
istic ML model by carrying out a QSS approximation of
the stochastic sodium channel dynamics. This method
for reducing the dimensionality of the Langevin equation
can be applied to any stochastic hybrid system with fast
kinetics.

The computational advantages of the QSS method over
a diffusion approximation based on a system-size expan-
sion become particularly significant when the complexity
of the ion channel model increases. As we highlighted in
Sect. II, one major simplification of the stochastic ML
model is to neglect that fact that ion-channels typically

have a subunit structure resulting in multiple states [26].
If these features were included, then the simple birth-
death process used to describe the opening and closing
of a two-state ion channel would need to be generalized
to a more complicated multi-state master equation. (It
might be possible to obtain some simplifications by iden-
tifying invariant submanifolds of the stochastic dynamics
[39].) Carrying out a system-size expansion of the result-
ing master equation would generate a high-dimensional
Langevin equation that couples the voltage to additional
variables representing the fraction of ion channels in each
of the states. However, the numerical calculation of the
associated diffusion matrix (or its “square root”) is nu-
merically expensive. Fox and Lu [6] tackle this by ap-
proximating the multi-state system in terms of uncoupled
gating particles. However, such a simplification can lead
to a breakdown of the diffusion approximation. More re-
cently, a number of groups have shown that the diffusion
approximation holds provided one considers coupled gat-
ing particles [11, 40–42]. The QSS reduction is also a
Gaussian approximation, but is based on a slow/fast de-
composition rather than a system-size expansion, which
eliminates the fraction of ion channels in each state as
dynamical variables. Since the resulting Langevin equa-
tion is lower-dimensional than in the case of the system-
size expansion, one avoids the computational issues high-
lighted in Refs. [11, 40–42]. On the other hand, the calcu-
lation of the pseudo-inverse that determines the diffusion
coefficient D11 in Eq. (5.13) could become computation-
ally expensive as the complexity of the fast ion channel
models increases.

Another possible extension of this work would be to
consider the effects of noise-induced subthreshold oscil-
lations on spontaneous action potentials (SAPS) by in-
cluding a second class of non-persistent Na+ channels.
The effects of channel noise on SAPS in excitable neuron
models has recently been investigated within the context
of noise-induced escape problems [1, 27, 28]. Diffusion-
like approximations such as the system-size expansion
and QSS analysis break down for such problems, and one
has to use alternative methods such as Wentzel-Kramers-
Brillouin (WKB) and large deviation theory.
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