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Using a rod theory formulation, we derive equations of state for a thin elastic membrane subjected
to several different boundary conditions – clamped, simply supported and periodic. The former is
applicable to membranes supported on a softer substrate and subjected to uniaxial compression.
We show that a wider family of quasi-static equilibrium shapes exist beyond the previously obtained
analytical solutions. In the latter case of periodic membranes, we were able to derive exact solutions
in terms of elliptic functions. These equilibria are verified by considering a fluid-structure interaction
problem of a periodic, length-preserving bilipid membrane modeled by the Helfrich energy immersed
in a viscous fluid. Starting from an arbitrary shape, the membrane dynamics to equilibrium are
simulated using a boundary integral method.

PACS numbers: 68.08.-p, 47.63.-b, 47.55.-t

I. INTRODUCTION

Understanding the wrinkling and folding patterns of
elastic sheets over a soft substrate has received much
attention recently owing to a large number of practical
applications [1]. Recent experiments of [2] appeared to
show that a wrinkle to fold transition of the sheet oc-
curs whenever it is compressed beyond a certain thresh-
old. The fold patterns are highly localized which have
also been reproduced numerically in [2]. Elegant ana-
lytic solutions for the fold shapes have been derived in
[3] (and extended recently to sheets of finite length in [4])
by showing that the Euler’s elastica equation governing
the elastic sheet belongs to the stationary-sine-Gordon-
modified-KdV hierarchy, which is integrable. Two classes
of solutions, corresponding to a symmetric and an anti-
symmetric fold, have been reported. However, these so-
lutions are restricted to the primary single-fold shapes.
More recently [5, 6] have also used a rod theory formula-
tion to study the shapes of floating elasticas. In [6], the
authors first linearize the rod equations and get buckling
thresholds as well as symmetric and antisymmetric mode
shapes. Then they perform a non-linear post-buckling
analysis to get the shapes of the elastica with large de-
flections of the rod. Finally, they check for the stability
of these post-buckled shapes. [6] resolve the forces in the
rod in a lab-fixed coordinate system and solve the result-
ing non-linear ODEs numerically to get the post-buckled
shapes.

In this paper, we present new analytical solutions for
the equilibrium shapes. Furthermore, we obtain more
general multiple-fold shapes numerically by solving a set
of first-order ordinary differential equations (ODEs) de-
rived using large deflection theory of rods. Unlike the
far-field boundary conditions applied in [3] (for the sake
of deriving exact solutions), we apply clamped bound-
ary conditions. This is consistent with the experimental

set-up of [2] wherein the lateral edges of a thin polymer
sheet resting on the surface of water are clamped while
the sheet itself is compressed laterally. By simply varying
the applied strain, which enters as a boundary condition
in our formulation, we get shapes with varying complex-
ity from smooth to highly localized to nearly touching
configurations. In contrast to [6], we resolve the force in
the rod along coordinates that are tangential and normal
to the rod and obtain analytical solutions to the resulting
non-linear ODEs.

Using the same formalism, we consider another impor-
tant problem, that of determining the periodic equilib-
rium shapes of lipid membranes immersed in a viscous
fluid. Periodic equilibria of lipid bilayers in the form
of minimal surfaces (with cubic symmetry) have been
known for a long time [7]. Periodic cylindrical equi-
libria are also known [8]. Indeed, such periodic shapes
are observed in cellular organelles such as mitochondria,
chloroplasts, and endoplasmic reticula [9, 10]. Periodic
shapes with cylindrical symmetry have been realized in
suspended lipid bilayers [11]. Moreover, periodic mem-
brane mechanics is often used as a paradigm for under-
standing the complex multi-physics of soft particles such
as vesicles and red blood cells. For example, [12] studied
the interplay of membrane compositional dynamics with
solvent hydrodynamics while [13] considered the vesicle
electrohydrodynamics.

Building on our previous work on closed vesicles [14],
we derive exact solutions in terms of elliptic functions
to the ODEs of rod theory formulation with periodic
boundary conditions. Excess length characterizes the
obtained equilibrium shapes. We show that single-fold
shapes have lower elastic energy compared to multiple-
fold shapes for a fixed excess length. While useful in
their own right, the exact solutions, perhaps more im-
portantly, can be used for validating numerical schemes
that are applicable in the broader context of simulating
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biomembranes in viscous fluids. We formulate and imple-
ment a boundary integral method to simulate the dynam-
ics of a periodic lipid bilayer membrane suspended in a
viscous fluid. The membrane dynamics are characterized
by a competition between elastic energy, local inextensi-
bility, and non-local hydrodynamic forces. We develop a
high-order method to solve the integro-differential equa-
tions for membrane evolution to equilibrium by the use
of Fourier representations and a high-order singular in-
tegration scheme. We show that for any arbitrary initial
profile, the membrane always relaxes to one of the exact
solutions we derived using the rod theory formulation.

II. ROD-THEORY FORMULATION

In this section, we provide a rod-theory based approach
for computing equilibrium configurations of planar mem-
branes. Since we focus primarily on cylindrical mem-
brane shapes, it is sufficient to think of the membrane
as an inextensible planar rod [15]. Indeed, recent exper-
iments on membranes or thin films at the interface be-
tween two liquids have demonstrated a variety of shapes
that are similar to those obtained in our computations.
All of these membrane shapes are cylindrical so that cur-
vature is a scalar variable, just as it is for a planar rod.
At any cross-section of this rod located at arc length s,
there are two components of the internal force Fx(s) and
Fy(s) and one internal moment M(s). The tangent to
the rod makes an angle θ(s) with the laboratory x-axis.
Therefore,

cos θ =
dx

ds
and sin θ =

dy

ds
. (1)

The equilibrium equations for the rod are well-known and
are given by [16]

dFx
ds

+ bx = 0, (2)

dFy
ds

+ by = 0, (3)

dM

ds
− Fx sin θ + Fy cos θ +m = 0, (4)

where bx(s) and by(s) are body forces per unit length and
m(s) is a body moment per unit length. In experiments
on thin films at liquid interfaces, the body forces arise
from hydrostatic pressure exerted by a liquid column on
the film. Such a pressure acts normal to the surface n of
the film and takes the form b(s) = b(s)n, where b(s) is
a scalar function. Since there are no body moments in
the films studied in these experiments, we will set m =
0 everywhere. Given this form of the body force, it is
natural to resolve the internal force F in the rod along
the tangent t and normal n. Then, F = Ftt + Fnn and

the equilibrium equations can be written as

dFt
ds

+ Fnκ = 0, (5)

dFn
ds
− Ftκ+ b = 0, (6)

dM

ds
+ Fn = 0, (7)

where κ = dθ
ds is the curvature and the rod is assumed to

be inextensible. The tangent and normal to the rod are
related through the standard Frenet-Serret formulas on
the plane, given by

dt

ds
= −κn and

dn

ds
= κt. (8)

We also assume that the moment M and curvature κ
are related through M = Kbκ where Kb is a bending
modulus of the membrane. Then, (5) and (7) can be
combined to yield

Ft =
Kb

2
κ2 + C, (9)

where C is a constant that must be determined from the
boundary conditions. When we plug (9) into (6), we get

Kb
d2κ

ds2
+
Kb

2
κ3 + Cκ− b = 0. (10)

If we recognize −C/Kb as the tension σ and −b/Kb as
the pressure difference p between the bottom and top of
the film, then this is the same equation that was solved
previously for closed vesicles [14], assuming a constant
pressure difference.

III. ANALYTICAL SOLUTIONS

In this section, we derive analytic solutions to (10)
for three kinds of boundary conditions—clamped, pe-
riodic and simply supported—in terms of the Jacobi
elliptic functions which are defined using the integral

u =
∫ φ
0

1/
√

1−m sin2 θ dθ as

sn(u|m) = sin(φ), (11)

cn(u|m) = cos(φ), (12)

dn(u|m) =

√
1−m sin2 φ. (13)

A. Clamped boundary conditions

For clamped boundary conditions, we solve (10) with
a non-zero pressure difference between the two sides of
the film. In order to illustrate this method and to re-
late to the experimental results of [2], we assume that
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FIG. 1: Plot of equilibrium shapes corresponding to the ex-
act solutions (14) and (19) for different values of m2 =
{0, 0.1, 0.2, . . . , 0.9}.

b = −ky = −ρgy, where ρ is the density difference be-
tween the liquids on the two sides of the film, g is the
acceleration due to gravity, and k = ρg is the stiffness
of the “substrate”. Under this assumption, an analytical
solution to (10) is given by

κ(s) =
2
√

1−m2

dn(s|m)
, (14)

for which

C

Kb
= m2 − 2− ρg

Kbm2
. (15)

This gives

θ(s) = 2
√

1−m2
sn(s|m)cn(s|m)

dn2(s|m)
, (16)

x(s) =

∫ (
2

cn2(s|m)

dn2(s|m)
− 1

)
ds, (17)

y(s) = 2

√
1−m2

m2

1

dn(s|m)
. (18)

Clearly, θ(s = ±K(m)) = 0 where K(m) is the complete
elliptic integral of the first kind. If we take L = 2K(m)
then this solution represents clamped-clamped boundary
conditions. The parameter m can be determined by en-
forcing x(L2 )−x(−L2 ) = L

1+εpre
where εpre is a prescribed

pre-strain. Alternatively, εpre is determined by the com-
pression applied on the film which specifies the end-to-
end distance x(L2 )− x(−L2 ) . We can always re-scale the

length L by a length scale λ such that L
λ = K(m). The

constant C must then be modified accordingly. Another
solution to (10) is

κ(s) = 2dn(s|m), (19)

for which

C

Kb
= m2 − 2 +

ρg

Kbm2
. (20)

This gives

θ(s) = 2 sin−1(sn(s|m)), (21)

x(s) =
2

m2
E(s|m) + (1− 2

m2
)s, (22)

y(s) = − 2

m2
dn(s|k), (23)

where E(s|m) is the incomplete elliptic integral of the
second kind with modulus m. Again, if we take L =
2K(m), then since θ(s = ±K(m)) = ±π, these solutions
correspond to clamped boundary conditions but result
in self-intersecting shapes. The equilibrium shapes cor-
responding to (14) and (19) are plotted in Figure 1 for
various values of m.

B. Periodic boundary conditions

In the special case of k = 0 (which implies b = 0) it is
possible to recast (10) as

d

ds

((
1

2

dκ

ds

)2

+
κ4

8
+
Cκ2

2

)
= 0, (24)

which implies (
1

2

dκ

ds

)2

+
κ4

8
+
Cκ2

2
= B, (25)

where B is a constant. This results in closed orbits on
the κ − dκ

ds plane which suggests periodic solutions for
κ(s). One class of periodic solution in terms of elliptic
functions is given by

κ(s) = 2mcn(s|m), (26)

which results in

x(s) = 2E(s|m)− s,
y(s) = 2mcn(s|m),

θ(s) = 2 cos−1(dn(s|m)),

(27)

where E(s|m) is the incomplete elliptic integral of the
second kind with modulus m [17]. Figure 2 (I) shows the
equilibrium shapes for various values of m.

Another class of shapes that solve (10) with b = 0 is
given by

κ(s) = 2m
√

1−m2
sn(s|m)

dn(s|m)
. (28)

To realize periodic boundary conditions, we set L =
4qK(m) where K(m) is the complete elliptic integral of
the first kind and q is a positive integer. By integration
we get

θ(s) = 2 sin−1

(
−m cn(s|m)

dn(m|k)

)
, (29)

cos(θ) = 1− 2m2 cn2(s|m)

dn2(s|m)
, (30)

sin(θ) = −2m
√

1− k2 cn(s|m)

dn2(s|m)
. (31)

We obtain x(s) and y(s) by integrating numerically. The
equilibrium shapes thus obtained are plotted in Figure 2
(II) for various values of m and q = 1.
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FIG. 2: (Color online) Plots of equilibrium shapes corresponding to the exact solutions (26) and (28) in (I) and (II) respectively
for various excess lengths (with shapes colored the same in (I) and (II) representing those with same value for m). Excess length
is defined as the membrane arc length over the period 2π. Periodicity implies that multiple fold shapes obtained by concatenating
each of these exact solutions is also an exact solution but with a higher excess length. In (III), we compare the bending energy,
defined as

∫
γ(s)

κ2(s) ds, of the shapes in (I) plotted over multiple periods and proportionally scaled back to [0, 2π) (for example,

a four-fold and a two-fold shapes are plotted in Figure 7).

C. Simply supported boundary conditions

Interestingly, (26) and (27) will also be a solution to
(10) with k = ρg if we select the arbitrary constant C as

C

Kb
= 1− 2m2 − ρg

Kb
. (32)

Here, as before, m must be determined from the bound-
ary conditions. The appropriate boundary condition is

x

(
L

2

)
− x

(
−L

2

)
= 4E

(
L

2

∣∣∣∣m)−L =
L

1 + εpre
, (33)

where εpre is a pre-strain or is determined from the com-
pression applied on the film. For given L this is an equa-
tion for m which can be solved numerically. We also see
that y(s = K(m)) = 0 and θ(s = K(m)) 6= 0 where
K(m) is the complete elliptic integral of the first kind.
This means that (26) and (27) are solutions of (10) with
simply supported boundary conditions with L = 2K(m)
which correspond to zero deflection and zero curvature
at the two ends. Note that θ(s) in (27) can be written as

θ(s) = 4 tan−1

(
msn(s|m)

1 + dn(s|m)

)
. (34)

This is reminiscent of the solution in [3] where the sym-
metric solution for clamped-clamped boundary condi-
tions was

θ(s) = 4 tan−1

(
κ sin(ks)

k cosh(κs)

)
, (35)

FIG. 3: Equilibrium shapes obtained by solving (36) through
(43) that match the experimentally observed shapes reported
in Fig. 1(A) of [2]. The solutions were obtained by modifying
εpre while varying L to hold x(L/2) constant. The first and
second solutions from the top are odd type solutions as shown
in Fig. 8. The last solution is an even type solution like those
shown in Fig. 9.

with k2 + κ2 = 1. Although these solutions correspond
to different boundary conditions, they look similar if we
take κ << 1 and m2 = 2κ + κ3 (which would mean a
small εpre).

IV. ASYMMETRIC SHAPES

All of the analytical solutions derived in the previous
section give rise to symmetric equilibrium shapes. In ex-
periments, however, many asymmetric shapes are com-
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monly observed (e.g., in [2]). In this section, we develop
a numerical procedure to obtain such shapes. First, we
recast our problem as a system of first order ODEs (using
equations (5) through (9)):

dx

ds
= cos θ, (36)

dy

ds
= sin θ, (37)

dθ

ds
=

M

Kb
, (38)

dM

ds
= −Fn, (39)

dFn
ds

= ky +
Kb

2

M3

K3
b

+ C
M

Kb
. (40)

In the experiments of [2] the end-to-end distance
x(L/2)−x(−L/2) is reduced in order to buckle the film.
We account for this by using a strain εpre through our
boundary conditions:

x(L/2)− x(−L/2) =
L

1 + εpre
, (41)

y(−L/2) = 0, y(L/2) = 0, (42)

θ(−L/2) = 0, θ(L/2) = 0. (43)

We solve the system consisting of (36) through (43)
numerically. Details of the solver are presented in the
appendix. Select solutions are plotted in Figures 3 to
4 with the following motivation. First, in Figure 3, we
show solutions that closely match the experimentally ob-
tained shapes reported in Figure 1(A) of [2]. Second,
odd and even type solutions for varying εpre values along
with the corresponding internal moment M and normal
force Fn are shown in Figures 8 and 9 respectively that
correspond to the antisymmetric and symmetric config-
urations derived analytically in [3]. Lastly, we plot a few
classes of general multiple fold shapes in Figure 4. The
advantage of our approach is that all of these shapes can
also be obtained by using the same solver.

V. FLUID-STRUCTURE INTERACTION
PROBLEM

Consider a planar elastic membrane suspended in an
incompressible viscous fluid with viscosity µ. The fluid
domain Ω is assumed to be periodic in the x−direction
and unbounded in the y−direction. Let x be the posi-
tion of the membrane γ, v the fluid velocity, and p the
pressure. In the vanishing Reynolds number limit, the
governing equations for the ambient fluid are given by

−µ∆v +∇p = 0 in Ω\γ,
∇ · v = 0 in Ω\γ.

(44)

The fluid motion is coupled to the membrane motion via
the kinematic boundary condition

ẋ = v on γ. (45)

The local inextensibility constraint on the membrane can
be expressed as [18]

xs · ẋs = 0 on γ. (46)

The stress balance at the membrane interface is given by

[[−pn + (∇v +∇vT )n]] = fmem on γ, (47)

where n is the unit normal to the membrane. The nota-
tion [[q]] denotes the jump of a quantity q across the mem-
brane. The classical Helfrich energy model for the bi-
layer membrane and an augmented Lagrangian approach
(to enforce the local inextensibility) lead to a bending
force fb and a tension force fσ on the membrane so that
fmem = fb + fσ. They are defined by [18]

fb = −κBxssss, fσ = (σxs)s, (48)

where κB is the bending modulus, κ is the curvature, s is
the arclength parameter, and σ is the tension which acts
as a Lagrange multiplier to enforce the local inextensibil-
ity constraint.

Given an arbitrary initial shape, the membrane de-
forms until the elastic stress due to bending and tension
balances out the hydrodynamic stress at the interface.
The transient dynamics can be simulated by solving the
the fluid equations subject to the no-slip, periodic, and
kinematic boundary conditions along with the stress bal-
ance. We use potential theory to recast the governing
equations for the membrane evolution in the form of cou-
pled integro-differential equations:

ẋ =

∫
γ

G(x,y) (fb(y) + fσ(y)) dγ(y),

xs · ẋs = 0,

(49)

where G is the periodic Green’s function for the Stokes
equations (44), which is known in closed analytic form1.
The integral equation formulation (49) has two impor-
tant advantages. First, the Green’s function satisfies the
fluid incompressibility condition and the far-field (peri-
odic) boundary condition by construction. Second, the
unknowns reside only on the membrane. This avoids
the need for a volume mesh. We describe our numeri-
cal scheme to solve (49) next.

VI. NUMERICAL SCHEME

We represent the membrane orientation as a
parametrized curve. Each value of α ∈ [0, 2π) is a refer-
ence to a point x(α, t) = [x(α, t), y(α, t)]T on the mem-
brane. Denoting by L the total arc length of the mem-
brane, the x-component of the membrane position can

1 It is given by [19]:

G(x̂) =

[
−A− ŷAy + 1 ŷAx

ŷAx −A+ ŷAy

]
, with x̂ =

[
x̂
ŷ

]
= x− y,

A(x̂) = 1
2
ln (cosh ŷ − cos x̂) + 1

2
ln 2, Ax = ∂A

∂x̂
, and Ay = ∂A

∂ŷ
.
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FIG. 4: Other classes of equilibrium shapes that can be obtained by solving (36) through (43). The solutions were obtained by
numerically continuing εpre from the folded solution to the low amplitude solution while varying L to keep x(L/2) constant.
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FIG. 5: (Color online) Snapshots of a bilipid membrane evolving to an equilibrium shape starting from an arbitrary initial
shape. The streamlines are determined by evaluating the surrounding fluid velocity using the relation v(x) =

∫
γ
G(x,y) fmem

for any x in the fluid domain. The color on the membrane indicates the magnitude of the tension σ.
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be expressed as the sum of a linear term and a function
xp that is 2π-periodic in α:

x(α, t) =
L

2π
α+ xp(α, t). (50)

We track the evolution of marker points on the membrane
that are uniformly spaced in the parametric domain at

{αj = 2π(j − 1)/M}Mj=1 for a given discretization size M .

This allows fast and spectrally accurate computation of
derivatives via the fast Fourier transform (FFT). For ex-
ample, we can write

yα =

M/2∑
j=−M/2

(−ij)ŷ(j)e−ijα, (51)

and use FFTs to switch between y and ŷ.
The periodic Stokes Green’s function in (49), similar

to its free-space counterpart, exhibits a logarithmic sin-
gularity to the leading order when the evaluation point
x resides on the membrane [19]. Therefore, quadrature
rules designed for smooth integrands such as the trape-
zoidal rule are not effective in evaluating the integral in
(49), and a special treatment is required. We use the hy-
brid Gauss-trapezoidal quadrature rule outlined in [20]
that is designed to yield arbitrarily high-order accuracy
for integrals of this form. We evaluate the integrand at
the small number of nonuniform Gaussian nodes this rule
requires via Fourier interpolation.

A. Time-stepping scheme

We propose the following time-stepping scheme for the
membrane orientation and inextensiblity equations (49):

xk+1 − xk

∆t
=

∫
γk

G(xk,yk)[(σk+1yks)s − κByk+1
ssss] dγ,

(52)

0 = xks ·
(∫

γk

G(xk,yk)[(σk+1yks)s − κByk+1
ssss] dγ

)
s

.

(53)

All derivatives are computed using the membrane orien-
tation from the kth time step. This semi-implicit dis-
cretization is based on [18] and has been shown to have
unconditional stability. If we let v = [x, y, σ]T , then it
may be verified that the following are linear operators:

B(v) = x−∆t

∫
γk

G(xk,yk)[(σyks)s−κByssss] dγ, (54)

D(v) = xks ·
(∫

γk

G(xk,yk)[(σyks)s − κByssss] dγ

)
s

,

(55)
where x = y = [x, y]T . This yields the linear system

B(v) = xk, D(v) = 0, (56)

whose solution gives the functions xk+1(α) and σk+1(α)
at the next time step. This linear system, as it is stated
now, is not ideal for a number of reasons. First, x should
maintain the form x(α) = Lα/2π+xp(α) throughout the
entire computation. Any nonunitary scaling of x that
happens within the linear solver would change the linear
term and as a result, invalidate our assumption about
the form of x. Another issue is that when x is rescaled
by the linear solver, the logarithmic singularities in the
integral operators B and D will move so that applying
the quadrature will be nontrivial. We handle this by
decomposing v as follows:

v =

 xy
σ

 =

 Lα/2π0
0

+

 xpy
σ

 =

 Lα/2π0
0

+ vp.

(57)
This gives us the system

B(vp) = xk − BL, D(vp) = −DL, (58)

where

BL = B([Lα/2π, 0, 0]T ), DL = D([Lα/2π, 0, 0]T ).
(59)

With this change, all input functions xp, y, and σ are
periodic so that scaling vp will no longer jeopardize the
form of x. We use the GMRES method [21] to solve this
linear system.

Note that, since [Lα/2π, 0, 0]Ts is periodic, computing
BL and DL leads to a periodic integrand, as is the case
with vp. Since the integrand is periodic, we may shift it
so that the logarithmic singularity is always at the two
ends of the interval [0, 2π). We then apply the quadrature
rule of [20] on the intervals [0, π) and [π, 2π) separately.

VII. COMPUTATIONAL RESULTS

In this section, we perform an error analysis on the nu-
merical scheme. We begin the program with an arbitrary
initial profile and allow it to evolve in time in order to
verify that the inextensibility of the membrane and the
incompressibility of the fluid are preserved. We check
that as the number of spatial grid points is increased and
the size of the time-step is decreased, the relative error
approaches zero. Later, the program is tested on one of
the analytic equilibrium shapes with periodic boundary
conditions. We do this by computing the initial mem-
brane velocity on the shape. If it is indeed an equilibrium
solution, then the velocity should approach zero as the
resolution of the numerical scheme is enhanced.

A. Error analysis

We test that the program preserves membrane inexten-
sibility and fluid incompressibility by evolving the curve

x(α) = α, y(α) = exp(sinα+ 0.1 cos 5α), (60)
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FIG. 6: (a) Membrane shapes in time as it relaxes to equilibrium in a quiescent flow. (b) Plots of the membrane bending energy
and average tension as a function of time.

TABLE I: Convergence analysis of our numerical scheme
measured on the basis of preserving the membrane inexten-
sibility and fluid incompressibility constraints. Here, M is
the number of spatial discretization points and the time-step
size ∆t is reduced by half as M is doubled. We report the rel-
ative errors in the length of the membrane L and area under
it A measured at the end of the simulation in figure 6. We ob-
serve a first-order asymptotic convergence for the length and
the area, which is consistent with our time-stepping scheme.

M 64 128 256

|L0 − Lf |/L0 3.314 · 10−4 1.790 · 10−4 9.368 · 10−5

|A0 −Af |/A0 3.939 · 10−6 1.746 · 10−6 9.111 · 10−7

until t = 0.32. We let ∆t = 0.004/M where M is the
number of spacial grid points. The evolution of the curve
and its bending energy are shown in Figure 6. If mem-
brane inextensibility is preserved, we expect the relative
error between the initial membrane arc length L0 and
the final membrane arc length Lf to approach zero as
M increases. Similarly, fluid incompresibility should im-
ply that the area under the membrane remains constant.
The area considered is the region contained by the x-axis
and the membrane. The results of our error analysis are
shown in Table I. We observe a first order asymptotic
convergence for the length and area. This is in accor-
dance with our first order time-stepping scheme.

B. Equilibrium shapes

We numerically verify that one of the analytic shapes
derived above is an equilibrium solution. This will be

TABLE II: The analytical solutions in figure 2 (I) are verified
by feeding them as initial shapes to our membrane-fluid solver
and checking that the resultant velocity field is zero. We report
the maximum magnitude values for the initial velocity field
evaluated on the membrane in the second row. We simulate
the evolution to a fixed time horizon and report the max-norm
error in the difference of initial and final positions in the third
row. Clearly, both the errors converge to zero verifying that
these are indeed the equilibrium shapes.

M 32 64

‖v(x)‖∞ 3.043 · 10−7 2.797 · 10−10

‖x0 − xf‖∞ 6.978 · 10−9 6.630 · 10−11

done using two approaches. First, we check that the
single-layer potential approaches zero as M , the number
of spatial grid points, increases. This would indicate an
initial velocity of zero. Second, we run the program until
t = 1 using ∆t = 0.32/M . As M increases, the differ-
ence between the initial and final membrane orientations
should approach zero. Table II summarizes the results
for the shape with one period and excess length equal to
5.09. For both approaches we obtain rapid convergence
to zero. This is as expected, since the singular integrals
were computed using the eigth-order Gauss-Trapezoidal
scheme, and all derivatives have spectral convergence.

Finally, a natural question that arises is whether the
multiple-fold shapes as discussed in Figure 2 are in fact
stable equilibria. To verify this, we can take one of our
analytical equilibrium shapes with multiple folds as the
initial condition to the fluid-structure interaction prob-
lem and check if the shape changes over time. The result
of one such numerical experiment is plotted in Figure 7.
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FIG. 7: Evolution of a membrane with (a) four-fold shape
to (b) two-fold shape to (c) a single-fold shape, in quiescent
flow (see supplementary material for an animation). While
the multiple-fold shapes have higher bending energy (as also
pointed out in Figure 2), they correspond to stable equilibria.

As is evident, the shape tends to remain the same until
the numerical errors perturb it from this local equilibrium
to a shape with lower number of folds. The timescales
for these transitions from higher-to-lower energy states
are found to be entirely dependent on the numerical pa-
rameters such as the discretization and time-step sizes.

VIII. CONCLUSIONS

We provided a rod theory based approach for deter-
mining the equilibrium profiles that arise when a thin
elastic membrane is subjected to either clamped, simply
supported or periodic boundary conditions. In the for-
mer case, we showed that a larger family of quasi-static
equilibrium shapes exist. We derived a system of ODEs
that when solved by the provided numerical routine, pro-
duced these more general multiple-fold solutions, along
with the previously known shapes. The implementation
of this routine is quick, and solutions can be generated
in a matter of seconds.

In the case of periodic boundary conditions, we pro-
vided analytical solutions in terms of elliptic functions
and solved the fluid-structure interaction problem using
a boundary integral formulation. Our numerical scheme
is unconditionally stable and converges spatially with
spectral accuracy. We were able to verify our analytical
solutions by showing that their initial velocity quickly
converged to zero as the resolution of the solver was in-
creased. In addition, we found that for any arbitrary
initial profile, the membrane always relaxed back to one
of the analytically obtained equilibrium shapes.
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Appendix

A. Numerical solution of rod theory equations

The system consisting of (36) through (43) is numer-
ically solved using a shooting method based routine. A
shooting method works by reducing the solution of a
boundary value problem to the solution of an initial value
problem. This is done by determining a set of initial
conditions that yields a solution that satisfies the desired
boundary conditions. Since the first boundary condition
relies on the difference between x(L/2) and x(−L/2), we
may let x(−L/2) = 0 and then require

x(L/2) =
L

1 + εpre
. (61)

Next, we let

C = λ1, M(−L/2) = λ2, Fn(−L/2) = λ3. (62)

For a given triplet of λ-values (λ1, λ2, λ3) we have the
initial conditions

x(−L/2) = 0,

y(−L/2) = 0,

θ(−L/2) = 0,

M(−L/2) = λ2,

Fn(−L/2) = λ3.

(63)

We may now step forward in time using a time-stepping
routine, such as Matlab’s ode45 which uses a variable
step Runge-Kutta method. At s = L/2 we obtain

xL/2(λ1, λ2, λ3) = x(L/2), (64)

yL/2(λ1, λ2, λ3) = y(L/2), (65)

θL/2(λ1, λ2, λ3) = θ(L/2). (66)

If a given triplet of λ-values yields a solution that satisfies
(42), (43), and (61), then

E(λ1, λ2, λ3) =
[
xL/2 − L

1+εpre
, yL/2, θL/2

]T
(67)

will equal the zero vector. That is, E is a mapping from
R3 to R3 whose roots correspond to solutions of the BVP.
These roots can be found using Newton’s method. We
use Matlab’s fsolve routine to solve for them.
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FIG. 8: Odd type equilibrium shapes for different values of εpre along with the internal moments M and the normal component
of the internal force Fn obtained by solving (67). Plots were shifted vertically by 4 for spacing.
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