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Using numerical simulations, we characterized the behavior of an elastic membrane immersed in
an active fluid. Our findings reveal a nontrivial folding and re-expansion of the membrane that is
controlled by the interplay of its resistance to bending and the self-propulsion strength of the active
components in solution. We show how flexible membranes tend to collapse into multi-folded states,
whereas stiff membranes fluctuate between an extended configuration and a singly folded state.
This study provides a simple example of how to exploit the random motion of active particles to
perform mechanical work at the micro-scale.

I. INTRODUCTION

Suspensions of bacteria and synthetic active particles
offer a novel approach to manipulating matter at the
micro-scale. Not only do passive micro-components in
an active fluid display unusual transport properties [1–
17], but active fluids can mediate a new set of effective
interactions between passive elements [18–24], providing
an extra handle in material design. In addition, active
fluids have been used to power primitive micro-machines
[25–30]. The origin of this phenomenology is derived from
the unique pressure (or stress) gradients generated by ac-
tive fluids [31–40].

Although, much of the effort in this field has
focused on the interaction of active fluids with
rigid, passive micro-components, there has been
some work on the behavior of flexible objects.
For instance, the behavior of fluid membranes
immersed in a variety of active environments
have been studied [41–46]. Both flexible[47, 48] and
semi-flexible polymers[47] confined to a two-dimensional
active bath have been shown to exhibit dynamic and
scaling behavior that is much richer than that ex-
pected for polymers in a thermal bath. Fully flexible
polymers[48] display a non-universal Flory scaling behav-
ior as well as an anomalous chain swelling, while semi-
flexible polymers[47] display a dynamic collapse and re-
expansion when immersed in an active bath at different
values of the propelling forces. These results suggest that
the driven nature of an active fluid can be used to con-
trol the shape of flexible micro-components. This can be
thought of as a microscopic joint or clamp where the me-
chanical action (folding) of stiff fibers can be induced by
increasing the self-propulsion of the active components
in solution.

Much of the phenomenological behavior observed for
polymers is, however, specific to two-dimensional (or
quasi-two dimensional) systems, where active particles
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can be confined with relative ease within the bends of a
polymer, and generate significant pressure gradients ca-
pable of driving its collapse. The scaling behavior and
statistical properties of a polymer, when embedded in a
three-dimensional active fluid, do not differ significantly
from those of a polymer in a thermal bath. This would
not be the case when replacing the polymer with a flexi-
ble two dimensional surface, which is the subject of this
work.

Here, we study the behavior of an extended elastic
membrane, a natural generalization of a linear poly-
mer chain to an intrinsically two-dimensional structure,
suspended in a three dimensional active bath. Phys-
ical examples of such materials include graphite-oxide
and graphene sheets[49–52], cross-polymerized biologi-
cal membranes[53], and the cytoskeleton of red blood
cells[54, 55]. Polymerized membranes have been studied
intensively in the last few decades (see [56] and references
therein for a review on the subject) and display a phe-
nomenological behavior that is far richer in complexity
than that observed in linear polymers.

Using numerical simulations, we explore the me-
chanical properties and conformational behavior of
an elastic membrane immersed in an active fluid for
different strengths of the bath activity and for different
values of its bending rigidity. Our findings reveal a
nontrivial folding and re-expansion of the membrane
that is controlled by the interplay of its resistance

FIG. 1. (Color online) Reference snapshots showing the vari-
ous conformations taken by the membrane as the bath activity
and bending rigidity is varied. (A) flat/extended, (B) bent,
(C) single folded, and (D) multi-folded.
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to bending and the self-propulsion strength of the
active components in solution. We show how flexible
membranes tend to collapse into multi-folded states,
whereas stiff membranes fluctuates between an extended
configuration and a singly folded state.

II. METHODS

The elastic membrane is modeled using a standard
triangulated mesh with hexagonal symmetry [57]. The
mesh is composed of Nm nodes which are arranged in a
circular geometry with diameter d. Self-avoidance of the
surface is imposed by placing a purely repulsive particle
of diameter σ and mass m at each node of the mesh. Ev-
ery particle on the surface is bonded to its first neighbor
via a harmonic potential

Ustretching = κs(r − r0)2 (1)

where κs is the spring constant, r the distance between
two neighboring particles, and r0 = 21/6σ the equilib-
rium bond length between two particles. The bending
rigidity of the membrane is implemented using a dihe-
dral potential between adjacent triangles of the mesh:

Ubending = κb(1 + cosφ) (2)

where φ is the dihedral angle between opposite vertices of
any two triangles sharing an edge and κb is the bending
constant.

Each active bath particle is a sphere with mass m,
diameter σ, and undergoes over-damped Langevin dy-
namics at a constant temperature T . Self-propulsion is
introduced through a directional force of constant mag-
nitude |Fa| and is directed along a predefined orientation
vector n which passes through the origin of each parti-
cle and connects its poles. The equations of motion of
an individual particle are given by the coupled Langevin
equations

mr̈rr = −γṙrr − ∂rrrU + |Fa|nnn+
√

2γ2Dξξξ(t) (3)

ṅnn =
√

2DrξR(t)ξR(t)ξR(t)×nnn (4)

where γ is the drag coefficient, U the conservative inter-
particle potential, and D and Dr are the translational
and rotational diffusion constants respectively, satisfy-
ing the relation Dr = (3D)/σ2. The translational dif-
fusion constant D is related to the temperature T via
the Stokes-Einstein relation D = kBT/γ. The typical
solvent induced Gaussian white noise terms for both the
translational and rotational motion are characterized by
〈ξi(t)〉 = 0 and 〈ξi(t)·ξj(t′)〉 = δijδ(t−t′) and 〈ξRi(t)〉 = 0
and 〈ξRi(t)·ξRj(t′)〉 = δijδ(t−t′), respectively. Each node
of the membrane also undergoes over-damped Langevin

dynamics at a constant temperature T where the equa-
tions of motion are given by Eqs. (3) and (4) while letting
|Fa| = 0. The interactions between any two particle in
the systems (membrane nodes or active components) are
purely repulsive and are given by the Weeks-Chandler-
Andersen (WCA) potential

U(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6

+
1

4

]
(5)

with a range of action extending up to rij = 21/6σ. Here
rij is the center-to-center distance between any two par-
ticles i and j, and ε is the interaction energy.

Using the numerical package LAMMPS [58], all
simulations were carried out in a periodic box of di-
mension L = 100 with T = ε = m = σ = τ = 1 and
γ = 10τ−1(here τ is the dimensionless time). The drag
coefficient γ was chosen to be sufficiently large such that
the motion of the particles is effectively over-damped.
The number of active particles considered in our simula-
tions was N = 10, 000 giving an active particle density
of ρ = N/V = 0.01. While, the number of nodes in
the membrane was set to Nm = 1700 resulting in a
membrane with diameter d ≈ 46σ. For each simulation,
the membrane was initialized in a flat configuration and
the simulation was run for a minimum of 1 × 108τ time
steps. All quantities in this investigation are given in
reduced Lennard-Jones units and for convenience, we
refer to the activity of the bath in terms of the dimen-
sionless Peclet number Pe = |Fa|σ/(γD) = |Fa|σ/(kBT ).

III. RESULTS

To characterize and quantitatively differentiate be-
tween the different conformations of the membrane, we
employ two well established shape parameters: the mem-
brane asphericity A and its radius of gyration Rg. Fol-
lowing Rudnick et al. [59], we define asphericity as the
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FIG. 2. (Color online) The time average of the radius of
gyration 〈Rg〉 (left) and asphercity 〈A〉 (right) as a function
of Pe for membranes of different bending rigidities κb.
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FIG. 3. (Color online) Probability distribution of the radius of gyration P (Rg) for membranes of increasingly large Peclet
numbers. Different panels show the results for different bending rigidities of the membrane as indicated. The letters in
parenthesis indicate the corresponding configurations as shown in Fig. 1.

rotational invariant

A =

∑
i>j(λi − λj)2
(
∑
i λi)

2
(6)

where λi, λj are the ith and jth eigenvalues of the inertia
tensor

Iαβ =
1

2Nm

Nm∑
i

Nm∑
j

(ri,α − rj,α)(ri,β − rj,β) (7)

where rrri is the position of the ith node in the mem-
brane. A fully symmetric object such as a sphere (i.e.
λ1 = λ2 = λ3), will have a value of asphericity equal
to zero. At the opposite extreme, a thin rod (i.e.
λ1 > 0, λ2 = λ3 = 0) will have an asphericity equal
to one. We are predominately concerned with a planar
circular membrane whose conformation fluctuates be-
tween an extended state (A ≈ 0.25), a singly folded state
(A ≈ 0.5), and an ensemble of multi-folded crumpled
states (that are the most symmetric) which are charac-
terized by the smallest values of A. Representative snap-
shots of these configurations are shown in Fig. 1. The

second configurational parameter, the radius of gyration
of the membrane, is simply the trace of the inertia tensor
given by

R2
g =

∑
i

λi (8)

We begin by considering the time average of the shape
descriptors 〈A〉 and 〈Rg〉 for different values of the Peclet
number. In the limit of low bath activity (Pe → 0), the
membrane is found in a characteristically extended state
with 〈A〉 ≈ 0.22 − 0.25 and the radius of gyration at a
maximum 〈Rg〉 ≈ 16 − 17σ, with the larger values as-
sociated with the stiffer membranes. Notice that, unlike
its one-dimensional counterpart (the polymer), an elastic
membrane exhibits an overall extended state even in the
limit for κb = 0, which makes the dependence of Rg with
Pe rather different than what was observed for fully flex-
ible polymers confined to two dimensions[19, 48]. In fact,
as shown in Fig. 2, as the bath activity is increased, Rg
systematically decreases to smaller values until a plateau
is reached. Stiffer membranes require larger Pe before Rg
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FIG. 4. (Color online) Probability distribution of the asphericity P (A) for membranes of increasingly large Peclet numbers.
Different panels refer to different bending rigidities of the membrane as indicated. The letters in parenthesis indicate the
corresponding configurations as shown in Fig. 1.

begins to decrease and the value it decays to increases
with the strength of the active force. The behavior of
the average asphericity as a function of Pe, suggests a
more complex structural landscape. While the aspheric-
ity for the fully flexible membrane is relatively well be-
haved where it undergoes an initial decreases followed
by a gradual increase for larger Pe, the typical confor-
mations acquired by the rigid membranes are strongly
dependent on the value of the bending rigidity and Pe,
as illustrated by the sharp changes in 〈A〉 particularly for
intermediate active forces.

To gain additional insight into the shape of the mem-
brane as a function of the active forces, we analyze the
underlying probability distributions of the asphericity
P (A) and radius of gyration P (Rg). The results are given
in Fig. 3 and Fig. 4, respectively. For small active forces,
as discussed above, the membrane is nearly flat and as ex-
pected the distributions for P (A) and P (Rg) are sharply
peaked around the corresponding values of Rg and A.
In this low Pe limit, the distributions become increas-
ingly sharper as the bending rigidity is increased. For

larger values of Pe, both P (Rg) and P (A) broaden and
shift towards smaller values for flexible membranes, indi-
cating that the membrane is on average more compact,
but it can also access a variety of conformations across
the spectrum of possible shapes. More interestingly, for
large bending rigidities distinct multiple peaks appear
at specific values of A, which is a clear indications that
the membrane breathes dynamically between a restricted
number of partially stable conformations. Specifically, at
large bending rigidities and intermediate values of Pe,
the membrane mainly inter-converts between a bent con-
figuration (Fig. 1B) characterized by A ≈ 0.2, and a
configuration displaying a single fold along the center of
the membrane (Fig. 1C) A ≈ 0.48. Visualization of the
membrane trajectory (provided in the supporting mate-
rials) reveals a continuous folding and unfolding of the
membrane over time. For more flexible membranes, the
dynamic behavior is similar, however, the most compact
shape the membrane obtains is a multi-folded configu-
ration as shown in Fig. 1D. The larger degree of flexi-
bility allows for a broader range of shape deformations
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FIG. 5. (Color online) Joint probability distribution of the
membrane shape P (A,Rg) for a fixed Peclet number Pe = 50
and various bending rigidities.

under the forces generated by the active particles. This
is clearly observed in Fig. 5 where we plot the joint prob-
ability distribution P (A,Rg) for a fixed Peclet number
Pe = 50 and various bending rigidities. A flexible mem-
branes explores a wide range of configurations with dif-
ferent Rg and A, but as the stiffness of the membrane
is increases the explorable landscape of shape conforma-
tions becomes more and more localized.

All of the conformations active particles induce on the
membrane surface are the result of their tendency to lo-
calize near regions with large/positive curvature. The
reasoning behind this phenomenon has been discussed in
detail here [5, 35, 36, 60]. A rigid membrane is nearly flat
in the absence of active particles. When active particles
are introduced, they tend to accumulate on the surface
of the membrane. An initial bend of the membrane oc-
curs once a sufficiently large asymmetry in the number of
active particles develops on either side of its area. This
leads to an instability because the region of the mem-
brane with higher/positive curvature will further stabi-
lize the active particles residing on it, while the ones on
the outer surface can more easily escape. The net result
is an increasing density gradient of particles on the sur-
face. Similarly to the mechanism driving the formation
of hairpins in polymers [47, 48], particles accumulating
within the creased region of the membrane act as a dy-
namic fulcrum by which the sides of the membrane can
pivot and fold onto one another. Because no direct at-
tractive interactions are present in our system, any folded
or multi-folded configuration of the membrane will even-
tually unfold, resulting in the membrane perpetually
folding and unfolding. The rate and the degree
to which the membrane is folded increases with
the flexibility of the membrane (see supplemental
material.)

Two limits are worthy of a more detailed discussion.
The first case concerns the large Peclet number limit. In
this limit, the probability distribution P (A) associated
to rigid membranes become comparable with that of
their fully flexible counterparts. This is because larger
active forces are able to fold the membrane simultane-

ously at different locations, leading to the formation of
more compact multi-folds and to an overall softening of
the bending rigidity. Thus at large Pe the dynamical
behavior of a rigid membrane is nearly analogous to
that of a flexible membrane. The second limit concerns
the case in which the membrane is sufficiently rigid that
the active forces are not strong enough to drive the
formation of a single fold. Here, the membrane adopts
partially bent configurations (Fig 1B), and the surface
acts as a sail able to trap a significant number of active
particles preferentially on the side of the membrane with
positive curvature. The net result is a active motion of
the surface that is modulated by the propelling forces.
The mechanism behind how an active fluid can induce
an active transport on curved micro-components as been
discussed in our previous work [5].

IV. CONCLUSIONS

In this paper we studied the behavior of a deformable
elastic membrane in the presence of a low density sus-
pension of active particles as a function of the mechani-
cal parameters of the membrane and the strength of the
bath activity. We find that as soon as the collective
strength of the active forces becomes sufficiently large
compared to the bending energy of the membrane a re-
peating sequence of folding and re-expansion transitions
of the surface takes place. While flexible membranes tend
to collapse into multi-folded states, stiff membranes fluc-
tuates between an extended configuration and a singly
folded state. Interestingly, in the large activity-limit, the
behavior of rigid membranes resembles that of fully flex-
ible ones, indicating that strong active forces can soften
the modes of deformation of the membrane. Further-
more, we find that bent or partially folded membrane
configurations act as sails or nets capable of trapping ac-
tive particles on the positive curvatures of their surface
and become actively transported through the medium.
Unlike what had been suggested in previous stud-
ies on fluid surfaces [43, 46], we do not believe
that in our system the activity can be described as
an effective temperature of the membrane. This
is because the bi-stable behavior observed in our
system does not have an analog in the passive
system. Although, one could feasibly define an
effective temperature in the limit of small activi-
ties and large bending rigidities, (i.e. prior to the
collapse of the membrane), this mapping cannot
be done for the whole range of system parame-
ters.

We expect the number density of active par-
ticles to play an important role in determining
the exact values of Pe driving the collapse of the
membrane at a given bending rigidity. However,
it is not clear how the membrane will behave at
very high densities, where clustering and possibly



6

phase separation of the active fluid occurs.
The work presented in this paper is complementary to

our previous study on rigid filaments [47], and suggests
ways of exploiting the random motion of active particles
to perform mechanical work at the micro-scale. The
system we considered here consisted of a simple isotropic
membrane in a bath of spherical particles; it is feasible
to imagine that further control over the mechanical
response of flexible micro-components such as the ones
discussed here and in our previous work can be achieved
by introducing judicious amount of anisotropy either on
the elastic properties of the surface or on the interactions
between active particles and surface.
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