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Abstract

Differential capacitance (DC) data has been widely used to characterize the structure of elec-

trolyte solutions near charged interfaces and as experimental validation of models for electrolyte

structure. Fixing a large class of models of electrolyte free energy that incorporate finite volume

effects, a reduction is identified which permits the identification of all free energies within that class

that return identical DC data. The result is an interpretation of DC data through the equivalence

classes of non-ideality terms, and associated boundary layer structures, that cannot be differenti-

ated by DC data. Specifically, for binary salts, DC data, even if measured over a range of ionic

concentrations, is unable to distinguish between models which exhibit charge asymmetry, charge

reversal, and even ion crowding. The reduction applies to capacitors which are much wider than

the associated Debye length and to finite-volume terms that are algebraic in charge density. How-

ever, within these restrictions the free energy is shown to be uniquely identified if the DC data is

supplemented with measurements of the excess chemical potential of the system in the bulk state.
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I. INTRODUCTION

The contact between charged objects, such as a metal surface, macromolecule, or mem-

brane, and an electrolyte solution results in the rearrangement of ionic distributions near

the interface and formation of the so-called electric double layer. The double layer has been

extensively studied due to its importance within a wide range of areas including electro-

chemistry, biochemistry, physiology and colloidal science. In particular, important systems

such as supercapacitors, energy conversion devices or ion channels [1–5], underline the need

to understand double layer structure in concentrated solutions where non-ideality of the

solution due to ion-ion interactions and finite-size effects is significant.

One of the key quantities in the study of the double-layer structure is differential capaci-

tance data, as it is readily available experimentally. A 1:1 electrolyte solution bounded by a

charged wall, as shown in Figure 1, rearranges to create a region of charge imbalance within

the electrolyte near the adjacent wall. The total extracted charge satisfies [6]

Q(φ0, c) := q

∫ ∞
0

(p− n) dx,

where q is the unit of electrostatic charge, x is the distance from the wall, p(x) and n(x)

are the density profiles of the cations and of the anions, respectively. The potential on the

charged wall is denoted by φ0, where the reference potential is taken to be zero at the bulk,

i.e., φ(∞) = 0. The differential capacitance (DC) is defined as the change in Q(φ0, c) with

respect to changes in the applied potential φ0,

CD(φ0, c) :=
∂Q

∂φ0

(φ0, c).

The local charge imbalance occurs only in the electric double layer region. Therefore, differ-

ential capacitance data provides an important indirect measurement of double layer struc-

ture. Lyklema [7], for example, states “Quotients of charges and potentials, i.e. capacitances,

are in principle the most eligible parameters for quantitative analysis of overcharging”.

Previous studies have only used differential capacitance data as a validation tool, com-

paring DC data computed from models of electrolyte structure to experiments. The goal

of this work is to quantify the ability of differential capacitance measurements to differenti-

ate between models of electrolyte free energy by characterizing all models, within a family,

which recover prescribed differential capacitance data.
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FIG. 1. Illustration of the system of study. An electrolyte solution is bounded by a hard wall.

Here, for example, the wall is negatively charged. Top graph presents the density profiles of the

cations and of the anions, denoted by p(x) and n(x), respectively. The concentration of both ionic

species at the bulk equals c. The area captured between the profiles is proportional to the total

local charge imbalance in the electrolyte Q(φ0, c), which balances the surface charge on the wall.

The bottom graph presents the potential φ(x).

This issue is addressed within a general variational framework of Poisson-Boltzmann type

free energy models

E =

∫
kBT

p(ln
p

co
− 1
)

+ n
(

ln
n

co
− 1
)

︸ ︷︷ ︸
entropy

+ f(p, n)︸ ︷︷ ︸
non-ideality

+ q(p− n)φ− 1

2
ε|∇φ|2︸ ︷︷ ︸

electrostatic

dx, (1)

where kB is the Boltzmann constant, T is the temperature and the algebraic term f(p, n)

represents the entropy correction due to non-ideality caused by ion-ion interactions at con-

centrated solutions [8]. In the case of an ideal solution, i.e., f(p, n) ≡ 0, the action reduces

to the classic Poisson-Boltzmann model. The corresponding generalized Poisson-Boltzmann

equations arise as the critical point equation for the action (Hamiltonian) subject to a total

mass constraint on each charged species, see Section 2 of [9]. Indeed, setting the variations

of the Hamiltonian with respect to φ, p and n to zero, while properly handling the infinite

interval [10], yields the system,

εφ′′(x) + q(p− n) = 0, (Poisson)

ln p
c̄

+ fp(p, n) + q
kBT

φ = fp(c, c),

ln n
c̄

+ fn(p, n)− q
kBT

φ = fn(c, c),
(generalized Boltzmann),

(2a)

φ(0) = φ0, φ(∞) = 0, p(∞) = n(∞) = c̄, (2b)
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where the partial deriviatives fp(c, c) := ∂
∂p
f(p, n)

∣∣∣
p=n=c̄

and fn(c, c) := ∂
∂n
f(p, n)

∣∣
p=n=c̄

are

Lagrange multipliers which are associated with mass conservation.

The goal of this paper is to identify, within this framework, all non-ideality functions f

which recover a prescribed differential capacitance data. In particular to show that DC data

cannot distinguish between models with and without charge reversal effects or between mod-

els with and without anion-cation asymmetries. More specifically, a unique determination of

the free energy requires the prescription of two functions A(c̄) and B(c̄) which characterize

the concentration-dependent single-ion activity coefficients, that is the dependence of the

excess chemical potentials µ± on the ionic density under bulk conditions p ≡ n ≡ c̄. Com-

plementary measurements of double-layer structure, such as optical measurements utilizing

second harmonic generation phenomena [11, 12], can be employed to probe the domain of

validity of the constant-dielectric Hamiltonian framework (1).

The method permits a recovery of the theoretical models presented in Figure 2 from their

differential capacitance data and at the same time a derivation of alternative models which

give rise to identical differential capacitance data. As an application, the experimental data

of Valette [13] for a KPF6 electrolyte solution in contact with a silver single crystal electrodes

is recovered from two models with distinct boundary layer structures.

Previous studies [9, 14–24] have presented free energies which correspond to specific

choices of the non-ideality function f within the framework (1). These models can pro-

vide qualitative agreement between numerically derived differential capacitance data and

experimental data, see Figure 2. Similar qualitative agreement is achieved by models within

different frameworks that account, for example, for the dependence of the dielectric con-

stant upon the electric field [25, 26] and/or the dependence of the dielectric constant upon

the local ionic concentration [24, 27–29], see [30] (for a review). It is possible to adapt the

method presented here to characterize the models within these frameworks which provide

prescribed differential capacitance data.

II. REFORMULATION OF THE MODEL

It is instructive to consider a system of a 1:1 electrolyte bounded between two walls

located at x = 0 and x = L such that the electric potential on the walls is φ(0) = φ0

and φ(L) = −φ0. In this case, the generalized Poisson-Boltzmann system is of the form (2a)
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FIG. 2. Experimentally measured differential capacitance curve for a solution of 0.01M

KPF6 adapted from Figure 3 of [13] (Black dashed-dotted curve) and corresponding theoretical

predictions by the Poisson-Boltzmann model (2) with f ≡ 0 (solid blue), Gouy-Chapmann-Stern

with a Stern layer of width d = 0.157nm (red dots), Bikerman model with ν = 0.02 (a parameter

associated with the closest packing density of the ions), and the non-primitive model with (32) and

excess polarization parameters αn = αp = 0.1 (Dashed orange). Note models which better agree

with experimental data do exist in the literature.

with the boundary conditions

φ(0) = φ0, φ(L) = −φ0,
1

L

∫ L

0

p(x) dx =
1

L

∫ L

0

n(x) dx = c. (3)

At the large width limit L→∞, this system reduces to the generalized Poisson-Boltzmann

system (2) [10].

The generalized Boltzmann equations in (2) can be written in the form

µideal
± + µexcess

± = µexcess
± (c, c), (4a)

where the standard ideal electrochemical potential is defined as

µideal
+ := ln

p

c̄
+

q

kBT
φ, µideal

− := ln
n

c̄
− q

kBT
φ, (4b)

and the excess electrochemical potential is defined as

µexcess
+ := fp(p, n), µexcess

− := fn(p, n). (4c)

For simplicity, the system (4), together with Poisson’s equation in (2), is non-dimensionalized

by scaling

φ̃ =
q

kBT
φ, x̃ =

x

λD
, p̃ =

p

co
, ñ =

n

co
, c̃ =

c

co
, L̃ =

L

λD
, λD =

√
kBTε

q2co
, (5)
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where λD is the Debye length. Further, making the change of variables from ionic densities n

and p to net charge density ρ = n − p and total mass density c = n + p, and denoting the

overall entropy by

h(p, n) := [p (ln p− 1) + n (lnn− 1)] + f(p, n), (6)

yields the non-dimensional system (written after dropping the tildes)

φ′′(x) = ρ, (7a)

hc(c, ρ) = hc(2c, 0),

hρ(c, ρ) = φ+ hρ(2c, 0),
(7b)

subject to boundary conditions

φ(0) = φ0, φ(L) = −φ0. (7c)

Note that typically the reference density co in (5) is set as the bulk density c. Such a

choice would eliminate the explicit appearance of c̄ in (7). We choose, instead, an arbitrary

reference density as a central role is played by the relationship which connects the bulk

density c̄ to the Lagrange multipliers.

The system (7) defines the generalized Poisson-Boltzmann framework. We add to the

framework (7) an additional constraint that h(c, ρ) is strictly convex. As will be discussed

in the next section, this constraint is required to assure well-posedness of (7). From a

physical perspective, it assures that the system reaches a single uniform state in the absence

of applied voltage or in the bulk, as expected for systems with a single solvent such as those

considered in this work. We note that this assumption is unlikely to globally hold for more

complex systems with mixture of solvents and antagonistic salts.

III. THE LARGE WIDTH LIMIT: INCORPORATION OF THE DIFFERENTIAL

CAPACITANCE DATA

Traditionally, the differential capacitance data predicted by a generalized PB model is

computed by solving the PB equations for the charge density profiles for each desired applied

voltage, integrating the spatial dependence of the charge densities, and then differentiating

the result with respect to applied voltage. The procedure is computationally inefficient
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and hides the underlying structure relating the generalized PB equation to the differential

capacitance data. Thus, a prerequisite for systematically interpreting differential capacitance

data is to analytically resolve the forward problem, yielding an explicit connection between

the differential capacitance data and a given generalized Poisson-Boltzmann model.

In a companion paper [10], we address the resolution of the forward problem in a more gen-

eral framework. For completeness, in this section we derive the results for the case (7). The

generalized Poisson-Boltzmann model (7) is well-defined only when equations (7b) implicitly

define c(φ, c̄) and ρ(φ, c̄). These requirements are met when h(c, ρ) is strictly convex [10,

Lemma 1]. This result implies that for each well-defined generalized Poisson-Boltzmann

model (7), Poisson’s equation (7a) can be written as an autonomous equation φ′′(x) = ρ(φ, c).

Setting E := φ′(x) yields the dynamical system

φ′(x) = E,

E ′(x) = ρ(φ; c).
(8)

The system has a fixed-point at (0, 0) which is a saddle point (see Lemma 2 in [10]), that

corresponds to the bulk state of the electrolyte system. The double layer boundary structure

corresponds to the stable-manifold trajectory Γ that starts from a point (φ0, E0) on the

line φ = φ0 and reaches the line φ = −φ0 at x = L, see Figure 3A. In the wide-capacitor

limit, L → ∞, this latter condition requires that Γ approaches the saddle point (0, 0) as

x→∞, see Figure 3B. This reduction is very significant, as it renders Γ independent of the

value of φ0: it becomes a “bulk relation” that is valid in the interior domain, indeed Γ can be

parameterized by the relation, (φ,E(φ)), where the ‘Dirichlet-to-Neumann’ map E = E(φ)

satisfies
dE

dφ
(φ) =

ρ(φ; c)

E(φ)
, E(0) = 0. (9)

The independence of the Dirichlet-to-Neumann map, E(φ, c̄) to φ0, allows the boundary

data φ0 to be replaced with the electric potential φ, which yields an explicit relation between

the total charge for the differential capacitance. Indeed, substituting the LHS of Poisson’s

equation (7a) in the expression for the overall local charge imbalance in the electrolyte yields

Q(φ0) =

∫ ∞
0

ρ(x;φ0, c) dx = −
∫ ∞

0

φxx(x;φ0, c) dx = φx(x;φ0, c)|x=0 = E(φ, c)|φ=φ0
. (10)

Replacing φ for φ0, and using (9), yields the expression

CD(φ) =
dE

dφ
(φ) =

ρ(φ, c)

E(φ)
, (11)
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FIG. 3. Trajectories of the Poisson-Boltzmann dynamical system (8) corresponding to φ0 = 1

(solid) and φ0 = 1.5 (dash-dotted) in the cases A: Electrolyte bounded between two walls located

at x = 0 and x = L = 2 such that the electric potential on the walls is φ(0) = φ0 and φ(L) = −φ0.

and B: The limiting case, L =∞, for which an electrolyte is bounded by a charged wall such that

the electric potential on the wall is φ(0) = φ0, and the potential at the bulk is φ(∞) = 0.

or, via (10), equivalently

ρ(φ; c) = Q(φ; c)CD(φ; c). (12)

Moreover, the function ρ(φ; c) is invertible with respect to φ, defining φ = φ(ρ, c).

Lemma 1. The function ρ defined in (12) satisfies ρφ > 0, and is invertible with respect to

φ for fixed values of c.

Proof. See proof of Lemma 2 in [10]. Note that the proof relies on the strict convexity

of h(c, ρ).

Relation (12) and Lemma 1 imply that the differential capacitance, an externally mea-

sured quantity, slaves the local potential φ to the local charge imbalance, ρ, and the bulk salt

concentration. This interpretation opens the way to the systematic analysis of the differential

capacitance data.

IV. DC DATA AS ACTION CONSTRAINT

A fundamental step in understanding DC data is to identify the constraints it imposes

on the local free energy density functions h(c, ρ), for which the corresponding generalized

Poisson-Boltzmann model (7) yields the prescribed data. The key element of this process is
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to realize that relation (12) can be extended to an invertible relation that slaves φ and c̄ to

the binary densities.

Lemma 2. The generalized Boltzmann equations (7b) uniquely define inverse relations

φ = φ(c, ρ),

c̄ = c̄(c, ρ).
(13)

In particular,for a capacitor in the semi-infinite regime, with a prescribed free energy of the

(1), knowing the exposed charge ρ(x) and total charge c(x), a point x determines the voltage

φ(x) and the bulk charge density c.

Proof. The proof relies on the strict convexity of h(c, ρ), see Appendix A.

For clarity of presentation the right-hand side of the Boltzmann equations (7b) may be

rewritten in the form

hc(ρ, c) = A (c(c, ρ)) ,

hρ(ρ, c) = φ(ρ, c(c, ρ)) +B (c(c, ρ)) ,
(14)

where the bulk data, A and B, which arise as Lagrange multipliers, represent the chemical

potentials,

A(c) := hc(2c̄, 0), B(c) := hρ(2c̄, 0), (15)

of the system in the bulk state ρ = 2c and Q = 0. The bulk data can also be related to the

excess chemical potentials

A(c) =
1

2

[
µexcess

+ (c) + µexcess
− (c)

]
, B(c) =

1

2

[
µexcess

+ (c)− µexcess
− (c)

]
.

The construction energy densities h which recover the prescribed differential capacitance

data, reduces to finding convex h that satisfy (14). The smoothness of h requires the

agreement of its mixed partials hρQ = hQρ. In view of the slaving relation (13), equating

the ρ and Q partial derivatives of (14) yields the compatibility condition

hcρ = A′(c)cρ = φccc +B′(c)cc = hρc, (16)

which is equivalent to the first-order system for c̄, −φc −B′(c)
A′(c)

 ·
 cc

cρ

 = 0. (17)
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For prescribed bulk data A(c̄) and B(c̄), the compatibility condition (17) provides an explicit

evaluation for the c̄ = c̄(c, ρ) relation subject to the boundary data c̄(c, 0) = c/2 which follows

from the bulk assumption ρ = 0 and c = 2c̄. Bulk data that yield a smooth h in an open

domain D containing the bulk data line {ρ = 0, c > 0} are called admissible. We unfold the

requirements of admissibility in the sequel.

The system (17) is readily solvable by the method of characteristics: c is constant along

lines (ρ, c) = (c(t, s), ρ(t, s)) where

∂

∂t

c(t, s)
ρ(t, s)

 =

−φc(ρ, s)−B′(s)
A′(s)

 ,

c(0, s)
ρ(0, s)

 =

2s

0

 . (18)

A first requirement of admissibility is that the free data, prescribed on the line (c, ρ) = (2s, 0),

be non-characteristic. For the system (18) this is equivalent to the condition

A′(s) 6= 0, s > 0. (19)

Subject to the condition (19), we obtain the characteristic curves,

ρ(s, t) = A′(s)t,

c(s, t) = 2s− Φc (A′(s)t, s)

A′(s)
−B′(s)t,

(20)

where we have introduced,

Φc(ρ, c) =
d

dc

∫ ρ

0

φ(s, c)ds.

The function φ = φ(s, c) is obtained by inverting (12). Eliminating s and t from (20) yields

the relation

c(ρ, c) = 2c− Φc (ρ, c) + ρB′(c)

A′(c)
. (21)

To invert (21) to obtain c = c(ρ, c) we impose a second admissibility condition,

ρc̄ :=
∂

∂c

(
2c− Φc (ρ, c) + ρB′(c)

A′(c)

)
> 0, (22)

for all c̄ > 0 and for all ρ. Note that the admissibility conditions (19,22) imply strict

convexity of h, see Appendix B. These admissibility conditions, however, do not uniquely

determine the bulk data A and B. The result is a wide class of families of admissible

models which yield the prescribed differential capacitance data, differing only in their excess

chemical potential at the bulk.

The steps to construct h given the differential capacitance CD and the bulk data A and

B, are summarized below:
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Inverse procedure: For a prescribed differential capacitance data CD(φ, c̄),

1. Compute

ρ(φ, c) = CD(φ, c̄)

∫ φ

0

CD(s, c̄)ds.

2. Invert ρ = ρ(φ, c) from (12) with respect to φ to obtain φ = φ(ρ, c).

3. Compute

Φc =
d

dc

∫ ρ

0

φ(s, c)ds.

4. For any admissible pair A(c) and B(c) define

ρ(ρ, c) := 2c− Φc (ρ, c) + ρB′(c)

A′(c)
.

In particular this requires that A′ 6= 0.

5. Invert c(ρ, c) with respect to c to obtain c = c(c, ρ).

6. Substite c(c, ρ) into (14) and compute the free energy E by integration of hc and hρ

to yield h(c, ρ).

V. THE POISSON-BOLTZMANN DIFFERENTIAL CAPACITANCE DATA

It is well known that the Poisson-Boltzmann (Gouy-Chapmann) model, that is (7)

with f ≡ 0, gives rise to the differential capacitance

CPB
D (φ, c) =

√
c cosh

φ

2
. (23)

In this section we apply the inverse process to recover the Poisson-Boltzmann model and

families of alternative models which yield the same differential capacitance data CPB
D . Ap-

plying the inverse procedure with CPB
D (φ, c), yields the density, see step 4,

c(ρ, c) = 2c−
2

[
1−

√
1 + (ρ/2c)2

]
+ ρB′(c)

A′(c)
. (24)

For simplicity, we consider bulk data in the form

A′(c) =
α

c
, B′(c) = 0, (25)
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for which the density reduces to

c =

[
2(α− 1) + 2

√
1 + (ρ/2c)2

α

]
c. (26)

This relation is uniquely invertible for c̄ > 0 for all α ≥ 1,[31]

c =
(α2 − α)c−

√
α2ρ2 + (α2 − 2α)ρ2

2(α2 − 2α)
. (27)

A. Recovery of the Poisson-Boltzmann model

The choice α = 1 in (25) leads to the traditional Poisson-Boltzmann model. Indeed, in

this case, see (27),

c =
1

2

√
c2 − ρ2. (28)

Substituting this expression for c(c, ρ), as well as the choices (25), in (14) yields

hc(c, ρ) = log

√
c2 − ρ2

2
, hρ(c, ρ) = log

√
c+ ρ

c− ρ
. (29)

Making the change of variables from (c, ρ) to ionic densities (p, n) gives hp(p, n) = log p

and hn(p, n) = log n. Integration of the system, subject to the normalization h(c̄, c̄) = 0,

yields the entropic component of the free energy of the Poisson-Boltzmann model, see (1),

and recovers the Poisson-Boltzmann model from its differential capacitance data.

B. Derivation of an alternative model

Choices of α 6= 1 in (25) yields alternative free energies which recover the same differential

capacitance data (23) as the Poisson-Boltzmann model. For α = 3/2, (27) reduces to

c =
√
c2 − ρ2/3− ρ

2
, (30)

and the corresponding free energy function hα=3/2 can be computed from (14), see Figure 4A.

In Figure 4B displayed the charge densities for the case φ0 = 1. We observe the charge

densities are both positive, and they differ from the charge densities predicted by the Poisson-

Boltzmann model. We stress again the point that the differential capacitance data is the

same for both choices of α = 1 and α = 3/2 in Figure 4B.

12



FIG. 4. (color online) A: The surface hα=3/2(c, ρ) − hα=3/2(2c, 0) computed for c = 1, and the

trajectory (ρ, c(ρ, c = 1)) (solid magenta curve). The subplot presents the same data viewed

from above. Black dashed lines are c = |ρ|. B and C: The charge density profiles p(x) (bottom

solid curve) and n(x) (top solid curve) corresponding to the case α = 3/2 and for an applied

voltage φ0 = 1 in B and φ0 = 2 in C. Also plotted are the charge density profiles of the Poisson-

Boltzmann model α = 1 (dotted curves).The positive charge density profile in C is negative near

the wall and therefore non-physical.

C. Domain of the free energy density function h

For the Poisson-Boltzmann energy,with α = 1, the domain where h is smooth coincides

with the physical domain ρ ≥ |c|, for which p, n ≥ 0.

Significantly, the characteristic domain of h is determined by the choice of the free data A

and B, and does not necessarily coincide with the natural domain. Indeed, the func-

tion h(c, ρ) looses smoothness when two characteristics emanating from the line {(2c, 0)
∣∣ c >

0} intersect at a point (c, ρ) off of the line, see relation (14) and also Figure 5A. For example,

the curve c(ρ; c = 1) in Figure 5B corresponds to the characteristic emanating from (2, 0).

Specifically, one expects that cc > 0 and thus the boundary of the characteristic domain

of h consists of the characteristic (c0, ρ0) emanating from (2c, 0) where c→ 0. By (26), this

characteristic satisfies

c0 := lim
c→0

c(c, ρ) =
|ρ|
α
. (31)

At the boundary, h is no longer smooth, see (29) and also Figure 5C.
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FIG. 5. (color online) A: Characteristics (c, ρ) defined by (26) where α = 1, emanating from (2c, 0)

where c = 0.5 (dash-dots), c = 1 (solid magenta curve) and c = 1.5 (dotted). B: The normalized

function hPB − hPB(2c, 0) where c = 1. C: The gradient |∇hPB|, see (29). Solid magenta curve

in A and B is the trajectory (ρ, c(ρ, c = 1)), corresponding to the characteristic curve emanating

from (2, 0). Black dashed lines in all graphs are c = ±ρ.

The choice α = 3/2 leads to the action hα=3/2(c, ρ) which is smooth in the admissi-

ble domain c > 2
3
|ρ|, see Figure 4A. This admissible domain is larger than the region

of physically admissible solutions. Accordingly, solutions of the corresponding generalized

Poisson-Boltzmann system with α = 3/2 are not confined to the physical region of positive

charge densities, see, e.g., Figure 4A. In Figure 4C we plot the spatial profiles n(x) and p(x)

for φ0 = 2, and observe that p(x) < 0.

D. An alternative model with charge reversal

To construct models which are valid for low enough ionic concentration, we require that

the free data agrees with the PB free data at low ionic concentrations, when c = 0. Specif-

ically we consider A′(c) = a(c)/c and B′(c) = b(c) where a and b are smooth functions

satisfying a(0) = 1 and b(0) = 0. Such choices of free data interpolates between the PB

data, i.e. α = 1 in (25), at low bulk concentrations while incorporating non-ideal behavior

at high bulk concentrations. As a specific example we choose,

A′(c) =
1 + αc

1 + c

1

c
, B′(c) = 0.
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Within this framework the value α = 1/2 yields the density, see (24),

c = 2
(1 + c)

√
ρ2 + 4c2 − c2

2 + c
.

For this value of α, we may verify that cc̄ 6= 0 for all |ρ| < ρ∗ where ρ∗ > 16. Therefore,

this model breaks-up only at very high voltages or concentrations which lead to excessive

local charge imbalance |ρ| > ρ∗ � 1 and to a non-smooth free energy. Within the validity

range |ρ| < ρ∗, the model give rises to strictly positive charge densities.

Figure 6A presents the free energy density function h, as well as the curve ρ(Q; c = 1). The

action is defined for c > |ρ|. Figure 6B presents the curve for c = 1 in (p, n) coordinates. In

contrast to the previous cases, the curve (n, p(n; c = 1)) is not a function of n. Accordingly,

the charge profiles are non-monotone for large applied voltage, see Figures 6C and 6D.

The non-monotone charge profile in Figure 6D provides an example of charge reversal

or over-charging, a phenomenon in which the electric double layer region contains more

countercharge than is needed to compensate the surface charge. This phenomena has been

recognized and studied since the 1940s, see [7] and references within for a review. The

precise physical or chemical reasons for over-charging are still debated [32], but it is widely

believed that over-charging is related to asymmetries between anions and cations in their

interactions with the surface. Extensive study has been dedicated to derive generalized

Poisson-Boltzmann models that can describe overcharging, see [33] for a review. These

models commonly take into account asymmetric finite size effects, e.g., using the hyper-

netted-chain/mean-spherical approximation (HNC/MSA) approach.[34]

The model corresponding to the free energy density function hα=1/2 is a simple general-

ized Poisson-Boltzmann model that describes overcharging. Interestingly, it is a symmetric

model, i.e., h(p, n) = h(n, p) [35], showing that over-charging need not necessarily originate

from asymmetries between ionic species.

E. An alternative model with asymmetry

The Poisson-Boltzmann differential capacitance data, CPB
D is symmetric (i.e., an even

function) with respect to φ. Therefore, it is reasonable to expect that the model yielding CPB
D

would also be symmetric, i.e., negative and positive charge satisfy h(p, n) = h(n, p). Indeed,

the three models presented previously in this section are all symmetric in this sense. How-
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FIG. 6. (color online) A: The surface hα=1/2(c, ρ)− hα=1/2(2c, 0) computed where c = 1, and the

trajectory (ρ, c(ρ, c = 1)) (solid). The subplot presents the same data viewed from above. Black

dashed lines are c|ρ|. B: The trajectory (ρ, c(ρ, c = 1)) from A (solid), but in (p,n) coordinates.

C and D: The charge density profiles p(x) (bottom solid curve) and n(x) (top solid curve) corre-

sponding to the case α = 1/2 and for φ0 = 1 in C and φ0 = 2 in D. Also plotted are the charge

density profiles of the Poisson-Boltzmann model α = 1 (dotted curves).

ever, somewhat surprisingly, we may derive asymmetric models which recover the symmetric

differential capacitance data CPB
D . Indeed, the particular choice A′ = 1

c
and B′ = 1

3c
, yields

an asymmetric action h whose characteristic boundaries are the lines c = 2ρ/3 for ρ > 0

and the line ρ = 4ρ/3 for ρ < 0.

In Figure 7A we plot the corresponding action h, which is visibly asymmetric. In Fig-

ure 7B we plot the charge density profiles for the applied voltage φ0 = −1, and in Figure 7C

we plot the charge density profiles for φ0 = 1. It can be seen that the charge profiles differ

between the cases, manifesting the asymmetries between the charges. The changes are also

qualitative - applying negative potential leads to charge inversion, while positive potential

presents similar behavior to the model of Figure 4 [36]. Nevertheless, the area captured

between the two profiles is identical and equals 1.4739.

VI. APPLICATION TO COMMON MODELS

The inverse procedure may be applied to study common extensions of the Poisson-

Boltzmann model for the double layer structure, such as the Gouy-Chapman-Stern model
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FIG. 7. (color online) A: The surface hα=1,β=1/3(c, ρ) − hα=1,β=1/3(2c, 0) computed where c = 1,

and the trajectory (ρ, c(ρ, c = 1)) (solid magenta curve). Black dashed lines are c = |ρ|. B: The

charge density profiles p(x) (top solid curve) and n(x) (bottom solid curve) for φ0 = −1. C: The

charge density profiles p(x) (bottom solid curve) and n(x) (top solid curve) for φ0 = 1. Also plotted

are the charge density profiles of the Poisson-Boltzmann model α = 1 (dashed curves).

or the Bikerman model.

A. The Gouy-Chapman-Stern model

The Gouy-Chapman-Stern model [17] is a modification of the Poisson-Boltzmann (Gouy-

Chapman) model to account for finite-size of the ions by incorporating some distance of

closest approach of ions to the surface. As a consequence, the immediate layer near the

electrode, the Stern layer, is free of charge. The differential capacitance CGCS
D predicted by

the model is given by

CGCS
D (φ0, c; d) =

√
2c cosh(φ/2)

1 + d
√

2c cosh(φ/2)
.

We note that the Gouy-Chapman-Stern model is not a generalized Poisson-Boltzmann model

of the form (7) as the Stern layer is modeled by changing the boundary condition for φ

at x = 0 in (7) to a Robin boundary condition. The inverse procedure can be used to

obtain a generalized Poisson-Boltzmann model which recovers the Gouy-Chapman-Stern

differential capacitance data CGCS
D . For example, applying the inverse procedure with the

choices A = log c and B = 0 gives rise to a generalized PB model whose corresponding

action h(c, ρ) is defined in the domain c > |ρ| of physical validity, see Figure 8. Note

that although this model yields the Gouy-Chapman-Stern differential capacitance data, the
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FIG. 8. (color online) A: The surface hGCS(c, ρ) − hGCS(2c, 0) computed where c = 3/4, and the

trajectory (ρ, c(ρ, c = 1)) (solid magenta curve). The subplot presents the same data viewed from

above. Black dashed lines are c = |ρ|. B and C: The charge density profiles p(x) (bottom solid

curve) and n(x) (top solid curve) for φ0 = 1 in B and φ0 = 2 in C. Also plotted are the charge

density profiles of the Poisson-Boltzmann model (dotted curves).

associated charge density profiles do not have a Stern layer but rather they monotonically

decay from the wall, see figures 8B and 8C.

B. The Bikerman model

The Bikerman model [18] reflects a choice of entropic mixing energy, see (1), of the form

f(p, n) = (p+ n) +
1− ν(p+ n)

ν
log(1− ν(p+ n)),

where 1/ν defines a reference density associated with closest packing of the ions. The

differential capacitance predicted by this model is given by the Bikerman–Freise formula,

CBF
D (φ, c̄) =

2c̄ coshφ[
1 + 4c̄ν sinh2 φ

2

]√
2
ν

[log(1 + 2c̄ν(coshφ− 1))]
.

The inverse procedure recovers the Bikerman model with the choice

A′(c) =
1

c
+

1

c− 1/2ν
, B′(c) = 0.

As in the case of the Poisson-Boltzmann model, other choices of A(c) and B(c) yield alter-

natives models which also give rise to the Bikerman–Freise differential capacitance data.
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C. Non-primitive generalized Poisson-Boltzmann models

Recent studies [27, 28] have extended the Poisson-Boltzmann model by accounting for ion-

solvent interactions via the dependence of the dielectric constant upon ionic concentration

ε = εw − αpp− αnn, (32)

where εw is the dielectric of the solvent, and the coefficients αn and αp are ion-specific

parameters known as the excess polarization constants. This extension of the Poisson-

Boltzmann model does not fall into the framework of the generalized Poisson-Boltzmann (7)

which assume the solvent is a uniform dielectric medium, i.e., ε ≡ εw, aka a primitive

generalized Poisson-Boltzmann model.

Using the inverse procedure we can derive a (primitive) generalized Poisson-Boltzmann

model of the form (7) that yields the same differential capacitance as the non-primitive

models with (32). For example, the case αp = 0.1εw and αn = 0.2εw, together with the

choices A = 1.5 log c and B = 0 give rise to an action h(c, ρ), see Figure 9A.

FIG. 9. (color online) A: The surface h(c, ρ) − h(2c, 0) computed where c = 1, and the trajec-

tory (ρ, c(ρ, c = 1)) (solid magenta curve). The subplot presents the same data viewed from above.

Black dashed lines are c = |ρ|. B: The charge density profiles p(x) (top solid curve) and n(x) (bot-

tom solid curve) for φ0 = −2. C: The charge density profiles p(x) (bottom solid curve) and n(x)

(top solid curve) for φ0 = 2. Also plotted are the charge density profiles of the Poisson-Boltzmann

model (dotted curves).

The charge density profiles for the case φ0 = −2 and φ0 = 2 are plotted in Figures 9B
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and 9C, respectively. It can be seen that the charge profiles differ between the cases, man-

ifesting the asymmetries between the charges due to the choice αp 6= αn. Note that the

non-primitive model (32) is mathematically valid only when the dielectric constant is posi-

tive, ε(p, n) > 0, see (32) [37]. The validity regions of the non-primitive and primitive model

do not necessarily coincide.

VII. RECOVERY OF A MODEL FROM EXPERIMENTAL DATA

The inverse procedure can be used to derive generalized Poisson-Botlzmann models that

are consistent with experimentally measured differential capacitance data. Valette [13] mea-

sured differential capacitance data for a KPF6 electrolyte solution in contact with a silver

single crystal electrodes, see Figure 10A. This dataset has been a benchmark for testing

the predictions of many generalized Poisson-Boltzmann models. Some of the recent models

present a good agreement between this experimental data and theoretical predictions, es-

pecially in the regime of dilute solutions and small applied fields φ0, see [30] for a review.

Nevertheless, to the best of our knowledge, a model which accurately recovers the experi-

mental data over its full scope is unavailable at this stage. To apply the inverse procedure,

FIG. 10. A: Experimentally measured differential capacitance curves for a solution of KPF6 at

various concentrations adapted from Figure 3 of [13] (Black curves). Red curves are the model

predictions for the differential capacitance data. Model predictions and experimental curves are

indistinguishable). B: Same data as in A presented in (φ, c) coordinates (Black dashed curves) and

surface CD(φ, c) fitted to the data (presented in dimensional units).
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we first interpolate a surface CD(φ, c) to fit the experimental data, see Figure 10B. Then, we

may derive families of models which exactly recover the experimental differential capacitance

data. To fix the discussion we choose the bulk data in the form

A(c) = α log c, B(c) = 0.1 log c.

and present results for two choices, α = 1.5, see Figure 11A, and α = 0.5, see Figure 11B.

The choice α = 1.5 gives rise to a free energy density function h(c, ρ) whose domain

includes the region of physically admissible solutions. Similar to the Poisson-Boltzmann

case with α = 1.5, see Figure 4, the model predicts physically admissible (positive) charge

densities for small applied voltage. However, at higher applied voltages, the charge density

profiles can become negative and hence non-physical.

FIG. 11. (color online) The surface h(c, ρ) − h(2c, 0) computed where c = 0.03, and the trajec-

tory (ρ, c(ρ, c = 0.03)) (solid magenta curve) for the choice of A: A(c) = 1.5 log c,B(c) = 0.1 log c

and B: A(c) = 0.5 log c,B(c) = 0.1 log c. The subplots in A and B presents the same data viewed

from above. Black dashed lines are c = |ρ|.

The choice α = 0.5 gives rise to a free energy density function h(c, ρ) whose characteristic

domain which roughly coincides with the physical domain, see Figure 11B. This choice gives

rise to physically admissible solutions [38].

VIII. CONCLUSIONS

This study presents a procedure for systematically interpreting differential capacitance

data, developing a method for recovering the entropic corrections due to non-ideality of the
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solutions, and deriving generalized Poisson-Boltzmann models with prescribed differential

capacitance data. The models are unique within the context of a classical uniform dielectric

formulation once bulk data has been prescribed. The proposed method is demonstrated by

recovering common existing models and by deriving alternative models for various sets of

differential capacitance data.

The methodology presented recovers the free energy density function, i.e., the Hamilto-

nian of system, up to additional bulk data. The Hamiltonian provides a global description

of the electrolyte behavior which is not limited to the specific, rather simple, single planar-

electrode setting considered in this work. The same Hamiltonian describes electrolyte be-

havior in a system with more complex geometries, e.g., near a curved charged body or inside

a narrow channel. In addition, it is possible to use the Hamiltonian to describe dynamics,

such as arises under ionic current or time-dependent applied voltages [39].

Our study shows that differential capacitance data does not uniquely determine non-

ideality or finite size effects. Indeed the methology derives families of models which all yield

the same differential capacitance data, but with distinct double-layer. It is not surprising

that differential capacitance data itself is insufficient to characterize double layer structure:

full characterization requires several measurements. Within the Poisson-Bolzmann type

framework considered here, the required complementary data can be obtained from bulk

properties of the electrolyte system. However, the two data parameters A(c) and B(c)

corresponding to the bulk excess free energy and to single ion activities are, to the best of

our knowledge, unmeasurable quantities. Ultimately, an inverse method for the combined

analysis of experimentally available measurements is desired.

The restriction to generalized Poisson-Boltzmann models with a uniform dielectric con-

stant was made for simplicity of presentation. In the literature the dielectric response of a

solvent is often modelled as a function of both the ionic concentration and local electric field

intensity. The extension of the inverse process to incorporate this variability is straightfor-

ward, however the combination of differential capacitance data and the bulk action coeffi-

cients will not be sufficient to determine the dielectric response of the system. Therefore,

additional measurements, such as impedance data or differential capacitance data in a finite

gap capacitor, will likely be necessary to distinguish between models with a non-primitive

dielectric response. Similarly, while it is possible to extend the inverse process to encom-

pass non-ideality effects that are intrinsically non-local or that depend on the concentration
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gradients, additional measurements will be required to distinguish between possible models.

As such, this work is a first step towards a systematic interpretation of the experimental

data required to determine the free energy of an electrolyte system.
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Appendix A: Proof of Lemma 2

By Lemma 1 in [10], equations (7b) define the function Q(φ, c), and by the proof of

Lemma 2 in [10], ρφ > 0. Therefore, equations (7b) also define the inverse function φ(ρ, c).

Furthermore, let us rewrite equations (7b) as

F (p, n, c, φ) := hc(c, ρ)− hc(2c, 0) = 0,

G(p, n, c, φ) := hρ(c, ρ)− φ− hρ(2c, 0) = 0.
(A1)

The Jacobian

J :=
∂(F,G)

∂(φ, c)
= −

 0 2hcc

1 2hcρ


satisfies det J = 2hcc > 0 since h is strictly convex. Therefore, by the implicit function

theorem, the system (A1) defines c(c, ρ) and φ(c, ρ).

Appendix B: Admissibility of solutions implies convexity of h

We show that the admissibility conditions (19,22) imply strict convexity of the solution h.

Indeed, by (14)

hcc(c, ρ) = A′(c)cc,

hcρ(c, ρ) = A′(c)cρ = [φc +B′(c)] cc,

hρρ(c, ρ) = φρ(c, ρ) + φccρ +B′(c)cρ,
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Therefore,

|Hessc,ρh| = hρρhcc − h2
cρ = A′(c)cc [φρ + φccρ +B′(c)cρ]− A′(c)cρ [φc +B′(c)] cc

= A′(c)cc
[
φρ +���

���cρφc − cρφc +((((
(((

((
cρB

′(c)− cρB′(c)
]

= A′(c)ccφρ > 0.

The last inequality is due to the admissibility conditions A′ > 0 and cc > 0, and due to

Lemma 2 which ensures that φρ > 0. �
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