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Abstract 

Star polymers provide model architectures to understand the dynamic and rheological 

effects of chain confinement for a range of complex topological structures like branched 

polymers, colloids and micelles. It is important to describe the structure of such 

macromolecular topologies using small-angle neutron and x-ray scattering to facilitate 

understanding of their structure-property relationships. Modeling of scattering from 

linear, Gaussian polymers, such as in the melt, has applied the random phase 

approximation (RPA) using the Debye polymer scattering function. The Flory-Huggins 

interaction parameter can be obtained using neutron scattering by this method. Gaussian 

scaling no longer applies for more complicated chain topologies or when chains are in 

good solvents. For symmetric star polymers, chain scaling can differ from ν = 0.5 (df = 2) 

due to excluded volume, steric interaction between arms, and enhanced density due to 

branching. Further, correlations between arms in a symmetric star leads to an interference 

term in the scattering function first described by Benoit for Gaussian chains. In this work, 

a scattering function is derived which accounts for inter-arm correlations in symmetric 

star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary 

scaling dimension using a hybrid Unified scattering function. The approach is 

demonstrated for linear, 4-arm and 8-arm polyisoprene stars in deuterated p-xylene. 

*Corresponding Author. E-mail: beaucag@uc.edu, gbeaucage@gmail.com 
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Introduction 

Symmetric star polymers provide an ideal architecture to examine chain 

interactions in macromolecules 1-9. The presence of a branch point leads to topology 

driven rearrangements of individual arms in dilute solutions and therefore the 

thermodynamic and structural characteristics differ from their linear counterparts 1, 3, 6, 10-

20. The interaction of arms affect the molecular conformation affecting rheological 

properties, which have been found ideally suitable for drug delivery, polymer electrolytes 

in lithium batteries, additives to improve water flooding during enhanced oil recovery 

process of fracking and other applications 2, 9, 13, 21-31.   

Small-angle x-ray and neutron scattering from star polymers is often fit using the 

Benoit function for symmetric stars 32-34. The Benoit function assumes Gaussian scaling. 

The function accounts for correlations between the arms through the addition of a 

correlation term to the Debye function, equation (1).  

I q( ) = 2G
Q2 e−Q −1+Q( )

                
                      (1) 

where Q = q2Rg
2 , q is the scattering vector, G is the scattered intensity at q→ 0 , and Rg  

is the Gaussian coil radius of gyration 35.  To extend the Benoit approach to non-Gaussian 

conditions, an empirical function was proposed by Dozier based on the work of Teixeira 

and Sinha 13, 25, 36 that has had limited success in parameterizing scattering from 

symmetric stars in the presence of excluded volume. The Dozier function is not based on 

a structural model and is an ad hoc function, so it is unlikely to result in valid structural 

information. 

In dilute solution equation (1) is generally not applicable since chains generally 

display exclude volume altering the structural scaling coefficient ν = 1/df, where df is the 
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mass fractal dimension for the coil.  For equation (1),	   d f = 2 . In good solvents, for a 

linear chain, d f = 5 / 3 	  due to excluded volume. For chains with complex structures, such 

as branched chains, cyclics and networked chains, d f  is known to increase due to the 

increase in topological complexity 37. In crowded conditions, such as in high functionality 

star polymers with functionality f >> 3 , the arms of the polymer have correlations that 

cannot be ignored especially at high f.  

At high f, f >> 8 , these correlations transform the fractal structure to colloidal 

particles 13 as described by the Daoud-Cotton model 10. For example, Likos et al. 20 

discuss star polymers that display a “core” and a polymeric shell similar to the Daoud-

Cotton model 10 for star polymers with f =18 . The arm length, the solvent quality, the 

functionality, charge, and hydrophilicity of the arms govern the transition to from 

fractal/polymeric to colloidal Daoud Cotton structures. Therefore it is probably necessary 

to consider more than just star functionality.   

Equation (1) has the further limitation that it ignores the effect of enthalpic 

interactions between the polymer’s zero conformational entropy Kuhn unit and the 

solvent (or polymer in a blend). The presence of attractive enthalpic interactions leads to 

a diminution of the scattered intensity at low angles that has been modeled using an 

analogy to screening in charged colloids 20. At sizes larger than the screening length the 

system appears to be uniform since concentration fluctuations dominate the scattering 

compared to the chain form factor of equation (1). This effect was first modeled using a 

double extrapolation to zero scattering angle and to zero concentration in the Zimm plot 

1. The modified Zimm approach of Stein and Hadziioannou 38, later justified by the 

random phase approximation (RPA) of de Gennes 39, could model scattering at all 
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concentrations and angles 40-42.  This approach is limited to Gaussian, linear chains 

d f = 2( )  since it utilizes equation (1), so it does not address the issues of chain topology 

or excluded volume.  

Inter-arm correlations lead to steric straightening of the arms, lowering d f , in 

direct analogy to surface grafted chains and polymer brushes. It is desirable to quantify 

these steric interactions in order to understand the structure of complex macromolecular 

topologies. This paper derives and applies a new scattering function that can account for 

topological and solvation effects in linear and further, in symmetric star polymers in 

order to advance the understanding of polymer chain structure, particularly in solution. 

Scaling Model for Symmetric Star Polymers 

Complex macromolecules and fractal aggregates can be described in terms of two 

distinct structural features, the topology and the tortuosity.  The structural topology is the 

structure in the absence of convolution or tortuosity, with the molecule straightened out. 

For example a linear chain or an H-polymer.  The topology is determined at the time of 

synthesis and can only be changed by breaking bonds. A linear chain in extended 

conformation, theta, collapsed, or good solvent conditions has the same topology.  

Tortuosity reflects the convolution of the structure. Therefore the solvent goodness and 

steric constraints have an impact on the molecular tortuosity but not on the molecular 

topology. The topology as well as tortuosity of an object must be simultaneously 

determined in order to reconstruct an average picture of that object. Topology is reflected 

in the connectivity dimension, c, and tortuosity in the minimum dimension, dmin , as 
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described in figure 1, just as the overall structure is described by the mass fractal 

dimension, df. 

Beaucage described a scaling model for branched polymers 37 considering a 

macromolecular chain composed of z Kuhn units of length lk  
43. Figure 1 shows a 4-arm 

symmetric star. The structure displays tortuosity in the chain path through the arms, 

controlled by thermal fluctuations, chain continuity and steric constraints. The scaling 

model considers the average minimum path of p  Kuhn units from one end to another, 

through the structure, as shown in dark units in figure 1 37, 44, 45. A minimum path is the 

path an electric current would follow through the structure undergoing minimum possible 

distance to cross the structure.  There are f f −1( ) 2  possible minimum paths to cross 

the structure through a star with a functionality of f. One of the possible minimum paths 

is shown in bold in figure 1, where f = 4. An average connectivity path of  Kuhn units 

composed of straight lines connecting the branch point and chain end-points is shown by 

dashed straight lines in figure 1. 

For symmetric star polymers, the minimum path, p , is composed of two arms 

(dark units in figure 1), 

p = 2 z
f

!

"
#

$

%
&                                          (2) 

The minimum path, p, is related to the mass, z, through the connectivity dimension, c, 

while the connectivity path, s, is related to the mass through the minimum dimension, 

dmin , the mass fractal dimension for the minimum path 37, 

z = pc = sdmin                                    (3) 

The connectivity dimension, c  is related to the fractal dimension, d f 	  as	  
37, 

s
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d f = cdmin                                    (4) 

c increases with increased branching while dmin increases with tortuosity of the chain. For 

a linear polymer chain, dmin = d f  and c = 1 while, for a completely connected regular 

object like a sphere or a collapsed coil, and d f = c , since the minimum path (or short 

circuit path) is a straight line through any regular object (rod, disk, or sphere). For a chain 

in a θ-solvent, with no steric constraint, dmin = 2 , while for a similar chain in good 

solvent, dmin = 5 3
37.  

For symmetric stars, the mole fraction branch content (φbr ) is given by 37,  

φbr =
z− p
z

=1− z
1
c
−1
=
f − 2
f

                                 (5) 

where, z− p( ) represents the mass of the coil that does not lie on the minimum path. For a 

four arm star,	  φbr = 0.5 . Further, the connectivity dimension, c, may be calculated for 

symmetric stars from equation (5) as, 

 c = ln z

ln z+ ln 2
f

!

"
#

$

%
&

'

(
)

*

+
,

                                                                                                             (6) 

From (5), at high molecular weights, a star polymer approaches the connectivity of a 

linear chain since c→1 	  as the branch site is diluted. (The radius of gyration 

distinguishes linear from branched structures in this case). A “meandering” mole fraction 

(φm ) accounts for mass that is not used in direct or ballistic connectivity, 

φm =
z− s
z

=1− z
1
dmin

−1
                                                                                                          (7) 
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 As the functionality, f, increases, dmin and φm 	  are expected to decrease since steric 

constraints on the chain increase. For linear chains c =1; f = 2( ) . In the absence of steric 

affects, good solvent scaling behavior is expected, dmin = 5 3 , except at the θ-point where 

dmin = 2 . Steric interactions extend the star arms towards, dmin →1, for a fully sterically-

extended arm. We can use these limits to define a measure of steric interaction between 

the arms of a star, 

φsi =
sobserved − sunperturbed
sextended − sunperturbed

=
z

1
dmin − z

1
d f ,l

z− z
1
d f ,l

                     (8) 

where d f ,l is the fractal dimension of an unperturbed arm under the given solvation 

conditions 26. d f ,l = 5/3, 2 or 3 under good-solvent, θ-solvent or collapsed conformations 

respectively. φsi 	  is the first quantitative measure of steric effects in stars (extendible to 

any branched structure). Mathematically, φsi 	  gives a measure of the observed extension 

of branched coil from that of its linear counterpart normalized by its maximum extension. 

φsi  is zero for a linear polymer (minimum intra-coil steric hindrances) and attains a 

maximum value of 1 for a star with rigid straight chains. 

Small-Angle Neutron Scattering 

 Small-angle scattering can be used to quantify the scaling model parameters as 

previously reported by Beaucage 37.  The enthalpy of mixing for a polymer in solution 

can be described using the RPA equation

kn
I q( )

=
1

viziφig(q)i
∑ −

2χ
v0

#

$
%

&

'
(

   
                          (9) 
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where the summation runs over all of the solution components including the solvent. z is 

the weight average number of Kuhn units in the polymer, φ  is the polymer volume 

fraction, g(q) is the chain form factor in the absence of enthalpic interactions χ = 0( ) , χ 	  

is the Flory-Huggins’s enthalpic interaction parameter (empirical) 47 and v0 is the average 

segmental volume 48, 

υ0 = vpolvsol( )
1/2
=

Mw,Kuhn

ρKuhn

!

"
#

$

%
&
Msolv

ρsolv

!

"
#

$

%
&

'

(
)

*

+
,

1
2

                                (10) 

where, vpol and vsol are the segmental volume of the Kuhn unit and the solvent molecule 

respectively. The scattering constant kn , which is proportional to scattering contrast, is 3, 

46, 

kn = NA bpol − bsol( )
2
                                        (11) 

where, NA  is the Avogadro’s number, and bpol 	  and bsol 	  are the scattering length 

densities of polymer Kuhn unit and solvent molecule respectively.  

Coupling equation (9) with the Unified Function for branched structures 37, a 

hybrid scattering function that accounts for branching and enthalpic screening is obtained, 

1
I q( )

=
1
Gf

e− q
2Rg, f

2( )/3 +K f e
− q2lp

2( )/9 qf
*( )

−d f{ }+ 1z e− q
2lp
2( )/9 + zKp qp

*( )
−1{ }"

#$
%

&'

−1

+ zφKv 1−
2χ
Kv

(

)
**

+

,
--

.
/
0

10

2
3
0

40
  

     (12) 

where, Kv =
vpol
vsol

, qi
* = q erf qkscRg,i 6( ){ }

3
, ksc ≈1.06 , and erf is the error function 49, 

50. The terms in the first curved bracket with subscript, f, represent the fractal scaling 

regime, and the second bracket with subscript, p, represent the rod-like persistent scaling 
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regime. K f  and Kp 	  are	  ratios of power-law prefactor to Guinier prefactor for fractal and 

persistent regimes respectively. Rg, f  is the radius of gyration for the fractal structures. 

The Guinier prefactor for the fractal regime is given by, 

Gf = vpolzφNA bpol − bsol( )
2
                              (13) 

and, 

z =Gf Gp                     (14) 

where, z is the weight average number of Kuhn units in the whole structure 37. Inclusion 

of the interaction parameter in equation (12) can play a large part in determining the 

scattering curve, especially at low-q, at high concentration and where χ Kv  << 0.5. 

Equation (12) fails to account for correlations between arms in a symmetric star polymer, 

so it is applicable only to disordered branched structures with a functionality of ~3 such 

as long-chain branched, high-density polyethylene in good solvents.  

The chain form factor in equation (12) is based on the Unified Function proposed 

by Beaucage which is widely utilized to quantify fractal systems 37, 51. For branched 

systems the scattering function is obtained by an extrapolation of an integral form 

proposed by Benoit to the high-q power-law regime and to the I 0( ) =G  intercept. These 

extrapolations are substituted for Gf and Bf  in the Unified Function. The integral form 

for topologically complex structures is obtained from 52, 53, 

I q( )
G

=
2
p2

!

"
#

$

%
& p1−c nc−1 p− n( )e−q

2R2g,n dn
0

p

∫
                                      (15) 
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In reference 37 the integration in equation (15) is over the minimum path, p via minimum 

path index, n, which goes from 0 to p 37, 49, 50. By substitution of parameters Beaucage 

obtains 37, 51, 

I q( )
G

=
dmin
qRg( )

d f
1− y

dmin
2

qRg( )
dmin

"

#

$
$
$

%

&

'
'
'
e−yy

d f
2
−1

(

)
*

+

,
-

dy
0

qRg( )2

∫
               (16) 

As noted by Beaucage 37, equation (15) ignores correlations between chain 

segments that are not linearly bonded. To account for correlations between topologically 

connected chains, like binary inter-arm interactions in star polymers, the approach 

proposed by Benoit and later Alessandrini for symmetric star polymers can be employed 

32, 54.  For interaction amongst arms of an f-arm, symmetric star polymer, equation (15) is 

expanded to include the inter-arm interactions following Benoit and Alessandrini 32, 54, 

I q( )
G

=

f
1

!

"
##

$

%
&&
2
p2

!

"
#

$

%
& p1−c ic−1 p− i( )e−q

2R2g,i di
0

p

∫

+
f
2

!

"
##

$

%
&&
2
p2

!

"
#

$

%
&

2

p2 1−c( ) jc−1 p− j( )e−q
2R2g, j dj kc−1 p− k( )e−q

2R2g,k dk
0

p

∫
0

p

∫

)

*

+
+
+
+
+

,

-

.

.

.

.
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(17)
 

where, the interaction integrals are over f
1

!

"
##

$

%
&&=

f !
n! f − n( )!

	  pair of arms. Substituting for 

variables, similar to Beaucage and Benoit 32, 37, 

i =
6Rg,i

2

R1
2

!

"
##

$

%
&&

dmin
2

=
1
qdmin

6u
R1
2

!

"
#

$

%
&

dmin
2
⇒ di = 6

R1
2
1
qdmin

dmin
2

6u
R1
2

!

"
#

$

%
&

dmin
2

−1

du         (18)	  

j =
6Rg, j

2

R1
2

!

"
##

$

%
&&

dmin
2

=
1
qdmin

6v
R1
2

!

"
#

$

%
&

dmin
2
⇒ dj = 6

R1
2
1
qdmin

dmin
2

6v
R1
2

!

"
#

$

%
&

dmin
2

−1

dv        (18’)	  
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k =
6Rg,k

2

R1
2

!

"
##

$

%
&&

dmin
2

=
1
qdmin

6w
R1
2

!

"
#

$

%
&

dmin
2
⇒ dk = 6

R1
2
1
qdmin

dmin
2

6w
R1
2

!

"
#

$

%
&

dmin
2

−1

dw       (18”)	  

p =
6Rg

2

R1
2

!

"
##

$

%
&&

dmin
2

                    (19)
 

in equation (17) yields, 

I q( )
G

=

f dmin
qRg( )

d f
1− u

dmin
2

qRg( )
dmin

"

#

$
$
$

%

&

'
'
'
e−uu

d f
2
−1

(

)
*

+

,
-

du
0

qRg( )2

∫

+
f f −1( )
2

d 2min
qRg( )

2d f
1− v

dmin
2

qRg( )
dmin

"

#

$
$
$

%

&

'
'
'
1− w

dmin
2

qRg( )
dmin

"

#

$
$
$

%

&

'
'
'
e− v+w( ) vw( )

d f
2
−1

(

)
*

+

,
- dvdw

0

qRg( )2

∫
0

qRg( )2

∫
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&
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	  (20) 

Equation (20) has two structural levels, the first corresponding to arm scattering 

and the second to binary arm correlations. The exponents outside the single and double 

integrals, in the first and second terms of equation (20), respectively, constitute the I 0( )  

prefactors for the arm scattering term, Gf , and the binary arm correlation term, G2 f . Gf  

is simply the prefactor for a single arm times the number of arms, f, 

Gf = fG                            (21) 

and G2 f is given by,

 G2 f =
f f −1( )
2

"

#
$

%

&
'G =

f −1
2

"

#$
%

&'
Gf

         
              (22)

 

For the power law pre-factor in the Unified function, B , the asymptotes are 37, 51,  

Bf =
Gf dminΓ

d f

2
"

#
$

%

&
'

Rg
d f

               (23) 
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B2 f =
G2 f d

2
minΓ d f −1( )
Rg
2d f

=
f −1( )Gf d

2
minΓ d f −1( )

2Rg
2d f

           (24)
 

From equation (23),	  dmin  is given by 37, 44, 55, 

dmin =
Bf Rg

d f

GfΓ
d f

2
"

#
$

%

&
'

                 (25) 

where, Γ  is the gamma function. Equation (25) is valid for monodisperse samples 44, 55. 

From d f 	  and dmin ,	  c can be obtained using equation (4) and p and s, using equations (2) 

and (3). 

With these substitutions equation (12) becomes, 

1
I q( )

=
1
Gf

f −1
2

e− q
2Rg

2( )/3 +
d 2minΓ d f −1( )

Rg
2d f

e− q
2lp
2( )/9 qf

*( )
−2d f

#
$
%

&%

'
(
%

)%

+ e− q
2Rg

2( )/3 +K f e
− q2lp

2( )/9 qf
*( )

−d f{ }+ 1z e− q
2lp
2( )/9 + zKp qp

*( )
−1{ }

*

+

,
,
,
,
,

-

.

/
/
/
/
/

−1

+ zφKv 1−
2χ
Kv

0

1
22

3

4
55

#

$

%
%

&

%
%

'

(

%
%

)

%
%

	  

     (26)

	  

The first term, with the lead factor f −1( ) 2 , accounts for binary correlations between 

the arms. This term has a steep power law slope of −2d f . In the original Benoit 

expression this term has a slope of -4 and accounts for a steep upturn in the scattering at 

low-q. The second term is similar to equation (12) and reflects scattering from the arms in 

the absence of correlations between arms.  This term includes a structural level describing 

chain persistence. The final term accounts for screening due to enthalpic interactions, 

serving to diminish the intensity at low-q under good solvent conditions at high 
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concentrations.  Under the condition that f =1  for a linear chain, equation (26) reverts to 

equation (12) 21, 32, 41, 54, 56.  

 The evaluated χ  parameter is per Kuhn unit, similar to z, and not per mer unit, 

which means that the χ values evaluated using equation (26) above are based on zero 

conformational entropy units versus the traditional chemical mer unit. The calculation of 

χ  per unit Kuhn length is therefore thermodynamically more relevant but may not be 

directly compared to values reported in literature, as the structural basis is different. 

Nevertheless, the second virial coefficient (A2) may be alternately used to alleviate the 

issues with base structure.  A2 is given by, 

A2 =

1
2
− χ

"

#
$

%

&
'

Vsolρpol
2                                (27) 

where, Vsol  is the molar volume of the solvent (evaluated to be 123.3 cm3/mol for p-

xylene) and ρpol  is the density of polymer (~0.916 g/cm3 for polyisoprene). 

For the polymer/solvent system under present consideration, and perhaps more 

generally, the initial hint of a transition from polymeric/fractal structure to a colloidal, 

Daoud Cotton structure may begin near f > 8. For different systems this cutoff may occur 

at different functionalities but f > 8 as a rule of thumb would be presently suggested for 

appearance of colloidal features. The appearance of a 3D core is considered as a sign of 

colloidal structure for the star polymers. This transition point with increasing f is a limit 

to the applicability of the proposed scattering function.  
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Material and Method 

Linear and 4 and 8 arm symmetric star polyisoprene samples were used.  The 

Linear standard was purchased from PSS Polymer Standards Service GmbH, Mainz, 

Germany with Mw of 110kg/mole, Mn of 109kg/mole, and PDI of 1.01. The 4-arm and 8-

arm polyisoprene stars were synthesized by anionic polymerization using high vacuum 

techniques and chlorosilane chemistry 57. All intermediate and final products were 

analyzed by size exclusion chromatography (SEC) and nuclear magnetic resonance 

spectroscopy. The molecular weight of the arms (by SEC) and final star polymers (by 

SEC-MALLS) are given in table I.  

SANS was performed on dilute solutions of model star isoprene in deuterated p-

xylene at 34.5° C. 500 ppm of butylhydroxytoluene (BHT) was added to as a stabilizer. 

Deuterated p-xylene was purchased from Cambridge Isotopes. The PI samples were 

equilibrated at 34.5°C for 2 hours prior to the measurements to ensure complete 

dissolution of the polymer in solvent. One weight percent solutions were used, which is 

below the overlap concentration. SANS experiments were carried out at HFIR CG-2 

General-Purpose SANS facility at the Oak Ridge National Laboratory (ORNL) and at 

NCNR NG7 SANS facility at the National Institute of Standards and Technology (NIST).  

At CG-2 HFIR, SANS experiments were run at sample to detector distances of 18.5m and 

0.75m, while at NG7 NCNR, experiments were done at 15, 7 and 1m. The low-q data 

was calibrated with standards to obtain absolute intensity. 

Results and Discussion 

Figure 2(a) shows SANS data from a ~1% solution by weight of the linear 

standard, 4-arm and 8-arm polyisoprene symmetric star polymers in d-xylene solvent. 
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The overlapping scattering curves clearly show deviations at low-q 42. The Unified Fit for 

the 4-arm polyisoprene symmetric star polymer in figure 2(b) shows two structural levels 

for the mass-fractal, at intermediate-q, the fractal-scaling regime, and at high-q, the 

persistence regime. The SANS data fits from linear, 4-arm and 8-arm polyisoprene using 

the hybrid Unified Function, equation (26), is shown in figure 2(c) with offsets for visual 

clarifications. 

The inter-arm interaction scattering in grey dashed lines in figure 2(b) that decays 

faster in lower-q regime, comes from the first term, with the lead factor f −1( ) 2 , in 

equation (26) which accounts for binary correlations between the arms. The fractal 

scattering comes from scattering from the chain arms in the absence of correlations 

between arms and has two sets of parameters for the fractal and persistence scattering 

regimes 44. These two sets of fitting curves then add up, as shown in grey dash-dot-dots, 

and are screened at low-q by the inverse of the χ  term in equation (26) shown as grey 

dash-dots in Figure 2(b). 

The fitted and calculated scaling and thermodynamic parameters are listed in table 

II. The interaction parameter for the samples varied from 0.34±0.02 to 0.22±0.03 and 

0.31±0.01 for the linear, 4-arm, and 8-arm stars respectively, which compare rather well 

with the reported values for χ  to be 0.27 58, 59. It is to be noted that the fitted values of 

empirical parameter, χ  is per unit Kuhn length, which is the smallest zero 

conformational entropy unit of the polymer chain, as pointed out earlier. The second 

virial coefficient for the linear, 4-arm and 8-arm star polymers were estimated to be 

0.0015±0.0002, 0.0027±0.0003 and 0.0018±0.0001 molcm3/g2. The persistence lengths 
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for the three samples were evaluated to be 13.2±0.1 Å, 13.6±0.3 Å and 12.6±0.3 Å. 

Neither of the two parameters, χ/A2 or lp, demonstrated any clear relation to the 

functionality of the star polymers. The mass fractal dimension is close to 5/3 as expected 

from figure 2(a). 

The respective minimum paths, p, of 145±2, 130±1 and 126±1 for the three 

samples in Kuhn units remained within ~10% of each other while the respective 

minimum dimensions of 1.72±0.09, 1.46±0.06 and 1.43±0.05, reflected increase in 

stretching of the arms in space with number of arms as compared to a linear chain under 

good solvent conditions. The connective paths, s, of 18±3, 45±7 and 115±21 Kuhn units, 

displayed a connectivity dimensions, c, of 1.00±0.09, 1.14±0.08 and 1.29±0.07 which 

reflects increase in branching and connectivity in the star polymers with functionality. 

The branch fraction, ϕbr, which was calculated by equation (5) and bound by equation (6), 

was determined to be 0, 0.50±0.06 and 0.75±0.21 for linear, 4-arm and 8-arm symmetric 

stars following the expected value from, f − 2( ) f . The meandering fraction, ϕm, which 

is the fraction of excess mass due to tortuosity in the system, was calculated to be 

0.88±0.14, 0.83±0.13 and 0.77±0.14 for the respective samples using equation (7) which 

indicated that the arms stretch in space with increasing functionality and hence a larger 

number of structural Kuhn units, z, are necessary to connect the branch point to the free 

end, as functionality increases.  

The steric interaction fraction, φsi , is an important quantification of the steric 

interactions of arms compared to the maximum possible steric interaction. It is 0 for an 

unbranched polymer chain and is expected to increase with increasing functionality. φsi  

is calculated to be ~0, 0.08±0.05, 0.17±0.07 for the linear, 4-arm and 8-arm samples 
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respectively. This value reflects an increasing steric interaction with increase in 

functionality in symmetric star polymers. 

Conclusions 

 The effect of molecular weight and functionality is of great significance to 

exploitation of the properties of star polymers, which can acquire a wide range of 

conformations under varying structural and thermodynamic constraints. A versatile 

method to characterize such structures greatly enhances the capability to establish robust 

structure-property relationships. A scaling model for symmetric star polymers was 

presented and a method to utilize SANS to obtain scaling parameters was demonstrated. 

The scaling approach is expected to better describe these systems under different 

solvation conditions than previous methods because it can accommodate and distinguish 

changes in topology, tortuosity, and thermodynamics.  

A scattering function was derived which takes account of the inter-arm 

correlations and the polymer-solvent interaction parameter. The concept of branch 

fraction, φbr , was used for quantification of star functionality since it can be directly 

obtained by analysis of scattering data using the scaling approach. The approach was 

successfully applied to linear, 4-arm and 8-arm PI stars and the results were discussed. 

This versatile method to quantify the structural as well as thermodynamic parameters 

should greatly enhance capabilities to establish robust structure-property relationships for 

such systems. 
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Figures  

 

FIG. 1: Schematic of a four arm PI star polymer in 2-D. Four PI arms are connected to a 

tetrafunctional Si atom forming the 4-arm PI star with mass, , fractal dimension, , 

and connective dimension, . A minimum path, , with a dimension, , which 

describes molecular tortuosity, is shown in dark units. The connective path, composed of 

 units, is shown by dashed straight lines. Scaling features are described in the text. 

 

FIG. 2 (a) SANS from solution of ~1% by weight linear standard, 4-arm star and 8-arm 

star polyisoprene in xylene solvent in light grey dots, dark grey dashes and solid black 

line. The slope of 5/3 and 1 are also shown. (b) SANS from 4-arm polyisoprene in grey 

circles with the final Hybrid Unified Fit [equation (26)] in black line. The contribution 

from fractal chain scattering, the inter-arm interaction, their sum and -term are also 

presented. Please note the deviation of chain scattering from the Unified Fit near the 

Guinier knee. (c) SANS from linear, 4-arm and 8-arm polyisoprene with Hybrid Unified 

Fits with offsets for visual clarifications.  The low-q correlation features are present due 

to the inter-correlation amongst the arms in the star as the concentration of 1wt% was 

below the overlap concentration.  

 

Tables 

 

Table I. Synthesis and characterization details for linear, 4-arm and 8-arm PI star 

polymers. 

 

Table II. Fitted, thermodynamic and calculated scaling parameters for PI polymer 

samples using the Unified equation (26) 

  

z d f

c p dmin

s

χ
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1,4-PI 
M
n
 arm (kg/mol), SEC Final star-branched PI 

(SEC-MALS) 
f = M

n,star
/M

n,arm
 

Cal.
a
 SEC

b
 M

w
/M

n
 M

n
, kg/mol M

w
/M

n
 Cal.

a
 SEC

b
 

Linear* 110 1.01* - - 1 Linear* 110 

4-arm star 61 55 1.01 218.9 1.01 3.59 3.98 

8-arm star 60 55 1.01 415.4 1.01 6.92 7.55 

	  
*Purchased from PSS Polymer Standards Service GmbH (Mw of 110 kg/mole, Mn of 109 kg/mole),

 a
Calculated 

values from chemical stoichiometry, 
b
SEC/MALS determined values. 

	  
	  
	  

Table 1 
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Sample Rg 
(Å) z df χ

* A2x10
3 

(molcm
3
g
-2
) 

lp 
(Å) 

dmin c p s ϕbr ϕm ϕsi 

Linear 
Std 130 

±2 
145 
±2 1.72 

±0.06 
0.34 
±0.02 

1.5 
±0.2 

13.2 
±0.1 

1.72 
±0.09 

1.00 
±0.09 

145 
±2 

18 
±3 0.0 

±0.0 
0.88 
±0.14 

0.0 
±0.0 

4-arm 165 
±7 

260 
±3 

1.67 
±0.04 

0.22 
±0.03 

2.7 
±0.3 

13.6 
±0.3 

1.46 
±0.06 

1.14 
±0.08 

130 
±1 

45 
±7 

0.50 
±0.17 

0.83 
±0.13 

0.08 
±0.05 

8-arm 224 
±3 

503 
±7 

1.69 
±0.03 

0.31 
±0.01 

1.8 
±0.1 

12.6 
±0.3 

1.43 
±0.05 

1.29 
±0.07 

126 
±1 

115 
±21 

0.75 
±0.21 

0.77 
±0.14 

0.17 
±0.07 

	  
*
χ determined per Kuhn unit. 

 
 
 
 
 

Table 2 
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