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We explore how does the specific fractal globule conformation, found for the chromatin fiber of
higher eukaryotes and topologically constrained dense polymers, affect the facilitated diffusion of
proteins in this environment. Using scaling arguments and supporting Monte Carlo simulations we
relate DNA looping probability distribution, fractal dimension and protein non-specific affinity for
the DNA to the effective diffusion parameters of the proteins. We explicitly consider correlations
between subsequent re-adsorption events of the proteins and find that facilitated diffusion is faster
for the crumpled globule conformation with high intersegmental surface dimension, than in the
case of dense fractal conformations with smooth surfaces. As a by-product we obtain expression
for macroscopic conductivity of a hypothetic material consisting of conducting fractal nanowires
immersed in a weakly conducting medium.

I. INTRODUCTION

Facilitated diffusion of proteins such as transcription
factors in the cell has been invoked as a possible likely
mechanism speeding up the passive diffusive finding of
specific target sites on DNA [1–3]. The facilitated diffu-
sion consists of repeated tours of three-dimensional dif-
fusion in the nuclear space interrupted by non-specific
adsorption of the protein to the DNA, subsequent one
dimensional diffusional sliding along the DNA, followed
by desorption and another diffusion in the free space etc.
While the sliding along the DNA reduces the dimension-
ality of the searched space, the three dimensional tours
break the correlation between visited sites and prevent
repetitive visits of the same DNA sites. In this way, the
facilitated diffusion mechanism can explain low values of
measured search time for proteins that are for certain bi-
ological conditions and DNA conformations, significantly
below search times predicted in the absence of the one-
dimensional diffusion tours.

In principle, the effectiveness of facilitated diffusion de-
pends on DNA conformation. Indeed, after a three di-
mensional tour whether the protein re-adsorbs on a pre-
viously “scanned” DNA segment or on an uncorrelated
one, depends on how are the DNA segments folded in
space [4]. So far, most of the studies in this area con-
sidered DNA as a straight rod or an assembly of several
such rods or did not consider the conformation explicitly
[2, 5–7]. This simplification is somewhat justified by the
fact that 1D sliding length is usually quite small, on the
order of or smaller than DNA persistence length as found
in prokaryotes and in vitro [8–10]. Nevertheless, it is of
significant interest to understand also facilitated diffusion
for other DNA arrangements. In this regard, two proto-
typical conformations, that of Gaussian coil and of equi-
librium globule were examined in [11, 12]. Recently, it
became clear that the third broad class of conformations
is of interest, that of crumpled or fractal globules, which
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is found in long eukaryotic DNA and topologically con-
strained polymer systems [13, 14]. The goal of this work
is to consider a model of facilitated diffusion through a
crumpled globule. Let us note that the facilitated diffu-
sion in a generic fractal characterized by fractal and walk
dimensions was examined in [15] where the distribution
of first passage time was calculated. However, that work
did not consider correlations between subsequent adsorp-
tions which play a central role of the present work and
as we show have an effect on the diffusion properties.
Moreover, it is not clear how is the walk dimension re-
lated to the conformational properties of the chromatin
fiber. Therefore, we relate the diffusion properties to
the directly accessible conformational properties of crum-
pled globule reflected in its fractal dimension and contact
probability.

Let us briefly summarize the crumpled globule confor-
mational properties, that are available from experiments
on DNA, such as Hi-C method [16, 17], and from simula-
tions of long topologically constrained polymers [18, 19].
Above the entanglement length Le, estimated in [14] for
the DNA and discussed here later, the probability of two
DNA loci to be in close proximity in space decreases
with their distance along the DNA contour as a power-
law with the exponent −γ close to −1 from below (e.g.
−1.08 human, −1.05 mouse). Moreover, it was found
that the DNA conformation is self-similar and compact
that is manifested by the scaling of the mean end-to-end
distance or gyration radius of a segment with its length
Rg(s) ∼ sν with exponent ν = 1/d = 1/3. Interestingly,
these conformational properties reflected in exponents ν
and γ seem to be universal across different higher organ-
isms and cell types and therefore it is very interesting to
explore their functional consequences.

However, we have to emphasize that most presently
studied transcription factors perform their search on the
scale smaller than the onset of the fractal globule con-
formation as discussed also in section V. Nevertheless,
besides the theoretical interest of the present problem, in
principle one can design an artificial experiment to over-
come this limitation and probe the fractal DNA confor-
mation by means of measuring the facilitated diffusion.
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To quantify the search process with facilitated diffu-
sion in fractal globule, we employ a number of rather
strong simplifications. Firstly, the polymer conformation
is assumed to be immobile during the whole search pro-
cess. It has been observed that the chromatin in vivo
is subject not only to the thermal fluctuations, but also
ATP-dependent directed movements. The resulting dy-
namics exhibits subdiffusive behaviour on short time and
length scales as well as correlated large scale motions on
the scale of tens of seconds that is comparable to the
protein search times [20]. Hence the effect of dynamics
is relevant, however a proper hydrodynamic description
is only beginning to emerge [21] and it is reasonable to
understand the conformational implications at first and
account for dynamics in future work. Secondly, although
the DNA occupies only about 1% of the volume of the
nucleus [14] the presence of histone proteins and other
nuclear bodies can raise this value significantly and act
as crowding agents. This can have an effect on the DNA
density distribution that has been studied in this context
in [22] and that we assume to be homogeneous. Moreover,
the motion of particles in concentrated polymer solutions
and equilibrium globule conformation even without affin-
ity to the polymer matrix can be subdiffusive on small
scales or significantly hindered due to excluded volume
effects [23–26]. However, in [27] it was shown that some
types of nuclear proteins indeed overcome such “barri-
ers” and can slide along the DNA fiber, although with
smaller diffusion coefficient. Additionally, it was shown
also in vivo that the environment is highly penetrable by
the proteins despite the high density [28]. We take the
possible crowding effects into account only implicitly, by
taking the diffusion coefficients along the DNA and in
the “free” space as parameters of the problem and in-
vestigate their impact on the search rate. To quantify
realistically the protein search process in the eukaryotic
interphase nucleus one should relax these simplifications.
However to judge their relative relevance the natural first
step is to understand their individual implications. Our
present work aims to be such a step in the case of the
large scale DNA conformation.

Our model for the DNA conformation is based on
the fractal space-filling curves, that have been shown
to mimic the chromatin fiber conformation properties
above the entanglement length (see also different ap-
proach [29]). By construction they are self-similar and
the space-filling property is reflected in the scaling of the
gyration radius with length with the exponent ν = 1/3
as for the DNA. It was shown [14] that the exponent γ
governing the scaling of the contact probability, is re-
lated to the fractal dimension db of the surface of the
volume occupied by the space-filling curve, by the rela-
tion 2 − γ = db/d = β. While the classical space-filling
curves such as Hilbert curve [30] have smooth surfaces
with β = 2/3, the DNA contact probability scaling is
reproduced by space-filling curves with db close to 3 or
in other words β close to unity (from below) [31]. It is
precisely the effect of the exponent β on the search pro-

cess and protein dynamics in the nucleus that we want
to capture.

In the next section we present scaling arguments for
the specific binding rate of the proteins to their targets
as a function of the protein affinity for the DNA, diffu-
sional properties and the exponent β. Then we calculate
effective diffusion coefficient governing the transport of
the protein through the fractal medium of nucleus us-
ing the analogy with electric transport properties. In
the subsequent section we present the various regimes for
the binding rates resulting from relations between various
lengthscales of the problem and we compare our findings
with numerical simulations.

II. THE MODEL

Our approach follows that of Hu et. al. [11] who find
the lengthscale of uncorrelated protein readsorption from
the balance of 3D and 1D transport, however we employ
important modifications regarding the DNA conforma-
tion.

We consider the chromatin fiber of length L and di-
ameter b to occupy a volume v representing the nucleus.
For simplicity all the microscopic lengthscales such as the
protein size, chromatin fiber diameter, and target size
are taken to be of the same order b. The volume frac-
tion of the chromatin Lb2/v is assumed low enough so
the protein can diffuse freely in between the DNA with a
diffusion coefficient D3. The protein can nonspecifically
adsorb to the DNA with energy ε and the corresponding
Boltzmann parameter y = eε/kT that is assumed to be
independent of the DNA sequence. Although some pro-
teins can bind to more than one strand at a time, we do
not assume such complication here. When the protein is
adsorbed it can diffuse along the fiber with a diffusion
coefficient D1.

We assume there is just a single target on the whole
DNA and we are interested in the mean first passage time
of a protein to the target, averaged over the initial protein
position relative to the target location. As the DNA is
immobile one can use a standard technique to calculate
the mean first passage time. We can imagine there is a
sink of proteins at the target and when a protein reaches
the target it is introduced back to the system at random
location. Then, there is an average constant flux J to
the target and the average target binding time is just
given by the inverse of this flux τ = 1/J . We do not
assume any effects due to internal degrees of freedom of
the protein [32] or imperfect target recognition efficiency.

Naturally, the binding rate J is proportional to the
total protein concentration c, as long as the proteins do
not interact with each other, which we assume as well.
If there was no nonspecific adsorption of the proteins to
the DNA, the rate of hitting the target by a pure 3D
diffusion is given by a Smoluchowski rate Js = 4πD3cb,
which is a steady state solution to an absorbing sphere
of size b. In what follows we drop the factor of 4π in



3

Js as we do also with all other numerical factors in our
scaling arguments. We will present the results in form of
J/Js to show the speed-up or slowdown of the facilitated
diffusion with respect to the pure 3D case.

The main reason for a possible speed-up of the facil-
itated diffusion is that the sliding along the DNA effec-
tively increases the target size. Due to 1D sliding, the
protein reaches the target even if it adsorbs onto the DNA
within some contour distance λ from the target. The
lengthscale λ, called antenna length, governs the extent
of correlated readsorption hence is the crossover length
between 1D and 3D diffusion. In other words the pro-
tein moves on average distance λ by 1D diffusion while
the transport to the antenna is governed by 3D diffu-
sion (see illustrative fig. 1). Naively, one could consider
λ to be equal to the average sliding length, which can be
estimated as lslide ∼ b(yD1/D3)1/2 [9, 11] (the protein
spends adsorbed time t ∼ b2y/D3, during which it covers
distance (D1t)

1/2). However in general λ can be longer
than lslide because of the correlated readsorption: pro-
tein explores segment of length lslide and desorbs, then
performs a short 3D diffusion tour and adsorbs again on
a correlated place e.g. such that was visited in the previ-
ous sliding. Then the protein slides again along the DNA
distance lslide, which however does not completely over-
lap with the previously visited segment. Repeating such
correlated tours, the (the antenna) length explored be-
fore the protein readsorbs on a completely uncorrelated
location can be greater than the pure sliding length (see
also [11] for more detailed explanation). Such a corre-
lated readsorption does not change the sliding time sig-
nificantly and this can be estimated as λ2/D1. To see
this, one has to realize that after desorption, the protein
is very close to the DNA and therefore, with probabil-
ity close to unity it adsorbs back on the DNA before
diffusing far away. Such a short diffusion event lasts a
microscopic time at most of the order of b2/D3. As one
can easily check, this is smaller than the time of 1D diffu-
sion between two protein desorptions l2slide/D1 and there-
fore the sliding time including correlated readsorptions is
dominated by the 1D diffusion estimate above. Then the
delivery rate of proteins to the target through the 1D
diffusion is given by J = J1 = cadsλ/(λ

2/D1), where
cads is the concentration of adsorbed proteins. So far,
the antenna length is yet to be determined from a bal-
ance between the one-dimensional and three-dimensional
transport. That is, in steady state the flux J1 of proteins
to the target sink is to be compensated by a 3D flux J3

of proteins delivered to the antenna.

The main improvement of the present work from the
earlier approach [11] is the rate J3 that is to be adjusted
for the specific fractal conformation consistent with that
of the eukaryotic DNA. As we neglect the density fluctua-
tions of the DNA, the mean distance r traveled by a pro-
tein before encountering the DNA, scales as r ∼ (v/L)1/2.
This is in fact, in the scaling sense, the same as the pene-
tration length of a random walker into a mesh of cylinders
of radius b� r and mean density 1/r3. To see that, one

FIG. 1. (Color online) Simplistic view of the antenna follow-
ing a space-filling curve in 2D. Antenna (thick red line) of
length λ around the target (filled blue circle) follows a space-
filling curve (thin grey) representing the DNA conformation.
The black dashed empty circle of radius r represent the scale
of free diffusion in between the DNA strands. Collection of
the r circles in the figure depicts the accessible surface of the
antenna by the free diffusion.

can express the distance traveled by a random walker be-
fore hitting a cylinder as (D3τSc)

1/2, where τSc is Smolu-
chowski time to hit a cylinder of radius b and length r.
Solving for the corresponding steady state, one can see
that τSc ∼ (D3cwr)

−1, where we dropped all numerical
and also logarithmic factors and where cw is the concen-
tration of walkers i.e. 1/r3. That means, the average
traveled distance of a random walker is up to a numer-
ical factor the same as the mean interchain distance r.
At first, for simplicity we will assume that r ∼ p ∼ Le,
where p is the persistence length which means that the
chromatin fiber is straight below the scale r and behaves
as space-filling curve with some β above r. We make this
artificial assumption to concentrate on the effect of the
large-scale structural properties of the DNA on the bind-
ing rate, however later in section IV we will relax this
assumption to show what is the impact of conformation
on the smaller scales. As the 3D diffusion takes place
only on or below lengthscale r, in order for the protein
to be delivered to the antenna, it has to hit one of the
DNA cylinders of length r covering the accessible sur-
face of the antenna (fig. 1). As we assume λ > r i.e. is
above the fractal threshold, the number of these cylinders
scales as (λ/r)β [31]. Then the rate J3 is (λ/g)β times
the delivery rate to one such cylinder which is D3cfreer.

The balance of the J1 = J3

D1
cads

λ
= D3cfreer

(
λ

r

)β
(1)

gives us λ in terms of cfree and cads that can be further
simplified by the following consideration. On the way to
the target the proteins experience many adsorption and
desorption events hence we can consider the adsorbed
and free proteins to be in equilibrium and write for the
respective concentration

cads/cfreeb
2 = y, (2)
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where we assumed the adsorbed proteins are confined
within a distance b of the DNA. Then we can express the
antenna length as

λ ∼
(
δyb2rβ−1

)1/(1+β)
, (3)

where we defined δ = D1/D3. To get the target binding
rate we have to plug this back into J1 (or equivalently
to J3). The result will depend on the values of cads and
cfree of course, which can however be evaluated exactly
using the fact that the total concentration of proteins is
fixed. The total number of proteins satisfies

cv = cadsLb
2 + cfree(v − Lb2) (4)

and we can express the concentrations as function of the
parameters:

cads '
cvyb2

yLb2 + v
∼

{
cyb2 if y � v/Lb2 = (r/b)2

cv/L if y � (r/b)2 (5)

cfree '
cv

yLb2 + v
∼

{
c if y � (r/b)2

cv/Lb2y if y � (r/b)2 (6)

The upper expressions of (5) and (6) we call a ’weak
adsorption’ (WA) regime and the lower correspond to
’strong adsorption’ (SA) regime. Using these relations
the binding rate in the different regimes, using (1) and
(3), is given by

J

JS
∼

{
(δy)

β/(1+β)
(r/b)(1−β)/(1+β) if WA

δβ/(1+β)y−1/(1+β)(r/b)(3+β)/(1+β) if SA
(7)

As noted before the expression for J3 in (1) holds only
if λ� r, hence using (3) we have to check if this is satis-
fied. The condition gives y � (r/b)2/δ which means the
weak adsorption regime (y � (r/b)2) can only exist in
the form of the upper line of (7) if δ � 1. If that is the
case one can see that with increasing protein affinity the
binding rate increases at first as yβ/(1+β) until y reaches
about (r/b)2 and then starts to decrease more rapidly as
y−1/(1+β). The initial increase is due to the higher D1,
which makes the transport of the proteins faster along the
DNA on scales below λ than the three dimensional dif-
fusion and as y grows, more proteins are adsorbed which
increases the binding rate. However as y increases be-
yond (r/b)2, λ grows as well and the reciprocal character
of the 1D diffusion starts to dominate over the speedup
due to δ > 1 and the overall binding rate decreases.

As mentioned above β varies in the range [2/3, 1],
where the lower values correspond to smooth Hilbert-like
curves (HC) while values close to 1 are for space-filling
curves with very wiggly surfaces (SC) similar in statis-
tical properties to the DNA. As β increases the uncor-
related readsorption is more likely as the surface of the
visited segment of the fiber has deep protrusions of other
- uncorrelated segments. That is why λ is decreasing

function of β and J/JS grows more rapidly and for large
y decreases less rapidly for SC than for HC. However the
obtained dependence of λ and subsequently of J on β is
rather weak. The increase of J with y in WA regime has
exponent β/(1 + β) that gives range [2/5, 1/2] and the
decrease of J with y is governed by exponent −1/(1 +β)
in range [−3/5,−1/2].

III. EFFECTIVE DIFFUSION COEFFICIENT -
NANOWIRES ANALOGY

Experimentally more accessible than the specific bind-
ing rate, might be the effective diffusion coefficient Deff

that governs the transport of proteins on large scales.
For example one can design an experiment with diffus-
ing particles that exhibit only nonspecific adsorption or
choose a DNA that does not contain specific targets for
the given protein. In that case the fractal properties of
the DNA conformation translate in the effective diffu-
sion coefficient. Although we can calculate this quantity
directly from the previous considerations, in what fol-
lows we use the analogy with electrical conductivity of
a hypothetical composite material as it is instructive to
present other facet of the same problem and the area of
applicability of the present theory.

The material consists of nanowires with conductivity
σ1 in the particular fractal conformation of the DNA,
that are immersed in a medium with conductivity σ3.
Our aim is to calculate the macroscopic conductivity σeff

of the material as this is related to the Deff of our diffu-
sion problem as explained in detail in [33]. To make this
work self-contained let us briefly summarize the main
idea of this correspondence. We assume there is no tar-
get in the system, but we look for an effective transport
coefficient when a constant gradient of (chemical) po-
tential is applied. In the steady state the current den-
sity j of both, the electric current and the diffusion sat-

isfy ~∇ · ~j = 0. The electric current density is subject

to Ohm’s law ~j = −σ(~r)~∇φ and the diffusion current
can be expressed using the Smoluchowski equation as
~j = −D(~r)c(~r)~∇[ln c(~r) − ε(~r)/kT ]. In general the pa-
rameters of the two problems the conductivity σ, the
diffusion coefficients D, the protein concentration c and
the nonspecific adsorption energy ε are spatially depen-
dent. In a tube of radius b along the DNA the diffu-
sion coefficient is D1, protein concentration cads/b

2 and
the adsorption energy is ε, while elsewhere the quanti-
ties have values D3, cfree and zero respectively. Similarly,
the nanowires of thickness b have the conformation of the
DNA and their conductivity is equal to σ1, while the con-
ductivity of the medium around is σ3. Then the mapping
between the two problems can be easily expressed by the
following dictionary: σ1 ↔ D1cads/b

2 and σ3 ↔ D3cfree

which can be written using the equilibrium condition (2)
as

σ1/σ3 ↔ δy, (8)
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where δ = D1/D3 as before. To relate the macroscopic
transport coefficients, one writes the Ohm’s law in terms
of σeff and Smoluchowski equation with Deff and c, which
results in

σeff/σ3 ↔ Deffc/D3cfree (9)

where the ratio c/cfree is 1 in weak adsorption regime or
y(b/r)2 in strong adsorption by equation (6).

As in the diffusion problem, there is lengthscale λ char-
acterizing the length over which the current flows mostly
in the wires, before it crosses through the medium to
another uncorrelated piece of wire. The main idea is
to express the macroscopic conductivity in terms of this
lengthscale and then find λ maximizing the conductivity.
The reason behind this approach is the minimal dissipa-
tion principle, that has been showed to be equivalent to
Kirchhoff’s laws if the linear (Ohm’s) law is considered
for the the material constituents [34].

We consider a piece of the material that is the size of
λ in 3D space as the conductivity at this scale is about
the same as the macroscopic one, because the correla-
tion effects are on and below this scale. As mentioned
above, we assume that λ follows the fractal space-filling
scaling of the wire (DNA), that is, it’s spatial size, such
as gyration radius, scales as (λ/r)1/d where d = 3 is the
space dimension. That means the resistance of a cube
of this size is about R ∼ (σeffr(λ/r)

1/d)−1. This overall
resistance consists of the resistance due to the wire and
resistance due to the medium. The wire contributes the
resistance λ/σ1b

2 that is connected in series with a group
of parallel connected bridges each of which has resistance
1/rσ3 as the flow through the medium is on lengthscale
r. The number of these bridges scales with the surface
of the wire, that goes as (λ/r)β so the total resistance of
the cube satisfies

1

σeffr(λ/r)1/d
' λ

σ1b2
+

1

σ3r(λ/r)β
. (10)

We maximize the σeff as function of λ, or equivalently,
minimize the resistance and we find

λ ∼ (σ1b
2/σ3r

1−β)1/(1+β) (11)

which is, using the dictionary (8), the same as λ in the
search process given by equation (3). This is not sur-
prising as the Kirchoff’s laws, as a consequence of the
minimum dissipation, require the same current to flow
through the two serial components, which is the same as
equating the two particle fluxes in the diffusion problem
as was done in (1). Then the effective conductivity is
given by

σeff ∼ σ3

[
σ1

σ3

b2

r2

](β−1/d)/(1+β)

(12)

Using the dictionaries (8), (9) and the concentration re-
lation (2), one finds for the effective diffusion coefficient

in the two regimes

Deff

D3
∼

[
δ(b/r)2

] β−1/d
1+β

{
y(β−1/d)/(1+β) if WA
y−(1+1/d)/(1+β) if SA

. (13)

In the weak adsorption regime the effective diffusion coef-
ficient increases very slowly with the adsorption strength
y, with exponent 1/5 for HC and faster, with exponent
1/3 for SC with β close to one. Interestingly, in the strong
adsorption regime the effective diffusion coefficient de-
creases more rapidly with y for HC with exponent −4/5,
while for the DNA-like conformations one gets exponent
−2/3. These findings can be rationalized in the follow-
ing sense. As discussed above, y > (r/b)2/δ to satisfy
λ > r and for weak adsorption regime to exist, δ must be
greater than unity, in which case Deff > D3 and the non-
specific binding improves the effective transport of pro-
teins by diffusion of proteins through the system of “fast
highways” (although very winding) of the DNA. This can
be checked by calculating time to travel λ along the DNA
and compare it with time to diffuse r(λ/r)1/d by 3D dif-
fusion. The speedup however is more pronounced for the
SC than forHC because the recursive character of 1D dif-
fusion is broken more often in the case of SC as is mani-
fested by shorter λ. In the strong adsorption regime most
of the proteins are adsorbed and following the DNA con-
formation. The less often the uncorrelated readsorption
happens the more time-consuming this sliding is, hence
the transport over Hilbert curve is less efficient than for
wiggly surface curves.

The target binding rate calculated in the previous sec-
tion can be understood also using the effective diffusion
coefficient. One expects that the target binding rate is
J ∼ Deffcr(λ/r)

1/d i.e. it is the Smoluchowski rate with
the effective diffusion coefficient and target size equal to
the 3D size of the antenna r(λ/r)1/d. This is indeed the
case for the weak adsorption as one can easily check using
equations (13) and (3), however one has to be more care-
ful in the strong adsorption regime. In the SA regime,
most of the proteins are adsorbed, hence the apparent
concentration hitting the target is that of cads. That is
there are cadsr proteins in the volume of cylinder of ra-
dius b and length r, hence the apparent concentration is
cadsr/rb

2 = c(r/b)2, where the last equality holds in SA
by equation (5). Taking this into account, the binding
rate is J ∼ Deffc(r

2/b2)r(λ/r)1/d, with diffusion coeffi-
cient from bottom line of (13), which agrees exactly with
the binding rate of the strong regime - bottom line of
equation (7).

To test these ideas we simulated facilitated diffusion
on a cubic lattice in an environment with a space-filling
curve and measured the effective diffusion coefficient Deff

as function of the parameters. We used two types of
space-filling curves: (i) Hilbert curve (HC) of sixth iter-
ation with β = 2/3 and (ii) second iteration of the curve
with fractal surface (SC) from [31] with β = 0.89. Both
of these curves, in their original construction, have length
643 lattice sites, but to allow for free diffusion in the space
between the curves we use three times finer lattice for dif-



6

fusion. This means the curves are of length L = 3× 643

and homogeneously occupy volume v = (3×64)3 i.e. 1/9
of all the (finer) lattice sites, or in other words b = 1
and r = 3 in the lattice units. We checked numerically,
also for other occupation fraction, that the mean traveled
distance by free 3D diffusion is indeed about r as calcu-
lated above. To measure Deff we set the particle, that
occupies one lattice site, to diffuse in a periodic array of
such volumes v, each with the curve of length L. If the
particle is on the site occupied by the curve it performs a
random walk along the curve and at each step there is a
probability π, to perform a jump off the curve to the free
space where it diffuses with diffusion coefficient D3 until
it hits the curve again. The probability π is controlled
by the adsorption strength y by π = (2+y)−1, where the
constant 2 is due to twice as many ways to jump off the
curve than to stay on it (in cubic lattice).

In figure 2 we plot Deff as function of y for δ = 1,
which means there is only strong adsorption regime where
y ∼ π−1. For y > 10 the values of Deff start to differ as
λ > r and the correlation effects start to play a role re-
sulting in stronger decrease of the Deff for the Hilbert
curve. The theoretical prediction of the slope of graphs

FIG. 2. (Color online) Effective diffusion coefficient Deff as
function of adsorption strength y for the Hilbert curve (blue
squares) and space-filling curve with β = 0.89 (red circles) in
loglog scale (errorbars smaller than symbols used) for δ = 1.
Black lines are best fits in large y range (see text), with slope
−0.76± 0.01 for Hilbert curve and −0.71± 0.01 for the curve
with wiggly surface. Each data point represents diffusion co-
efficient extracted from the mean square displacement of a
very long (facilitated) random walks averaged over 5 × 106

realizations.

for large y in fig. 2 is −(1 + 1/d)/(1 + β) from eq.
(13), which is −0.8 for HC and −0.7 for SC. To capture
correctly the slopes of the strong adsorption regime, λ
has to be sufficiently large to be insensitive to the dis-
creet nature of the fractal. The construction of the SC is
based on a segment that is 512 monomers long, therefore
we want λ to be at least of the same order. Hence we
fit values of Deff for y > 4 × 104, which corresponds to
λ > 100r. This is not an issue for the Hilbert curve that
is based on a segment of length 8 monomers. On the

FIG. 3. (Color online) Top: Fluctuations of the fractal di-
mension d of the Hilbert curve (blue squares) and the wiggly
curve (red circles) average dimension is d = 3 in both cases
marked with black straight line. Bottom: Fluctuations of the
exponent β, average values are marked by the straight lines
2/3 for the Hilbert curve, 0.89 for the wiggly curve. Statistics
of fluctuations of the exponents d and β have large errors for
long segments s, due to small sampling ensemble.

other hand as both curves are of finite size, we have to
keep y < L/b ' 5×105, so that the particle does not feel
the ends of the DNA during the 1D diffusion (as might
be visible by the decrease of slope of the Deff for large y
in fig. 2 in the case of SC). Therefore to fit the slopes
we take 4 × 104 < y < L/b as shown in fig. 2 by black
lines. Although the predictions match with the fitted val-
ues (fig. 2) reasonably (−0.8 vs −0.76 and −0.7 vs 0.71),
varying the range of y one gets values of the exponents
for Hilbert curve in the range [−0.78,−0.75] and for the
wiggly curve in range [−0.7,−0.74]. We believe the rea-
son for this discrepancy can be in the fluctuations of the
exponent values β and d of the curves (fig. 3), that are
inherent to the iterative curve construction as explained
in [31]. The effective fractal dimension d(s) correspond-
ing to lengthscale s has been calculated as the exponent
of the gyration radius of a segment of length s averaged
over positions in the curve. The segment lengths were
chosen to be sk = 3 ∗ 1.2k, k ∈ [10, 63] and the exponent
d(s) was obtained from the slope of the loglog plot from
seven data points surrounding the given lengthscale s,
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which corresponds to lengthscale range roughly [s/2, 2s].
The variation of β(s) was obtained in the same way, mea-
sured as the scaling exponent of the number of surface
monomers. Naturally, the greater the range of s we take,
the smaller the fluctuations are. If the complete range
[b, L] is taken forHC and SC at these finite iterations, the
exponents agree with their theoretical values (marked in
fig. 3).

Similarly to Deff(y), in fig. 4 we measured the depen-
dence of the effective diffusion coefficient on δ = D1/D3.
Here the predicted exponent (β − 1/d)/(1 + β) is inde-
pendent on the regime, and is 0.2 for the HC and 0.29
for the SC.

FIG. 4. (Color online) Effective diffusion coefficient Deff as
function of ratio δ = D1/D3 for the Hilbert curve (blue
squares) and space-filling curve with β = 0.89 (red circles)
in loglog scale for π = 0.16 i.e. y ' 4. Lines are best fits,
with slope 0.19 for Hilbert curve and 0.23±0.01 for the curve
with wiggly surface. Each data point represents diffusion co-
efficient extracted from the mean square displacement of a
very long (facilitated) random walks averaged over 2.5× 107

realizations.

Considering the fluctuations of β and d we should not
expect a perfect match of the numerics with the theory
that considers only mean values of the exponents, only if
the simulations were performed over even wider ranges of
parameters provided longer (higher iteration) curves were
available. However we believe the numerics supports the
theory as (i) Deff for the Hilbert curve is always lower
than the one for wiggly curve (ii) the exponents for the
HC are in any range of parameters lower than those for
SC as predicted by the theory and (iii) the values of the
exponents are at least in the correct ballpark predicted
by the theory.

IV. OTHER LENGTHSCALES

So far we have discussed the effect of the large scale
space-filling organization on the protein binding rate and
effective transport coefficient. As mentioned above these
effects start to play a role if the 1D sliding diffusion covers

lengths larger than the onset of the fractal conformation
Le. To complement the study, we briefly mention the
possible binding rate and effective diffusion coefficient
regimes at lower scales computed in [11, 33]. To do so,
we have to employ the relations between the monomer
size b, persistence length of the DNA fiber p, the en-
tanglement length Le and the corresponding spatial size
re ∼ (pLe)

1/2 and the lengthscale r. While the monomer
size of the fiber is on the scale of a few nanometers, the
persistence length of the DNA fiber is estimated to be
around 150 nm [35]. The entanglement length Le can be
from 100 nm to around 1.1µm, but most likely close to
300 nm, while the spatial size r is on the scale of 100 nm
(see Tables 1 and 2. in [14]). Based on these relations,
we will consider p ∼ r, which means the chromatin fiber
is straight below r. Above r the fiber either follows the
space-filling fractal conformation if r ∼ Le as considered
in previous section, or if Le � r, there is a window of
an equilibrium globule conformation above r and below
Le, that can be described as a network of mesh size r,
where each individual chain follows random walk statis-
tics (Flory theorem).

Let us briefly describe the possible regimes of binding
rate summarized in the table I and figure 5, based on the
relation between the antenna length and other length-
scales. If the antenna is shorter than r, it is straight
and is equal to the sliding distance b(δy)1/2. The overall
binding rate depends on adsorption strength - grows with
y1/2 in WA and decreases in SA. Interestingly, these re-
sults hold even if λ is longer than r and still shorter than
Le. The reason for this is that the DNA fiber conforma-
tion follows a random walk which is not compact enough
to shield itself and this way provide correlated readsorb-
tion due to the presence of other - uncorrelated strands
in distance r from the fiber. Therefore, any part of the
antenna in this regime is accessible by 3D diffusion from
distance r and the results for binding rate of “straight
mesh” from [11] apply (shown as regimes A and B in
tab. I and fig. 5). These are effectively the same as our
previous results with β = 1 (any monomer is accessi-
ble from nearby chains), however the effective diffusion
coefficient is different as the DNA is not a space-filling
fractal on this scale. Based on protein adsorption there
are again two regimes, where now the weak adsorption
regime exists only if δ > 1, to satisfy λ > r.

If λ gets longer than the entanglement length one has
to adjust the lengthscales in the preceding section by
r → Le in equations (1) and (3), which have an effect on
prefactors involving r/b, however the general dependence
on y and δ remains the same. In fact, this substitution is
not completely trivial as the 3D delivery to the antenna
takes place on the scale r. In order to deliver the proteins
to a piece of size Le, one can deliver it to any of the Le/r
sites of length r. However as the antenna is much longer
than Le, not all of the λ/Le pieces are accessible, but
only (λ/Le)

β of them - those that lie on the surface of
the fractal conformation. Therefore the 3D delivery rate
is J3 ∼ D3cfreer(Le/r)(λ/Le)

β which effectively is the
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same as the suggested substitution r → Le. These are
regimes C and D in tab. I and fig. 5

FIG. 5. Phase diagram of binding rate in loglog scale. The
dashed line y = (r/b)2 delimits the adsorption strength: weak
adsorption below and strong adsorption above. Dot-dashed
line proportional to δ−1 delimits regimes corresponding to
space-filling conformation of antenna (above) and that of
straight antenna or antenna following random walk in the
mesh of other chains (below). The values of antenna lengths
and corresponding binding rates are summarized in Table I.

Similarly one can investigate effective diffusion coef-
ficient for lengthscales below Le. This has been done
in [33], so in Table II and Figure 6 we just summarize
the results in the present notation using the dictionar-
ies (8) and (9). There are two important facts to be
noted. First, the binding rate in these regimes where
λ > r can not be calculated simply as Smoluchowski rate
with effective diffusion coefficient and target size propor-
tional to size of λ, as it was demonstrated in the case
of the space-filling antenna. This is because the antenna
follows a random walk which is not compact and there-
fore, delivery of protein to the sphere of size re ∼ (rλ)1/2

does not necessarily guarantee the hitting of the target as
there are still many uncorrelated chains in such a sphere.
Second fact, related to the first one, is that the effective
diffusion coefficient is different for case λ < r and λ > r
in contrast to J which depends only on the adsorption
strength in this two cases.

Regimes A1 and A2 (tab. II and fig. 6) represent the
cases when λ < r, which means the effective diffusion co-
efficient is dominated by D3 and in the strong adsorption
regime is even reduced due to the adsorbed proteins. In
regimes B1 and B2, λ > r hence follows a random walk.
Regimes C and D (in tab. II and fig. 6) represent the an-
tenna in a space-filling curve conformation. To account
for Le > r in these regimes, one has to modify equation
(12) for the overall resistance. The left hand side must be
replaced by (σeffre(λ/Le)

1/d)−1 to properly account the
spatial size of the antenna, where re ∼ (rLe)

1/2 is the
size of entanglement blob and there are λ/Le of these
blobs per antenna. Additionally, on the right hand side
of (12), r should be replaced by Le as explained above

for the binding rate case. Note that these changes do not
affect the expression for λ from Table I and result in the
effective coefficient showed in Table II.

FIG. 6. Phase diagram of effective diffusion coefficient in
loglog scale. The dashed line y = (r/b)2 delimits the adsorp-
tion strength: weak adsorption below and strong adsorption
above. Dotted and dot-dashed lines are proportional to δ−1.
Dotted lines delimits regimes of λ > r (above) and λ < r
(below), while dot-dashed line delimits the space-filling con-
formation of antenna (above) and that of antenna following
random walk in the mesh of other chains (below). The values
of antenna lengths and corresponding Deff are summarized in
Table II.

V. DISCUSSION AND CONCLUSIONS

The fact that the space-filling fractal structure of the
chromatin fiber is present on scales larger than 150 nm
poses a severe restriction on the applicability of our re-
sults for the search process in vivo. In order for these
structural effects to play role, δ or y has to be large
enough so that the sliding length b(yδ)1/2 is greater than
Le. While the value of D3 is known to be around 0.1 -
1µm2s−1 [1, 28] for transcription factors, the value of D1

is more difficult to measure and can be more susceptible
to the protein details and ionic strength. However, using
single molecules techniques D1 was measured for some
prokaryotic proteins [36, 37], but also for eukaryotes [27]
and the values fall in range 10−4 - 10−1 µm2s−1. The re-
sulting values of δ are in general smaller than unity and
fall in range in [10−4, 1], most likely somewhat closer to
the upper bound (around 0.1) under physiological con-
ditions in eukaryotes as shown in [27]. The latter work
is particularly illuminating as it demonstrated that the
1D diffusion along DNA is present for some proteins with
D1 ' 0.03µm2s−1 even if the DNA is decorated by nu-
cleosomes. Considering the value of δ ' 0.1 one can esti-
mate that in order to observe effects related to the space-
filling conformations, the nonspecific adsorption energy
must be ε ' 8− 12kT , which is relatively high, but pos-
sible in principle. In this estimate we assumed that the
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Regime Description λ J/Js

A weak adsorption, λ < Le
b(δy)1/2 (δy)1/2

B strong adsorption, λ < Le (r/b)2(δ/y)1/2

C weak adsorption, λ > Le (
δyb2Lβ−1

e

)1/(1+β) (δy)β/(1+β) (Le/b)
(1−β)/(1+β)

D strong adsorption, λ > Le (δβ/y)1/(1+β)(L1−β
e r2/b3−β)1/(1+β)

TABLE I. Summary of binding rates and antenna lengths in regimes defined by adsorption strength and relation between
lengthscale. Boundaries of regimes A-D are depicted in Figure 5.

Regime Description λ Deff/D3

A1 weak adsorption, λ < r < Le

b(δy)1/2

1

A2 strong adsorption, λ < r < Le (r/b)2/y

B1 weak adsorption, r < λ < Le (b/r)(δy)1/2

B2 strong adsorption, r < λ < Le (r/b)(δ/y)1/2

C weak adsorption, λ > Le (
δyb2Lβ−1

e

)1/(1+β) (δyb2/L2
e)

(β−1/d)/(1+β)Le/re

D strong adsorption, λ > Le (δb2/L2
e)

(β−1/d)/(1+β)y−(1+1/d)/(1+β)Le/re

TABLE II. Summary of effective diffusion coefficients and antenna lengths in regimes defined by adsorption strength and
relation between lengthscales. Boundaries of regimes A-D are depicted in Figure 6. In regimes A1,A2,B1 and B2, values of
Deff/D3 are adapted from [33].

protein slides along the chromatin fiber and not following
all the details of the DNA chain wrapped around the hi-
stones. This is reasonable assumption also supported by
the experimental evidence in [27], but brings an issue of
the efficiency of the specific site recognition. Taking this
into account would decrease the binding rate by a factor
of order 10, calculated as the ratio of the linear density
of bare DNA to that of the DNA fiber [14], however the
different scaling regimes should remain the same.

The chromatin dynamics that we do not take into con-
sideration can have an impact on the correlated read-
sorbtion. Some approaches such as [12] for coiled DNA,
assume the DNA conformation fluctuates sufficiently
quickly to consider subsequent relocations as indepen-
dent. Although this is likely to be good approxima-
tions on small lengthscales, on larger scales the chromatin
dynamics in vivo exhibits large correlated motions [20],
which means the local environment of a sufficiently long
segment does not necessarily change rapidly. Therefore
we hypothesize that the correlated readsorption might
play a role in the search process. As the nature of the
dynamic territories is not yet understood a natural first
step is to consider the static picture that we presented in
here and postpone the dynamic aspect for future work.

Let us also mention that the maximal binding rate is
obtained on the crossover between weak and strong ad-
sorption in any of the regimes. Interestingly conforma-
tions with higher β (hence smaller γ) provide the greatest
acceleration and smallest deceleration due to enhanced
possibility of uncorrelated readsorption. Moreover, the
binding rates dependence on y and δ for conformations
with β close to unity are very similar to those for equi-

librium globule conformation which is characteristic for
lower organisms such as prokaryotes or yeast.

To conclude, we presented a scaling theory for the
impact of correlated readsorption on the specific target
binding rate and effective diffusion coefficient in case of
the space-filling fractal conformation found in higher eu-
karyotes. We showed how does these quantities depend
on protein diffusion properties, nonspecific affinity for the
DNA and most importantly exponent γ = 2− β charac-
terizing the DNA conformation obtained from HiC exper-
iments. Such considerations should in principle be used
to indirectly probe the DNA conformation by measure-
ments of effective diffusion coefficient as function of the
affinity tunable by salt concentration. As a by-product
we obtained effective conductivity of a material composed
of conducting nanowires immersed in a medium with dif-
ferent conductivity. Such a hypothetical material could
in principle be realized from a melt of polymer nano-rings
that on large scales have similar space-filling fractal prop-
erties with high β as the eukaryotic DNA.

To develop the protein search theory, we have adopted
many simplifying assumptions, such as the static DNA
conformation, no viscoelastic effects or crowding restric-
tions for the protein diffusion, single specific binding site
and no exponent fluctuations. Indeed, it would be very
interesting to relax these simplifications, especially the
dynamic aspect, and investigate their impact on the dif-
fusion process. The present simplified picture aims at
connecting structure to function by bridging the two so
far disconnected lines of research - DNA fractal globule
conformation in nucleus and facilitated diffusion of pro-
tein search process.
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