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Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase
transition, the so-called Gardner transition. This transition is associated with the emergence of
a complex free energy landscape composed of many marginally stable sub-basins within a glass
metabasin. In this study, we explore several methods to detect numerically the Gardner transition
in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point
is robustly located from three independent approaches: (i) the divergence of the characteristic
relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the
probability distribution function of cage order parameters. We show that the numerical results are
fully consistent with the theoretical expectation. The methods we propose may also be generalized
to more realistic numerical models as well as to experimental systems.

I. INTRODUCTION

Upon compressions that are sufficiently rapid to avoid
crystallization, a fluid of hard spheres (HS) first turns
sluggish and then forms a glass [1, 2]. This glass can
then be further compressed until the system jams [3],
which occurs under the application of an infinite con-
fining pressure [4, 5]. Glass formation is entropic, i.e.,
particles vibrate and thus cage each other in place, while
jamming is mechanical, i.e., no motion is possible and
particles are held steady through direct contacts with
each other. Over the last decade, this two-transition sce-
nario has been broadly validated, both numerically and
theoretically [5–13]. Interestingly, recent advances pre-
dict that – at least in the mean-field, infinite-dimensional
(d→∞) limit – there exists a third transition, a so-called
Gardner transition, that is intermediate in density and
pressure between glass formation and jamming [14–17].
First discovered in spin-glass models [18–22], the Gard-
ner transition corresponds to a single glass metabasin
splitting into a complex hierarchy of marginally stable
sub-basins. The transition is thus akin to the spin-glass
transition of the Sherrington-Kirkpatrick (SK) model,
wherein a critical temperature separates a paramagnetic
phase, in which a single thermodynamic state exists, from
a marginal phase, in which a large number of distinct
spin-glass states appear [23]. In structural glasses, how-
ever, the high-temperature phase corresponds to a given
glass metabasin that has been dynamically selected by a
quenching protocol; it is this metabasin that then under-
goes a spin-glass-like transition [24].

The discovery of a Gardner transition in glasses has al-
ready markedly advanced our theoretical understanding
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of jamming by providing analytical predictions for the
critical jamming exponents [15, 16, 25–27]. It further
suggests an explanation for the abundance of soft vibra-
tional modes in glasses [27, 28], for the peculiar behavior
of the specific heat in quantum glasses [14, 25], and var-
ious other transport and thermodynamic properties in
this regime.

Before these fascinating problems can be tackled, how-
ever, a crucial question is whether the Gardner transition
itself, whose existence is well established in the d → ∞
limit, exists in finite (low) dimensions. Renormalization
group results indicate that the transition might disap-
pear or dramatically change of nature in low d [29]. Yet
a similar line of inquiry has been pursued for decades in
the context of spin glasses [30], leading to the conclusion
that, whatever the ultimate fate of the phase transition
in the thermodynamic limit may be, the d → ∞ sce-
nario provides a very good description of the system over
the relevant experimental length and time scales [31]. At
present, the most direct way to assess the relevance of the
Gardner transition for the description of experimental
glasses is through numerical simulations. It is therefore
important to first identify the observable consequences of
this transition in well-controlled model systems.

This study primarily aims to develop procedures and to
identify observables in order to reliably detect the Gard-
ner transition. To that effect, we consider a simple struc-
tural glass former, the infinite-range Mari-Kurchan (MK)
model [32, 33]. The model is quite abstract and in some
ways far from realistic models of glasses, but (i) it is a
mean-field model by construction; (ii) it shares, in any
finite dimension d, the same qualitative phase diagram as
infinite-dimensional hard spheres, provided one neglects
the effect of hopping on the glassy dynamics [34]; (iii)
it can be studied analytically in great detail, using the
methods of [17, 34], that we further developed for this
work; (iv) and, most importantly, it can be easily simu-
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lated in any finite dimensions d, including d = 3 as we
do here. Discerning the signatures of the Gardner transi-
tion in this well-controlled setting, where we are certain
that the transition exists, shall later on enable us and
others to study more realistic glass models for which the
existence of the transition is not a priori guaranteed.

The plan of this paper is as follows. In Sect. II we
describe the MK model and its glassy behavior, and in
Sec. III we detail the numerical procedures we use for the
study. In Sec. IV we discuss several quantities that bear
the signature of the transition, as suggested by the anal-
ogy with spin glasses. For instance, at both the spin-glass
and the Gardner transitions, the “spin-glass susceptibil-
ity” diverges and the distribution of overlaps (distances)
between different replicas becomes non-trivial. Bringing
the various estimates of the transition together in Sec. V
reveals that the Gardner transition can be reliably and
reproducibly located through numerical methods in the
MK model, and that the results are fully consistent with
theoretical expectations. We conclude in Sec. VI with a
description of other possible measurements to detect and
characterize the Gardner transition, which may be more
appropriate for numerical simulations of more realistic
model glass formers as well as for experiments.

Before embarking on this program, let us make a note
of warning to the reader. Because the aim of work is to
identify numerical methods to detect the Gardner tran-
sition, we have attempted to make the numerical part as
self-contained as possible. For what concerns the theoret-
ical part, however, we have chosen to be more succinct
and have instead relied on previous work both on spin
glasses and structural glasses, which is here only briefly
recalled. We expect that the reader unfamiliar with spin-
glass theory will nonetheless be able to read and under-
stand the numerical part without much difficulty.

II. MODEL AND BASIC PHYSICAL PICTURE

We consider a simple glass-former, the infinite-range
Mari-Kurchan model [32, 33] – initially proposed by
Kraichnan [35] – in which N hard spheres of diameter
σ interact through a pair potential that is a function of
distance shifted by a quenched random vector Λij . The
total interaction energy is thus

U =

N∑

i<j

u (|rij |) , (1)

where for particles at positions {ri} the shifted distance
rij is defined as rij = ri−rj+Λij , and u(r) is the HS po-

tential, i.e., e−u(r) = θ(r − σ) with r = |r|. The random
shifts, which are uniformly distributed over the system
volume V , induce a quenched disorder that suppresses
both crystallization and nucleation between metastable
glassy states [32–34]. The model further enables planting,
which is a simple process for generating equilibrated liq-
uid configurations at all densities [34, 36] (see Sec. III A).
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FIG. 1. (Color online). Phase diagram of the HS and MK
models in the limit d→∞. Results are partially derived from
Ref. [17], complemented by new results obtained for the Gard-
ner phase [37]. The liquid EOS given by Eq. (6) (full black
line) gives p/d = (2dϕ/d)/2 in the limit d→∞. The black dot
denotes the dynamical glass transition at 2dϕd/d = 4.8. Glass
EOSs from state following (SF) for 2dϕ0/d = 5, 6, 6.667, 7, 8
are also reported (thin colored lines, from left to right). The
envelope for the Gardner transition for each SF (colored dot)
is given by the dashed line.

In all spatial dimensions, the MK model has a mean-
field structure by construction, due to the infinite-range
random shifts [32], and exhibits a jamming transition in
the same universality class as standard HS [33]. The
MK model is also fully equivalent to standard HS in the
limit d → ∞, where both models can be solved exactly
using the mean-field methods described in Refs. [5, 14–
17, 32, 37]. In the rest of this section, we briefly de-
scribe the phase diagram in the infinite-dimensional limit
(Fig. 1), we explain how it can be applied to the MK
model in d = 3, and we discuss some of the finite-
dimensional corrections that have thus far been consid-
ered [34].

A. Equilibrium states (liquid phase)

The liquid phase of the MK model ergodically sam-
ples equilibrium configurations following the Gibbs dis-
tribution and has a remarkably simple structure. Its pair
correlation function is given by

g2(r) ≡ V

N(N − 1)

〈∑

i6=j
δ(rij − r)

〉

= e−βu(r) = θ(r − σ),

(2)

where β = 1/T is the inverse temperature, 〈· · · 〉 de-
notes thermal averaging, and · · · denotes averaging over
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quenched disorder, i.e., over Λij . The second virial coef-
ficient is

B2 = − 1

2V

∫∫
f(r12)dr1dr2 =

Vdσ
d

2
, (3)

where the Mayer function f(r) = e−βu(r) − 1, and Vd is
the volume of a d-dimensional ball of unit radius.

Because no indirect correlations exist, higher-order
correlation functions can be factorized in a trivial way
and the corresponding virial coefficients are zero. For
example, the three-body correlation function

g3(r, r′) ≡ V 2

N(N − 1)(N − 2)

〈 ∑

i 6=j 6=k
δ(rij − r)δ(rik − r′)

〉

= g2(r)g2(r′),
(4)

and the third virial coefficient

B3 = − 1

3V

∫∫∫
f(r12)f(r13)f(r23)dr1dr2dr3

= − 1

3V

∫∫∫
f(r12)f(r13)×

× f(r13 − r12 + Λ12 + Λ23 −Λ13)dr1dr2dr3

= 0.

(5)

Note that if |r12|, |r13| < σ, then f(r13 − r12 + Λ12 +
Λ23−Λ13) = 0 in the thermodynamic limit because ran-
dom shifts are uncorrelated and typically of the system
size, and thus |r13 − r12 + Λ12 + Λ23 − Λ13| � σ. It is
straightforward to generalize this argument to show that
all higher-order virial coefficients are also zero [32].

Because only the second virial coefficient is non-zero,
the reduced pressure p equation of state (EOS) for the
liquid is

p ≡ βP/ρ = 1 +B2ρ = 1 + 2d−1ϕ, (6)

where the combination of inverse temperature β, pressure
P , and number density ρ = N/V gives a unitless quantity
p whose only dependence is on the liquid volume fraction
ϕ = ρVd(σ/2)d.

B. Dynamical glass transition

Although the structure and thermodynamics of the liq-
uid are trivial, its dynamics is not. We will focus here
on the equilibrium dynamics, i.e. starting from an equi-
librium initial condition [38]. In infinite dimension, a
dynamical glass transition ϕd separates two distinct dy-
namical regimes. For ϕ < ϕd, the dynamics is diffusive at
long times, as expected of any liquid. Upon approaching
ϕd, however, the dynamics grows increasingly sluggish,
and above ϕd, each particle is fully confined within a cage
formed by its neighbors. The typical size of that cage is
the cage order parameter ∆1 (the meaning of the suffix

will become clear below), which, in that regime, can be
extracted from the long-time limit of the mean-squared
displacement (MSD)

∆(t) =
1

N

N∑

i=1

〈|ri(t)− ri(0)|2〉 ,

∆1 = lim
t→∞, ϕ>ϕd

∆(t) .

(7)

From the d → ∞ solution, we know that the equilib-
rium distribution of the order parameter, Peq(∆), has two
peaks for ϕ > ϕd (see Fig. 2) [39, 40]. The first character-
izes the distance between two glass configurations within
a same metabasin. It is centered around ∆1, which is the
typical size of this basin. The second characterizes the
inter-basin distance. It is centered around ∆0 = ∞, be-
cause states that belong to different metabasins are com-
pletely uncorrelated. In technical terms, this situation is
described by a 1-step replica symmetry breaking (1RSB)
scheme [23]. Note, however, that the peak at ∆1 has an
exponentially small weight in N , because there exists an
exponentially large number of distinct glass states [40].
Hence, in the thermodynamic limit, Peq(∆) = δ(∆−∆0)
everywhere in the liquid phase, i.e. even for ϕ > ϕd.

C. Glass state following and the Gardner transition

In d → ∞, each equilibrium configuration at density
ϕ0 > ϕd is forever trapped into one of the exponentially
many glass metabasins. The pressure of an equilibrium
configuration at ϕ0 is given by the liquid EOS, Eq. (6),
but if one compresses (or decompresses) such a configu-
ration up (or down) to a density ϕ, the system remains
within the metabasin that was initially selected. The
system thus falls out of equilibrium in the sense that it
cannot visit the ensemble of all possible distinct glass
metabasins and thus follows an EOS different from that
of the liquid.

The infinite lifetime of these d → ∞ glass states im-
plies that one can adiabatically follow the EOS of a single
glass state through a restricted equilibrium approach, a
construction also known as state following (SF) [17, 41–
43]. SF consists in using a first configuration that is
equilibrated at initial density ϕ0, and a second config-
uration that is in a restricted equilibrium at a different
density ϕ [17, 41–43]. The restriction is that that sec-
ond configuration must be part of the same metabasin
as the first one. The state of the second configuration
thus describes the evolution of the glass metabasin with
ϕ. Dynamically, this process corresponds to preparing
a system at equilibrium at initial density ϕ0, then com-
pressing it at density ϕ, and assuming that it is able to
equilibrate inside the glass metabasin, but without escap-
ing it. In simpler words, structural relaxations are frozen
and particles only rattle inside their cages. Upon com-
pression, these cages shrink until the jamming density,
ϕJ(ϕ0), is reached. Particles are then mechanically in
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FIG. 2. (Color online). (a) Organization of glass states (blue
dots) for ϕ0 > ϕd; the typical intra-basin MSD is ∆1, while
the inter-basin MSD is ∆0 =∞. (b) In the SF-fullRSB phase,
ϕG < ϕ < ϕJ, glass metabasins subdivide into a hierarchical
structure of sub-basins with typical innermost MSD ∆EA and
outermost (meta)basin MSD ∆1. Schematics of the equilib-
rium Peq(∆) and restricted equilibrium PSF(∆) (blue area)
distributions are given for (c) the SF-RS (or 1RSB) and (d)
the fullRSB phases.

contact, which makes the system mechanically rigid. In
the following, we call the restricted equilibrium EOS of
a given glass metabasin simply its glass EOS.

Examples of different d → ∞ glass EOS obtained by
SF are given in Fig. 1 [17, 37]. In d→∞, a compressed
state under restricted equilibrium undergoes a Gardner
transition at ϕG(ϕ0), at which point the glass metabasin
subdivides into a hierarchy of sub-basins. Technically,
before the Gardner transition, i.e., for ϕ < ϕG(ϕ0),
the glass metabasin is obtained by a replica symmet-
ric SF (SF-RS) computation [44], while in the Gardner
phase, i.e., for ϕ > ϕG(ϕ0), a full replica symmetry
breaking SF (SF-fullRSB) computation is needed [15–
19, 23]. The Gardner transition is therefore akin to
the spin glass transition one of the SK model, but re-
stricted to a single glass metabasin. The high tempera-
ture phase of the SK model thus corresponds to a sim-
ple glass metabasin for ϕ < ϕG(ϕ0) while the low tem-
perature phase corresponds to a fractured and marginal
metabasin for ϕ > ϕG(ϕ0). Note that we here com-
plement the SF-RS computation of Ref. [17] with a SF-
fullRSB computation, in order to obtain the complete
EOS reported in Fig. 1. The SF-fullRSB equations are

similar to the ones reported in Ref. [16], but the full de-
tails of this work are given elsewhere [37].

Following a glass state in restricted equilibrium gives
for ϕ < ϕG(ϕ0) a distribution PSF(∆) that has a single
peak at ∆1. Note that because the system is confined
to a single glass basin, the peak at ∆0 is absent. At
ϕG(ϕ0) the glass basin fractures in a SF-fullRSB struc-
ture, and correspondingly the single peak in the distri-
bution PSF(∆) fractures into two peaks centered around
∆EA and ∆1, connected by a wide continuous band (see
Fig. 2 and [23]). Here, ∆EA is the typical size of the inner-
most sub-basins at the lowest hierarchical level, and ∆1

is the typical distance between the outermost sub-basins,
i.e., the size of the metabasin. For the same reason as
above, PSF(∆) does not show the ∆0 peak.

Because the cage order parameter changes continu-
ously at ϕG, the Gardner transition is a continuous
critical transition [18, 19]. The Gardner phase is also
marginally stable, in the sense that a zero mode is always
present in the stability matrix of the free energy [23]. Be-
cause jamming is located within the Gardner phase, its
marginal stability and critical scaling behaviors can con-
sequently be obtained from a fullRSB thermodynamic
calculation [15, 16].

D. Timescales

The timescales that characterize the dynamics in the
different phases of the MK model are predicted based on
the general correspondence between statics and dynam-
ics in spin glasses [45, 46]. Here again, we only consider
the system behavior in the limit d→∞. Beyond the mi-
croscopic timescale τ0, over which dynamics is essentially
ballistic, one gets the following picture.

• In the liquid phase below ϕd, dynamics is character-
ized by two timescales: the β-relaxation timescale
τβ , over which particles explore their transient cage,
and a longer timescale τα, over which dynamics is
diffusive. Both timescales are finite for ϕ < ϕd, and
diverge at ϕd according to the scaling predicted by
mode-coupling theory (MCT) [47]. We do not dis-
cuss this regime further because it is not directly
related to the Gardner transition.

• In the liquid phase above ϕd and in the SF-RS
(simple glass) phase, the same two timescales exist:
τα ∼ exp(N) is the timescale for jumping from one
glass metabasin to another, which being infinite in
the thermodynamic limit properly defines the glass
metabasins, and τβ is the timescale for equilibrat-
ing within a glass metabasin, i.e., for particles to
explore their cage, which is finite for ϕ > ϕd but
diverges upon approaching ϕd from densities above
it, again following a MCT-like scaling form [47].

• Upon approaching the Gardner transition, τβ again
diverges, scaling as τβ ∼ (ϕG − ϕ)γ . It does so
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for the exact same reason as at near the spin-glass
transition of the SK model and corresponds to the
critical slowing down close to a second-order phase
transition.

• In the Gardner phase, dynamics is described by
three timescales: τβ is the timescale for equilibrat-
ing within a single glass sub-basin (∆ < ∆EA),
τmeta is the timescale over which system explores
the structure of the sub-basins within a given glass
metabasin (∆EA < ∆ < ∆1), and τα ∼ exp(N)
remains the timescale for jumping from one glass
metabasin to another (∆ ∼ ∆0). To be more clear,
none of these processes correspond to a simple ex-
ponential with a single timescale. Everywhere in
the Gardner phase τβ =∞, because of the phase’s
marginality. The relaxation inside a single sub-
basin is thus expected to scale as a power-law in
time. The exploration of sub-basins is character-
ized by a complex distribution of free energy barri-
ers and relaxation times, and thus τmeta ∼ exp(Nα)
with α < 1 (α = 1/3 is expected in the SK
model [23]). Note that barriers between sub-basins
are much lower than those between metabasins,
hence τmeta � τα.

Let us now situate the scheme for our work in this
complex d → ∞ dynamic phase diagram. We are
conveniently not concerned with the scalings of the
MCT regime. Thanks to the planting procedure (see
Sec. III A), we are indeed able to easily generate equi-
librium configurations of the MK model for arbitrary ϕ0,
including ϕ0 > ϕd. These configurations are well equi-
librated in a glass metabasins and therefore have an in-
finite τα (in the thermodynamic limit) and a finite τβ .
Because τα = ∞ in this density regime, we can simply
forget about its existence and consider that we are for-
ever restricted into a given glass metabasin. From this
point of view, we are in a situation similar to that of a
spin glass where one is able to start at equilibrium in the
paramagnetic, high temperature phase.

If we compress the system slowly enough to a final
density ϕ ∈ (ϕ0, ϕG), then equilibration within the glass
metabasin is possible, because τβ remains finite. In this
situation, the system behavior is described by the SF-
RS computation. To study the Gardner transition, how-
ever, we need to compress the system up to ϕG, at which
τβ diverges. Hence, upon approaching ϕG, τβ eventu-
ally becomes larger than the simulation timescale, and
equilibration (even in the restricted SF sense) becomes
impossible. The system thus falls out of (restricted) equi-
librium and is not described anymore by the SF compu-
tation.

For ϕ > ϕG the situation is even worse both as τβ and
τmeta are infinite. The SF-fullRSB computation, which
gives the restricted equilibrium properties in this regime,
is only an approximation even at long (but not divergent
with exp(N)) times. The situation is akin to that in
the SK model where the fullRSB computation is only an

approximation of the states reached dynamically at long
times in the spin-glass phase. Because in this regime
the planting technique does not work (it only works on
the liquid line in Fig. 1), we cannot use it to study the
restricted equilibrium in the Gardner phase.

In the following we will therefore present two kinds of
data:

• for ϕ0 ≤ ϕ < ϕG, far enough from ϕG such that τβ
is smaller than the simulation timescale, we obtain
restricted equilibrium data

• for ϕ ∼ ϕG and ϕ > ϕG, the system is out of
(restricted) equilibrium, shows aging effects, and,
at long times, we obtain states that are qualita-
tively similar to the SF-fullRSB ones, but not ex-
actly equal to them.

In Sec. III we give a more precise definition of the nu-
merical protocol we use to study these different regimes.
Note that, according to the above discussion, from now
on we will refer to the restricted equilibrium simply as
“equilibrium”, given that we always work inside a glass
metabasin.

E. Finite-dimensional MK model

To conclude this section, we discuss the additional ef-
fects that appear when one considers the MK model in
finite dimensions, and that affect the above discussion.

From a theoretical point of view, a finite d affects quan-
titatively the phase diagram, but to a lowest degree of
approximation one can simply take the phase diagram of
Fig. 1 and fix the value of d (e.g. d = 3) to obtain re-
sult for the EOS. However, there are several systematic
corrections that impact the accuracy of this result.

• The infinite-dimensional results are obtained
within a Gaussian structure of the cage, which pro-
vides the exact results in the limit d → ∞ [48].
The Gaussian equations are slightly different in fi-
nite d [5]. The corrections have the form of a se-
ries in 1/d and are quite small. For example, in
d = 3 one has 23ϕd/3 ≈ 4.74 instead of the infinite-
dimensional result 2dϕd/d ≈ 4.8. These corrections
are negligible and could be easily taken into account
if needed.

• A more important problem is the inexactitude of
the Gaussian assumption for the MK model in finite
dimensions. One should instead optimize the free
energy over a generic cage function, but this com-
putation is technically quite difficult. In Ref. [34],
however, two different cage functions were studied
and found to give similar results. The corrections
coming from the non-Gaussianity of the cage are
thus also rather small, although they are more dif-
ficult to estimate.
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• In finite d, cages are heterogeneous [34]. Care-
fully taking this effect into account would require a
cavity calculation similar to the one performed in
Ref. [34], which is beyond the scope of this work,
but is also likely a small correction for ϕ0 > ϕd [34].

For all these reasons, the results of Fig. 1 are only an
approximation to the finite-dimensional phase diagram.
In the following, we will nonetheless take the results of
the simplest theoretical approximation, namely take the
d → ∞ results of Fig. 1 and use them in d = 3, after
properly rescaling the axes. We expect (and check) that
the corrections are quite small. Sometimes, however, in
order to take effective account of these corrections, we
will further rescale the results, so as to obtain a better
quantitative agreement between theory and simulation.

The most important genuinely finite-dimensional ef-
fect is hopping. As discussed in Ref. [34], slightly above
ϕd, particles are not perfectly confined in their cages,
as one would expect based on the d → ∞ picture. In-
stead, each particle is allowed to explore a network of
cages, connected by narrow pathways. Hopping consists
in particles jumping between distinct cages. The corre-
sponding time scale is finite at ϕd and thus the d → ∞
divergence of the relaxation time is washed away in fi-
nite d. Hopping effects also change deeply the dynamics
of the system with respect to the d → ∞ prediction,
and the configurations at ϕ0 & ϕd are not able to con-
strain the dynamics for infinitely-long times. Because the
timescale for hopping increases quickly upon increasing
both density and dimension, considering values of ϕ0 that
are slightly above ϕd suffices. In practice, based on the
analysis of Ref. [34], in d = 3 and for ϕ0 ≥ 2.5 hopping is
strongly suppressed, hence in that regime the mean-field,
d→∞ scenario should apply reasonably well.

III. NUMERICAL APPROACH

In this section, we provide the numerical details used
in the simulations of the glass states of the MK model.

A. Planting

An important algorithmic advantage of the MK model
is that planting can be used to generate equilibrium liq-
uid configurations at any ϕ0 [34, 36]. This procedure
sidesteps the tedious and time-consuming work of first
preparing dense equilibrium configurations, as would be
needed for typical glass formers, such as HS. The basic
idea is to switch the order in which initial particle posi-
tions {ri} and random shifts {Λij} are determined. One
first chooses the particle positions {ri} independently
and uniformly in the volume V , and then for each particle
pair one chooses a random shift Λij uniformly under the
sole constraint that the two particles should not overlap,
which is quite straightforward to satisfy. As long as the

quenched and the annealed averages of the free energy are
the same (see Ref. [36] for a more detailed discussion),
a planted state is a true equilibrium state and automat-
ically satisfies the liquid EOS, Eq. (6). This condition
is met along the replica symmetric phase for ϕ0 < ϕK,
where ϕK is the Kauzmann point at which the config-
urational entropy vanishes [5, 32]. Because in the MK
model ϕK = ∞ [32], planting a liquid configuration is
thus possible at any density, which dramatically reduces
the computational cost of the initial equilibration.

In our notation, a given {ri} and {Λij} defines a sam-
ple. A sample thus identifies a given system (defined by
{Λij}) and, for this system, one of its glass metabasins
(selected by {ri}).

B. Molecular dynamics (MD) simulations

We use event-driven molecular dynamics (MD) to sim-
ulate MK particles in d = 3 [7, 34]. Periodic boundary
conditions with the minimum image convention are im-
plemented on the shifted distances |ri−rj +Λij |. Time t

is expressed in units of
√
βmσ2, where the particle mass

m and diameter σ as well as the inverse temperature β are
set to unity. Systems consist of N = 800 particles unless
otherwise specified. This system size is large enough to
contain a first full shell of neighbors around each particle,
and to keep the periodic boundary effects on caging to
a minimum [34]. Finite-size effects are studied for some
of the observables for the initial liquid density ϕ0 = 2.5
(see Sec. IV B).

To simulate SF, for a given sample, we start from the
planted equilibrium configuration at a packing fraction
ϕ0, and grow the spheres following the Lubachevsky-
Stillinger algorithm [6, 7] at constant growth rate γ =
0.001, unless otherwise specified, up to a desired ϕ. Once
compression is stopped at the target density, the origin
of time is set. We will thus typically (although not al-
ways) define the waiting time tw, as the time that has
elapsed since the end of the compression. From that mo-
ment on we start measuring observables, keeping density
and temperature (and thus energy) constant. Note that
because γ is finite and rather small, part of the equilibra-
tion happens already during compression, so provided we
are not too close to ϕG the system is stationary at all tw
(we come back on this point later). This procedure is re-
peated over Ns samples in order to average over thermal
and quenched disorders. Errors are computed using the
jack-knife method [49]. Depending on the statistical con-
vergence of the different observables, Ns is varied from
500 to 75,000, as specified in the discussion of the various
measurements.
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C. Observables

The pressure evolution along SF is reasonably well de-
scribed by a free-volume EOS

1

p
= C

(
1− ϕ

ϕJ

)
, (8)

where C is a fitting parameter. Fitting Eq. (8) to the
compression results provides an estimate of ϕJ (see Ta-
ble II). If a sufficiently small γ is chosen, no aging is
observed in the pressure, and using slower compression
rates gives only negligible corrections to the glass EOS
(see Fig. 3). Interestingly, upon decompression, the state
follows the same EOS up to a threshold density at which
it melts into a liquid phase. This phenomenon has been
recently predicted by the theory [17, 50], and observed
numerically in simulated ultrastable glasses [51, 52].

To obtain more structural information about the free
energy landscape, we also simulate a cloning procedure.
The approach consists of taking two exact copies (clones)
A and B of the same planted configuration at ϕ0, and as-
signing them different initial velocities, randomly drawn
from the Maxwell–Boltzmann distribution. These two
copies are then independently compressed up to ϕ, be-
fore measuring the mean-squared distance between them

∆AB(t) =
1

N

N∑

i=1

〈
|rAi (t)− rBi (t)|2

〉
, (9)

where rAi (t) and rBi (t) are the positions of particle i at
time t in clones A and B, respectively. Although the
two clones start from the same initial configuration, their
compression histories are different once ϕ is reached.

The detailed behavior of the clones will be discussed in
Sec. IV A, but let us explain here briefly why the cloning
procedure is useful to detect the Gardner transition. In
the SF-RS phase, the two clones are uncorrelated in the
glass basin and ∆AB(t) converges quickly (on a time scale
t ∼ τβ if the two clones are not sufficiently well equili-
brated along the compression) to the equilibrium value
∆AB = ∆1. Hence ∆AB = limt→∞∆(t) in the SF-RS
phase. By contrast, if the end point of the compression
falls within the SF-fullRSB (or Gardner) phase, clones
most likely fall into different sub-basins. Their mean
square distance can then be described by a non-trivial
time-dependent probability distribution, PAB(t,∆), that
depends on the way sub-basins are sampled. Calculating
these weights is difficult, because the two clones are gen-
erally out of equilibrium. Because the probability that
the two clones fall in the same state is very small, how-
ever, and therefore ∆AB(t) > ∆EA for all t. Hence, in
the Gardner phase ∆AB(t) at all t is strictly larger than
the long-time limit of the MSD. The long time limit of
∆AB−∆, being zero in the SF-RS phase and non-zero in
the SF-fullRSB phase, thus provides an order parameter
for the Gardner transition.
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FIG. 3. (Color online). (a) Compressions (γ > 0) and decom-
pressions (γ < 0) of an initial equilibrium state at ϕ0 = 2.5
and 4.0. The results are averaged over Ns = 100 samples.
The theoretical curves uses data from Ref. [17] and from this
work [37]. (b) Compression data are indistinguishable for
γ ≤ 0.01.

IV. DETECTING THE GARDNER
TRANSITION

In this section, we describe different means of detect-
ing the Gardner transition through numerical simulations
designed to follow the evolution of glassy states. Let us
stress once again that the aim of this work is to under-
stand, in a controlled setting, how well numerical sim-
ulations and experiments can detect the Gardner tran-
sition. We can therefore test different strategies to un-
derstand their advantages and limitations, and use the
analytical results to assess the quality of the numerical
results. Based on the discussion in Sec. II, we follow
two complementary approaches. The first is based on
dynamics. From the long-time dependence of the mean
square displacement, we determine τβ , whose divergence
in the glass metabasin signals the Gardner transition.
The second is based on the properties of the distribu-
tion function PAB(∆), which becomes non-trivial in the
Gardner phase. We investigate different moments of this
distribution to detect signatures of the transition.

A. Dynamics

As discussed in Sec. II D, the Gardner transition is a
second order phase transition associated with a diverg-
ing characteristic relaxation time τβ that controls the
dynamics of the MSD. To detect this relaxation time
we make use of the following observables already briefly
discussed in Sec. III. Recall that the origin of time
t = tw = 0 is set at the end of the compression when
a given final density ϕ is reached.
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1. Definition of the relevant observables

We define the MSD between two configurations at dif-
ferent times:

∆̂(t, tw) =
1

N

N∑

i=1

|ri(t+ tw)− ri(tw)|2 , (10)

and the MSD between two different clones

∆̂AB(t) =
1

N

N∑

i=1

|rAi (t)− rBi (t)|2 . (11)

From these two instantaneous quantities we can define
different observables. The statistical average (over com-
pressions and samples) gives

∆(t, tw) =
〈

∆̂(t, tw)
〉
, ∆AB(t) =

〈
∆̂AB(t)

〉
, (12)

and we define

δ∆(t, tw) = ∆AB(t+ tw)−∆(t, tw) . (13)

We also define a time-dependent caging susceptibility as
the normalized variance of the MSD

χ(t, tw) = N

〈
∆̂2(t, tw)

〉
−
〈

∆̂(t, tw)
〉2

〈
∆̂(t, tw)

〉2 , (14)

and its counterpart of cloned configurations

χAB(t) = N

〈
∆̂2
AB(t)

〉
−
〈

∆̂AB(t)
〉2

〈
∆̂AB(t)

〉2 . (15)

In the SF-RS phase in restricted equilibrium, i.e., at
large enough tw and t > 0, ∆(t, tw) = ∆(t) gives back
Eq. (7), while ∆AB(t) = ∆1 does not depend on time. In
this case

∆1 = ∆AB(∀t) = lim
t→∞

∆(t) (16)

gives the average cage radius of the glass basin. Similarly,
χ(t, tw) = χ(t) and χAB(t) = χ, where

χ = χAB(∀t) = lim
t→∞

χ(t) (17)

is the average susceptibility of the glass basin. Finally,
note that based on Eq. (16), we have

lim
t→∞

lim
tw→∞

δ∆(t, tw) = 0 . (18)

By contrast, in the SF-fullRSB phase, equilibrium is not
reached even for very large tw (recall that we do not con-
sider here times that are comparable to exp(N)). There-
fore, δ∆(t, tw) remains non-zero even for large tw and t,
which makes the long time limit of δ∆(t, tw) a dynamic
order parameter for the Gardner transition.
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FIG. 4. (Color online). SF from ϕ0 = 2.50 gives (a) ∆AB(t),
(b) ∆(t, tw = 0), and (c) δ∆(t, tw = 0) at different ϕ. Solid
lines are fits to Eq. (21) (bottom panel).

2. Qualitative change in caging and susceptibility

Figure 4 shows the time dependence of ∆AB(t),
∆(t, tw = 0) and δ∆(t, tw = 0) for ϕ0 = 2.5, averaged
over Ns = 15, 000 to Ns = 500 from the lowest and high-
est ϕ, respectively. Both ∆ and ∆AB are observed to be-
have slightly differently below and above ϕG (ϕG ≈ 3.00
for ϕ0 = 2.50, a more precise estimate is obtained be-
low). For ϕ < ϕG, ∆(t, tw = 0) first (and up to a mi-
croscopic time τ0 ∼ 10−1) grows quickly because of the
ballistic motion of particles [34] and then more slowly in
the β relaxation regime, before eventually reaching the
plateau ∆ = ∆1 that defines the cage size. This plateau
coincides with the (almost time-independent) results for
∆AB(t), as is qualitatively expected for a system in a SF-
RS phase. For ϕ & ϕG, the situation is a bit more convo-
luted. As discussed above, beyond the Gardner transition
each of the original metabasins is expected to subdivide
into a hierarchical distribution of glassy states. Equili-
bration within the glass metabasin is now, however, im-
possible, and we thus observe that ∆AB(t) depends on
time for all observable times while ∆(t, tw = 0) remains
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FIG. 5. (Color online). (a) Long-time results for ∆AB(t).
The data show that, for ϕ < ϕG, ∆AB(t) saturates at its
asymptotic value (dotted line) in the long-time limit (see, e.g.,
ϕ = 2.88, 2.90). (b) ∆(t, tw) and (c) δ∆(t, tw) are plotted as
a function of t for various ϕ and tw.

always strictly smaller than ∆AB(t) and never reaches a
plateau. Correspondingly δ∆(t, tw = 0) does not decay
to zero.

In Fig. 5, we select a few densities and consider the evo-
lution of ∆AB(t) over much larger times than in Fig. 4 as
well as the dependence of ∆(t, tw) on both t and tw. Note
that these data are averaged over many fewer samples,
Ns ≈ 300. We consider the detailed behavior of these
two quantities:

• In general, ∆AB(t) (Fig. 5a) should correspond
to the average distance between configurations re-
stricted to within a given metabasin, but for t <
τβ the basins are sampled with non-equilibrium
weights, and hence ∆AB(t) slowly drifts. For ϕ <
ϕG, we indeed observe that once t ∼ τβ , ∆AB(t)
reaches a stationary value. Upon approaching ϕG

and for ϕ > ϕG, however, τβ is becomes so large
that the drift of ∆AB(t) persists at all simulated
times. Note that the drift can be positive or nega-
tive, depending on density.

• The behavior of ∆(t, tw) (Fig. 5b) is naturally de-
scribed as a function of t for fixed tw. Below ϕG

(e.g., for ϕ = 2.85), ∆(t, tw) is independent of
tw and behaves as in Fig. 4. Beyond ϕG (e.g.,
for ϕ = 3.10), however, the system is initially
trapped into a sub-basin, and thus ∆(t, tw) grows
until reaching a plateau corresponding to the size
of the sub-basin, ∆EA, for t � τmeta(tw). For
t ∼ τmeta(tw), the system can explore the struc-
ture of sub-basins, hence ∆(t, tw) keeps increas-
ing, and no clear first plateau can be detected.
A second plateau should be reached in the limit
t � τmeta(tw), when the metabasin is fully ex-
plored, but this regime is here beyond computa-
tional reach. The timescale τmeta(tw) indeed in-
creases with tw [45, 46], as is clearly visible in
Fig. 5, where the drift shifts towards larger times
upon increasing tw. Note that in the limit N →∞,
τmeta(tw) should diverge for tw → ∞, but a finite
N acts as a cutoff and τmeta(tw) should instead sat-
urate to a value ∼ exp(N1/3) for large tw.

• In the Gardner phase ∆(t, tw) < ∆AB(t) for all ac-
cessible times t, tw. Therefore, although δ∆(t, tw)
goes to zero at large times for ϕ < ϕG, for ϕ & ϕG

it does not fully decay in the accessible t regime (for
all tw) and instead converges to a plateau (Fig. 5c).
Note also that the evolution of δ∆(t, tw) with in-
creasing density is qualitatively identical to that
of the overlap with decreasing temperature in spin
glasses, as reported in Ref. [53, Fig. 8] (compare
also to Fig. 4c). These results further support the
strong analogy between the Gardner and the spin-
glass transitions.

The dynamical behavior of the caging susceptibility
is qualitatively similar that of the MSD (Fig. 6). As
for the cage order parameters, in the SF-RS phase (for
ϕ < ϕG) the two susceptibilities become identical in the
long time limit, i.e., χ(t → ∞, tw) = χAB(t → ∞).
By contrast, in the SF-fullRSB phase (for ϕ > ϕG),
on a timescale t . τmeta(tw), we generally observe that
χ(t, tw) < χAB(t). Note that the magnitude of the sus-
ceptibility increases by more than a decade in the density
range considered here, which is a clear signature of the
Gardner transition. A detailed analysis of this increase
is discussed in Sec. IV B 3.

3. Computation of timescales

Based on the qualitative picture of the dynamics
presented above, we now attempt a more quantitative
analysis based on the classic work of Ogielski on spin
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FIG. 6. (Color online). (a) Time evolution of the caging sus-
ceptibility χ(t, tw = 0) (scatters) and χAB(t) (lines). (b) For
three selected densities, we report the evolution of χAB(t)
for much longer times (dotted lines) and the dependence of
χ(t, tw) on both t and tw (see legend).

glasses [53] and its recent extension to the study of the
dynamical transition in the d = 3 Edwards-Anderson
model under an external field [54]. The idea consists
in obtaining a relaxation timescale τ(tw) from the decay
of δ∆(t, tw) (Fig. 4c). Note, however, that this scheme is
only well defined in the SF-RS phase, where equilibrium
can be reached and Eq. (18) holds. In the SF-fullRSB
phase, δ∆(t, tw) does not decay to zero and evolves con-
tinuously over a broad range of time scales. Extracting a
single timescale is then not so straightforward. We will
focus in the following on the data for tw = 0, for which
we have more statistics. For ϕ . ϕG, these data are also
representative of all tw.

In order to facilitate the numerical analysis, we make
use of analytical results. According to the general the-
ory of critical glassy dynamics developed in Refs. [55–57],
upon approaching the Gardner point in (restricted) equi-
librium from the SF-RS phase, hence when δ∆(t, tw) =
δ∆(t) does not depend on tw, one has:

δ∆(t) ∼ δϕF(t/τβ) , τβ ∼ δϕ−γ , (19)

where δϕ = |ϕ− ϕG| and the function F(x) is such that
F(x � 1) ∼ x−a while F(x � 1) decays exponentially.
Here the exponents a and γ = 1/a are related to the

2dϕ0/d 2dϕG/d λ γ = 1/a

4.8 4.8 0.7027 3.069

4.9 5.34 0.5607 2.651

5 5.64 0.5091 2.547

5.25 6.18 0.4378 2.427

5.5 6.61 0.3938 2.363

6 7.33 0.3398 2.295

6.667 8.16 0.2957 2.245

7 8.54 0.2801 2.228

8 9.63 0.2469 2.194

10.667 12.36 0.2042 2.154

TABLE I. Analytical results (in the limit d→∞) for ϕG and
the exponents λ, γ and a for several ϕ0 .

so-called MCT exponent parameter λ by the relation

λ =
Γ(1− a)2

Γ(1− 2a)
. (20)

The parameter λ can be computed analytically within the
replica method by analizing the cubic terms of the replica
action [14, 56, 57]. The results of this computation are
reported in Table I (details are given in Refs. [37]).

In order to estimate τβ , we fit the results for δ∆(t, tw =

0) using an empirical form F(x) ∝ x−ae−xb

that has been
used for spin glasses [53, 54], which gives

δ∆(t, tw = 0) = c
exp [−(t/τ ′β)b]

ta
, (21)

where the parameters a, b and τ ′β depend on ϕ, ϕ0, and

τ ′β offers a first estimate of τβ . Note that we fit the expo-
nent a instead of using the analytical result, because the
critical regime over which the exponent coincides with
a is narrow and away from ϕG the effective exponent is
quite different (see Ref. [53, Fig. 12]). With this choice
all the fits are very good, as reflected by the Pearson χ2

P
per degree of freedom (d.o.f.) [58] being much less than
1 (examples of the quality of the fit are given in Fig. 4c).
As ϕ approaches ϕG for a given ϕ0, τβ is expected to
diverge as

τβ ∼ |ϕ− ϕτG|−γ . (22)

In order to obtain a more constrained value of ϕτG, we
fix the exponent γ to its analytic value given in Table I
and only fit ϕτG and the prefactor. This time the fits are
not excellent, with values of χ2

P/d.o.f. of the order of 1
or larger (see Fig. 7). The results for ϕτG are reported in
Table II.

An alternative estimate of τβ can be obtained from
the logarithmic scaling of δ∆(t, tw = 0) at long times
(see Fig. 8). For ϕ < ϕG, the fitting form

δ∆(t, tw = 0) = k

[
1− log(t)

log(τ ′′β )

]
(23)
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FIG. 7. (Color online). (a) Growth of τ ′β with ϕτG −ϕ for ϕτG
from Table II. (b) The two estimates of τβ , τ ′β and τ ′′β , as a
function of ϕτG−ϕ for ϕ0 = 2.5. (c) Evolution of a and b with
ϕ for ϕ0 = 2.5.

with a density-dependent constant k gives τ ′′β [54]. Com-

paring τ ′β and τ ′′β suggests that the divergence of the two
timescales is compatible with a same ϕG and a very sim-
ilar power-law exponent (see Fig. 7b). The insensibility
of the estimator of τβ to its precise definition adds sup-
port to our claim that the observed divergence is due to
a true thermodynamic transition. Also, we repeated the
analysis for tw > 0 with very similar results.

To conclude the discussion, note that the results for
∆AB(t) and ∆(t, tw) at low densities, i.e., ϕd ≤ ϕ0 . 2.2,
may be affected by hopping (Sec. II E and [34]). In these
systems the timescale for leaving a metabasin (albeit only
through local hopping processes) is comparable to τβ
even near ϕG. The estimate of ϕG in this regime is there-
fore subject to a larger error, which explains the bigger
difference between ϕτG and other ϕG estimates (Table II).
For the limit case ϕ0 = 1.8, we do not even attempt to fit
the data because no clear power-law regime can be distin-
guished. By contrast, for ϕ0 ≥ 2.5, hopping is negligible
on the timescales achieved numerically.

B. Static functions

As we have shown in Sec. IV A, at the Gardner transi-
tion two-clones observables such as ∆AB(t) become dif-
ferent from the long-time limit of dynamic observables
such as ∆(t, tw). In this subsection, we thus estimate
the location of the Gardner transition using an approach
based on the study of two-clone static observables. These
observables are static because, as we showed in Sec. IV A,
they are time independent for ϕ < ϕG. We can thus
arbitrarily choose any t to compute them. Here, we
choose ts = 0.2V 1/3 ∼ 2, such that τ0 < ts � τmeta,
which we abbreviate below as ∆ ≡ ∆(ts, tw = 0) and
∆AB ≡ ∆AB(ts). We use a similar notation for all other
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FIG. 8. (Color online). Logarithmic decay of δ∆(t, tw = 0)
with time for ϕ0 = 2.5. The results are fitted to Eq. (23)
(dashed lines).

observables unless otherwise specified.

1. Average mean square displacement

We consider the averages of ∆ and ∆AB and com-
pare them with the theoretical SF results (see Fig. 9 for
ϕ0 = 2.5). In order to take into account the corrections
discussed in Sec. II E, both the numerical and the theo-
retical datasets have been rescaled. For the vertical axis,
we rescale the results to ∆1(ϕ0), which is known both
in theory and in simulation, such that both datasets are
equal to 1 for ϕ = ϕ0. For the horizontal axis, we rescale
ϕ to ϕG with the theoretical ϕG for the SF-RS curve
(Table I) and a fit factor ϕT

G for the numerical results
(Table II). Figure 9 clearly shows the difference between
the two expected regimes (Sec. II C): for ϕ < ϕG, we
obtain ∆ ∼ ∆AB ∼ ∆1, while for ϕ > ϕG, we obtain
∆ ∼ ∆EA and ∆AB ∼ ∆1, and hence ∆AB > ∆. Al-
though at short times we observe ∆AB(t) ≈ ∆1, on much
longer timescales we expect ∆AB(t) to evolve slowly to-
wards its equilibrium value ∆AB(t) = 〈∆〉SF, which is
however only approached for t that diverge with N .

2. Probability distribution functions

We next consider the probability distribution function
(pdf) of the cage order parameters by computing ∆ and
∆AB for each sample and constructing the histogram over
samples. Note that because ∆ is the mean square dis-
placement restricted to a single sub-basin and the wait-
ing time is fairly short, its distribution represents PSF(∆)
in the SF-RS phase, and only the peak around ∆EA in
the SF-fullRSB phase (see Fig 2).

Figure 10 shows P (∆) and P (∆AB) for ϕ0 = 2.5 cal-
culated from Ns = 40, 000 – 75,000 samples. The shape
of P (∆) is Gaussian-like at all ϕ, and its mean value
monotonically decreases with increasing ϕ. The shape of
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of ∆ and ∆AB for ϕ0 = 2.50. Numerical results (points)
are compared with theoretical predictions for ∆1, ∆EA and
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P (∆AB), however, changes considerably over that same
regime. For ϕ < ϕG, it is Gaussian and analogous to
that of P (∆), but near ϕG it develops an exponential tail
akin to a Gumbel distribution. If ϕ is further increased,
P (∆AB) then becomes broader, which is consistent with
the theoretical expectation (see Fig. 2).

The development of an exponential tail at the critical
point has been observed and studied for spin glasses in a
field [59, 60]. The effect is thought to be due to disorder.
Whereas the results for most samples fall within Gaus-
sian fluctuations around a given mean value, a few rare
samples have much larger ∆AB than the mean, giving
an exponential tail to the distribution. The smaller the
system, the stronger the effect (Fig. 11). These rare fluc-
tuations are hypothesized to originate from the sample-
to-sample fluctuations of the critical point [59], which
then translates into significant sample-to-sample fluctu-
ations of some of the measured observables. We come
back to this point in Sec. IV C.

The connection between the changing shape of the dis-
tribution and criticality suggests that we can determine
the critical transition from P (∆AB) alone. We propose
below two alternative procedures for detecting the Gard-
ner transition using standard moments of the distribu-
tion.

3. Caging susceptibility

We first define a caging susceptibility from the normal-
ized variance of P (∆AB)

χ = N
〈∆2

AB〉 − 〈∆AB〉
2

〈∆AB〉
2 , (24)
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FIG. 10. (Color online). (a) P (∆) and (b) P (∆AB) at differ-
ent ϕ for ϕ0 = 2.5.

where the denominator corrects for the fact that 〈∆AB〉
changes with ϕ. As in the vicinity of any critical point,
the susceptibility is expected to diverge as

χ ∝ (ϕχG − ϕ)−1, (25)

where the critical exponent 1 is due to the fact that the
MK model is mean-field in nature.

The definition of χ involves taking the quotient of two
quantities that both suffer from strong finite-size correc-
tions. In order to control for this effect we study the
behavior of both terms as function of 1/N (Fig. 12). The

denominator, 〈∆AB〉, behaves as a regular series in 1/N ,
decreases smoothly with ϕ, and eventually saturates

above the Gardner point. The numerator, N(〈∆2
AB〉 −

〈∆AB〉
2
) has, however, a more complex behavior. While

it follows a nearly 1/N behavior for ϕ < ϕG with a
small dependence on ϕ, it grows significantly faster both
with N and ϕ for ϕ > ϕG. We attempt to extract the
value of both quantities at the thermodynamic limit us-
ing a second-order polynomial fit in 1/N , even though

for ϕ > ϕG the estimate of N(〈∆2
AB〉−〈∆AB〉

2
) obtained

in this way is not reliable and larger systems would be
needed to obtain a better extrapolation.

The results for the susceptibility for N = 800 are re-
ported in Fig. 13a for different values of ϕ0 (and thus
ϕG). For ϕ0 = 2.50 we also include χN→∞ obtained
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FIG. 11. (Color online). (a) Finite-size behavior of P (∆AB)
at ϕ = 3.0 ≈ ϕG and (b) density evolution of the rescaled
skewness Γ for three different N and for ϕ0 = 2.5.

using the extrapolations of Fig. 12. The comparison sug-
gests that although the finite-size effects in both 〈∆AB〉
and N(〈∆2

AB〉−〈∆AB〉
2
) are still very strong for this sys-

tem size, the determination of χ is fairly well controlled,
at least for ϕ < ϕG.

The numerical data in Fig. 13a suggest a roughly lin-
ear behavior of χ−1 for all ϕ0 except ϕ0 = 1.8, where
the spacing between ϕ0 and ϕG is narrowest, and where
hopping most likely obfuscates the critical regime (see
Fig. 16). For the other ϕ0, we estimate the Gardner tran-
sition by fitting Eq. (25) in the ϕ < ϕG region (Table II
and Fig. 16).

In Fig. 14 we compare the numerical results with the
theoretical predictions. Note, however, that the theoreti-
cal curves do not correspond to the full χ value, but only
include the leading divergent term, namely the inverse
of the replicon eigenvalue (see [16, 37] for details). As
discussed for Fig. 9, both the theoretical and numerical
datasets are also rescaled. The vertical axis is normal-
ized to 1 at ϕ = ϕ0, while the horizontal ϕ axis is scaled
to ϕG, using the theoretical values in Table I and the fit
values ϕT

G for the numerics (Table II). Interestingly, the
theoretical curves are not linear over the whole density
regime. They instead bend towards ϕG, before vanish-
ing linearly, but only in a fairly small region around ϕG.
The linear scaling observed in the simulation data is thus
likely due to finite-size effects. The numerical estimates
of ϕχG obtained from the linear fit of the whole set of data
for ϕ < ϕG thus slightly overestimate the true transition
point. Yet the effect is quite small – approximately 2%,
based on Fig. 14. For ϕ ∼ ϕG and above, we observe that
finite-size effects dominate the numerical determination
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FIG. 12. (Color online). Finite-size behavior of the two terms

of the definition of the susceptibility in Eq. (24): (a) 〈∆AB〉,
and (b) N(〈∆2

AB〉 − 〈∆AB〉
2
), for ϕ0 = 2.50. The dashed

lines are fits of a second-order polynomial in 1/N to the data.
The 1/N → 0 extrapolation of these two fits have been used
to extract the N →∞ limit of χ, given in Fig. 13 by a dark
solid line.

.

of χ, which remains finite instead of diverging.

4. Caging skewness

Near the Gardner transition, large sample-to-sample
fluctuations give rise to a strong exponential tail in
P (∆AB). This effect can be quantified by the skewness
of the distribution

Γ =

〈(
∆AB − 〈∆AB〉

)3
〉

〈(
∆AB − 〈∆AB〉

)2
〉3/2

. (26)

Recall that the skewness is a measure of a distribution’s
asymmetry and that a Gaussian distribution would have
Γ = 0. Sample-to-sample fluctuations are expected to
be maximal at the critical point (see Sec. IV C), which
provides an estimate of the Gardner transition, ϕΓ

G (see
Fig. 13b and Table II). For all ϕ0, we see that ϕΓ

G is very
close to the fitted divergence of the susceptibility, ϕχG.
Finite-size analysis further shows that the rescaled skew-
ness, Γ

√
N , collapses the data for different N (Fig. 11).

The peak of Γ is thus expected to persist all the way to
the thermodynamic limit, consistently with comparable
observations in spin-glass models [59].
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FIG. 13. (Color online). (a) Inverse caging susceptibility,
χ−1, and (b) skewness, Γ, as functions of ϕ for different ϕ0.
Upon approaching ϕG, χ apparently diverges as |ϕ − ϕχG|

−1,
except for ϕ0 = 1.8. Note that the divergence of χ coincides
with the maximum of Γ. The N → ∞ extrapolation of the
curves in Fig. 12 were used to obtain the dotted line.

C. Sample-to-sample fluctuations

We have assumed above that the abnormal behavior
of Γ around the Gardner transition is due to sample-
to-sample fluctuations, and we further motivate this hy-
pothesis here. Recall that in our notation a sample is
defined by a given configuration {ri} and a set of random
shifts {Λij} (see Sec. III A). To compute the moments
χ and Γ of each sample, we perform Ns = 10, 000 inde-
pendent clonings for each sample. In Fig. 15, the data
for the ensemble of samples (same data as in Fig. 13) are
compared with those of four individual samples. We note
that the density evolution of Γ for the individual samples
can have a very different behavior from the ensemble one.
In particular, a peak around ϕG is generally not seen.

Sample-to-sample fluctuations have a smaller effect on
χ (Fig. 15). While the magnitude and the critical density
exhibit some fluctuations, they all display a divergence
similar to that of Eq. (25). Because each realization
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FIG. 14. (Color online). The numerical susceptibilities (scat-
ters) are compared with theoretical predictions (lines). Both
datasets are scaled to reference values (see Sec. IV B 3 for de-
tails) to obtain a better agreement between theory and sim-
ulation. We also report the linear fits to the numerical data
used to determine ϕχG (dashed lines). This linear fit overesti-
mates the transition point by roughly 2%.
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FIG. 15. (Color online). (a) The susceptibility χ and (b) the
skewness Γ averaged over the ensemble of clones are compared
with those of four individual samples, for ϕ0 = 2.50.

of disorder corresponds to different SF-RS metabasins,
our results suggest that the metabasins themselves have
slightly different properties. In particular, they exhibit
different ϕG, which is likely the physical origin of the
exponential tail of P (∆AB) and thus of its anomalous
skewness [59].



15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1.5 2 2.5 3 3.5 4 4.5 5

1/
p

ϕ

liquid EOS

glass EOS

ϕG, theory

ϕΓ
G

ϕχ
G

ϕτ
G

ϕ0

ϕJ
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from ϕ0 up to jamming at ϕJ. Numerical estimates of the
Gardner transition evolve with ϕ0 similarly as the theoretical
predictions [17].

V. SUMMARY OF RESULTS

The Gardner transition at ϕG was independently and
quantitatively identified from: (i) the power-law diver-
gence of the characteristic time τ in Fig. 7, (ii) the linear
vanishing of the inverse susceptibility χ−1 in Fig. 13a,
and (iii) the maximum of the skewness Γ in Fig. 13b.
Table II contains these results and Figure 16 presents
them in a phase diagram. The different estimates of ϕG

are generally quantitatively consistent with each other
and qualitatively consistent with the mean-field SF re-
sults from d→∞.

The agreement with the mean-field calculation im-
proves with density, likely because the Gaussian caging
approximation used in the theory becomes a better ap-
proximation at higher densities [34, 48]. A couple of
reasons underlie the discrepancy between numerical es-
timates and theory in the vicinity of ϕd. First, caging
becomes imperfect at such low densities, which allows
particles to hop between neighboring cages on a timescale
comparable with the simulation time [34]. Hopping thus
affects the dynamics of the system (∆(t, tw) and ∆AB(t))
and also transforms the transitions (at either ϕd or ϕG) in
crossovers. Second, because ϕG is expected to converge
to ϕd upon approaching the dynamical glass transition
(see Figs. 1 and 16), the critical regime becomes too small
to make any fit to a critical power-law scaling.

In addition to (i)-(iii), a more indirect way (iv) to de-
termine ϕG has been reported in Fig. 9 by comparing the
density evolution of the cage order parameters with the
theoretical predictions in d → ∞. However, while the
effect is qualitatively (and visually) clear, obtaining a
quantitative measure of ϕG from this approach is some-
what ill-defined. For ϕ > ϕG one also should treat ∆

TABLE II. Results for ϕG and ϕJ for various ϕ0. Errors
are estimated as follows. For ϕΓ

G, the error is the average
distance between the susceptibility maximum and the next
largest point. For ϕχG and ϕτG, fitting ϕ intervals are varied to
obtain the smallest and largest ϕG for which a fit is possible.
The distance between the two values is the error.

ϕ0 ϕΓ
G ϕχG ϕτG ϕT

G ϕJ

1.8 2.10(5) 2.11(3) – – 2.534(3)

2.2 2.64(5) 2.670(11) 2.72(4) – 2.876(4)

2.5 2.995(15) 3.006(6) 3.06(2) 2.96 3.151(3)

3.0 3.54(2) 3.537(3) 3.554(17) 3.49 3.622(5)

4.0 4.550(12) 4.551(5) 4.57(2) 4.48 4.584(4)

results with caution. As discussed above, because of the
finite-size and out-of-equilibrium nature of the system,
the value of ∆ drifts with time as different sub-basins
are explored. Because in practice we evaluate ∆ at a
relatively short time ts (Sec. IV B), we likely obtain a
reasonable estimate of the size of a single sub-basin, but
this procedure is also somewhat uncontrolled.

Overall, we find that the most reliable way to deter-
mine ϕG is the divergence of χ (procedure (i)). This ef-
fect is clearly the most spectacular signature of the tran-
sition, and sample-to-sample fluctuations do not much
affect its detection (Fig. 15). Interestingly, because χAB
is almost independent of time, one can determine χ reli-
ably using ∆AB at short times, as we did in this paper.
Once ϕG is determined in this way, a useful test is to
check that this value is consistent with the behavior of
∆ and ∆AB , as in Fig. 9. Procedure (iii), i.e. finding
the maximum of the skewness, requires averaging over
a large number of samples which will surely be difficult
in numerical simulations of realistic models of glasses as
well as in experiments, where producing equilibrium con-
figurations is extremely difficult. Procedure (i), i.e. the
divergence of τβ , is also difficult because the determina-
tion of τβ is subject to some ambiguity, but the study of
the dynamics is useful because aging effects are manifest
for ϕ > ϕG (Fig. 5). Procedure (iv) is used here as a
consistency check with the theory, rather than a method
to detect ϕG.

VI. CONCLUSIONS

The Gardner transition separates a stable glass
metabasin at low densities (high temperatures) from a
complex hierarchy of marginally stable sub-basins, at
high densities (low temperatures). Its existence, which is
proven in mean-field glass models [18, 19], has deep con-
sequences on the low-temperature physics of glasses and
on jamming [15, 26]. It is therefore extremely interest-
ing to check whether such a transition exists in realistic
models of glasses and in experiments.

In this work we have investigated and compared several
numerical procedures for detecting the Gardner transi-
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tion in the MK model, which belongs to the universal-
ity class of mean-field spin glasses while remaining fairly
close to realistic glass formers [32]. We have presented
three independent approaches for locating the transition,
all of which show that the transition exists and is found in
a region that is roughly consistent with theoretical pre-
dictions. We have discussed the advantages and draw-
backs of each of these strategies and the importance of
finite-size effects.

This work paves the way for studying the Gardner
transition in more realistic numerical models of glasses,
where the very existence of the Gardner transition is de-
bated [29]. Our approach is also suitable to be repro-
duced in experiments. SF, for instance, corresponds to
a straightforward annealing, and some of the observables
should be readily available through standard microscopy
or scattering techniques.

One key hurdle to generalizing our methodology to
other systems is the need to equilibrate, without plant-
ing (and thus through slow annealing), a glass state well
above the (avoided) dynamic glass transition. To follow
adiabatically a glass state, one should be able to prepare
initial configurations such that the α-relaxation time τα
is very large (τα � τβ), so that the SF experiment can
be performed on time scale τβ � τ � τα, as discussed
in Sec. II D. For numerical simulations this requirement
can be particularly computationally onerous, but it may
be more easily achievable in experimental systems, where
longer timescales can typically be reached. In particular,
it would be very interesting to investigate the existence
of the Gardner transition in ultrastable glasses that can
be prepared through vapor deposition and have an ex-
tremely large τα [51, 52, 61, 62]. In experiments, the
bigger challenge would be to substitute the cloning pro-

cedure with a (potentially very) large number of experi-
mental replicates.

Finite-dimensional non-mean-field glass formers dis-
play features that are not observable in the MK model.
In particular, we expect a diverging length scale to be
associated with the Gardner transition in these systems.
This length scale is expected to capture static hetero-
geneity, which represents the spatial inhomogeneity of
cage sizes around and above ϕG. In principle, this kind
of static heterogeneity should be different from both the
dynamic heterogeneity around the dynamic glass transi-
tion, and the heterogeneity close to jamming, which is
related to soft relaxation modes [63]. Understanding the
relevance of marginal stability for glassy dynamics, and
the relation with the ideas of Ref. [63], would open a new
window on the property of low-temperature glasses.

ACKNOWLEDGMENTS

We wish to thank L. Berthier, O. Dauchot, W. Kob,
J. P. Bouchaud, G. Biroli, J. Kurchan, S. Franz, T. Rizzo,
F. Ricci-Tersenghi, and M. Wyart for very useful dis-
cussions, and especially P. Urbani and H. Yoshino for
collaborating with two of us in the theoretical part
of this project [17, 37]. P.C. acknowledges support
from the Alfred P. Sloan Foundation and NSF support
No. NSF DMR-1055586. B.S. acknowledges the sup-
port by MINECO (Spain) through research contract No.
FIS2012-35719-C02. The research leading to these re-
sults has received funding from the European Research
Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ERC grant agreement no.
[247328].

[1] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587
(2011).

[2] A. Cavagna, Physics Reports 476, 51 (2009).
[3] A. J. Liu and S. R. Nagel, Nature 396, 21 (1998).
[4] R. D. Kamien and A. J. Liu, Phys. Rev. Lett. 99, 155501

(2007).
[5] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789

(2010).
[6] A. Donev, S. Torquato, and F. H. Stillinger, Phys. Rev.

E 71, 011105 (2005).
[7] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato,

Phys. Rev. E 74, 041127 (2006).
[8] L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E

73, 041304 (2006).
[9] P. Chaudhuri, L. Berthier, and S. Sastry, Phys. Rev.

Lett. 104, 165701 (2010).
[10] M. Hermes and M. Dijkstra, arXiv.org:0903.4075

(2009).
[11] P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi,

Phys. Rev. Lett. 107, 185702 (2011).
[12] A. Ikeda, L. Berthier, and P. Sollich, Phys. Rev. Lett.

109, 018301 (2012).

[13] A. Ikeda, L. Berthier, and P. Sollich, Soft Matter 9, 7669
(2013).

[14] J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, J.
Phys. Chem. B 117, 12979 (2013).

[15] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and
F. Zamponi, Nat. Comm. 5, 3725 (2014).

[16] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and
F. Zamponi, J. Stat. Mech. Theor. Exp. 2014, P10009
(2014).

[17] C. Rainone, P. Urbani, H. Yoshino, and F. Zamponi,
Phys. Rev. Lett. 114, 015701 (2015).

[18] E. Gardner, Nuclear Physics B 257, 747 (1985).
[19] D. J. Gross, I. Kanter, and H. Sompolinsky, Phys. Rev.

Lett. 55, 304 (1985).
[20] A. Montanari and F. Ricci-Tersenghi, Eur. Phys. J. B

33, 339 (2003).
[21] A. Montanari and F. Ricci-Tersenghi, Phys. Rev. B 70,

134406 (2004).
[22] T. Rizzo, Phys. Rev. E 88, 032135 (2013).
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A. Maiorano, F. Mantovani, E. Marinari, et al., Phys.
Rev. E 89, 032140 (2014).

[55] H. Sompolinsky and A. Zippelius, Phys. Rev. B 25, 6860
(1982).

[56] F. Caltagirone, U. Ferrari, L. Leuzzi, G. Parisi, F. Ricci-
Tersenghi, and T. Rizzo, Phys. Rev. Lett. 108, 085702
(2012).

[57] G. Parisi and T. Rizzo, Phys. Rev. E 87, 012101 (2013).

[58] Recall that χ2
P =

∑NT
i=1[yi − f(ti)]

2/σ2
i , where NT is the

numbers of times ti and yi = δ∆(ti, tw = 0), σi is the
error of yi, and f is the fitting function, Eq. (21).

[59] G. Parisi and F. Ricci-Tersenghi, Philos. Mag. 92, 341352
(2012).

[60] M. Baity-Jesi, R. Baños, A. Cruz, L. Fernandez, J. Gil-
Narvion, A. Gordillo-Guerrero, D. Iñiguez, A. Maiorano,
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