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A numerical and systematic parameter study of three-dimensional vesicle electrohydrodynamics is
presented to investigate the effects of varying electric field strength and different fluid and membrane
properties. The dynamics of vesicles in the presence of DC electric fields is considered, both in the
presence and absence of linear shear flow. For suspended vesicles it is shown that the conductivity
ratio and viscosity ratio between the interior and exterior fluids, as well as the vesicle membrane
capacitance, substantially affect the minimum electric field strength required to induce a full Prolate-
Oblate-Prolate transition. In addition, there exists a critical electric field strength above which a
vesicle will no longer tumble when exposed to linear shear flow.

I. INTRODUCTION

The interaction of lipid vesicles with external electric
fields has been a subject of growing interest from both an
application and a mechanistic standpoint [1–3]. Recent
experimental investigations have demonstrated a num-
ber of transient dynamics when vesicles are exposed to
electric fields. Cylindrical shapes, with high curvature
regions, have been observed in both AC and DC fields
[3–5]. If the applied electric potential is not carefully
controlled electroporation and destruction of the vesicle
is possible [6–8]. As vesicles form a model system for
more complicated biological cells, such as red blood cells
[9], valuable information about both systems can be ob-
tained by investigating the behavior of vesicles in electric
fields.

One of the most interesting behaviors in vesicle elec-
trohydrodynamics is the Prolate-Oblate-Prolate (POP)
transition [10–12]. Consider a prolate vesicle where the
major axis is initially aligned with the applied electric
field, Fig. 1(a). The fluid encapsulated by the vesicle
has a different electrical conductivity than the surround-
ing fluid. The lipid bilayer membrane is impermeable to
ions and therefore charges accumulate on both sides of
the membrane. As the electrical conductivities differ be-
tween the inner and outer fluid the rate at which charges
are supplied to the interface is not matched. This gives
the membrane a capacitive feature which is responsible
for the dynamics of the vesicle in the presence of electric
fields.

During this charge accumulation process variations in
the Maxwell stress result in membrane forces which act
on the surrounding fluid. Under certain conditions this
will cause the vesicle to deform from the initial prolate
shape to an oblate one, where the major axes are now per-
pendicular to the electric field, see Fig. 1(b). Over time
the vesicle interior becomes electrically shielded from the
external electric field and the forces on the membrane
result in the vesicle evolving back into the prolate shape
(aligned with the electric field), which is always the fi-
nal membrane shape [10, 12]. In order to observe the
full POP transition the external electric field has to be

∗ Corresponding author: davidsal@buffalo.edu

strong enough to overcome other forces present in the
membrane and the surrounding fluid. This behavior is of
particular interest as a benchmark problem to evaluate
numerical algorithms in the modeling of vesicle electro-
hydrodynamics.
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FIG. 1. Sketch of the prolate and oblate shapes and their
orientations with respect to the external electric field. The
deformation parameter D is defined as the ratio of the axis
length in the direction parallel to the field a‖ to the axis length
perpendicular to the field a⊥.

Of additional interest is the interaction of a vesicle, a
DC electric field, and an externally applied fluid flow.
Many cells in the body, such as red blood cells, and
biotechnological application of lipid vesicles, such as their
use as drug delivery mechanisms, are suspended in non-
stationary fluids. It has been previously demonstrated
that vesicles exposed to shear flow undergo three basic
types of behavior: tank-treading, tumbling, and breath-
ing/trembling, with the viscosity ratio between the inner
and outer fluid playing a crucial role in determining the
behavior [13–15]. In the tank-treading regime a vesicle
aligns at an equilibrium inclination angle with respect
to the shear flow. As the viscosity ratio is increased
the vesicle begins to tumble end-over-end in a rigid like
manner. In an intermediate dynamic, called breathing
or trembling, vesicles have large periodic deformations
while also undergoing a tumbling like dynamic. Recent
theoretical work has demonstrated that the application
of a DC electric field can be used to disrupt this behavior
[16]. Knowledge about the influence of controllable fields
on the dynamics of vesicles in externally driven fluid flows
is crucial to advance vesicle-based technologies.

Over the past decade a number of experimental works
investigating vesicles exposed to electric fields have be-
gun to appear [1–3, 6, 12]. In physical experiments cap-
turing a full POP transition with a single DC pulse is
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not a trivial task [12, 17]. Therefore, attention has also
been directed towards theoretical and numerical methods
that can provide insight into the electrohydrodynamics of
vesicles without many of the difficulties associated with
experiments. In an early theoretical work the evolution
of a spherical vesicle into a prolate ellipsoid in the pres-
ence of AC and DC fields was investigated[18]. A related
work determined the membrane bending rigidity from the
vesicle deformation [19]. In another work oblate and pro-
late deformations were predicted in the presence of an
applied AC electric field [20]. In more recent analytical
studies fluid effects have been taken into account. How-
ever, most of these models are limited to nearly spherical
vesicles [9, 10] or planar membranes [21, 22] and make
the Stokes assumption for the fluid flow. In another two
works large ellipsoidal deformations were considered but
application of the model to address large shape deforma-
tions such as POP were not addressed [8, 23].

In this paper a recently developed model of vesicle elec-
trohydrodynamics is used to carry out a systematic pa-
rameter study of a three-dimensional vesicle in the pres-
ence of DC electric fields and fluid flow. A full Navier-
Stokes solver is employed which is able to capture possi-
ble inertia effects in the vesicle dynamics arising from the
higher Reynolds number of electrohydrodynamic prob-
lems. The effects of fluid and vesicles properties on the
electrohydrodynamic behavior are examined and the crit-
ical electric field strength required to observe a full POP
transition is determined. This includes the effect of mem-
brane capacitance and of the viscosity and conductivity
ratios of the embedded and surrounding fluids for a range
of vesicle sizes. Vesicles in the presence of combined shear
flow and DC electric fields are also investigated and the
critical field strength required to transition a vesicle from
the tumbling to the tank-treading regime is determined
for two vesicle sizes and various viscosity ratios.

II. THE MATHEMATICAL MODEL AND
NUMERICAL METHODS

The model used in this paper employs the computa-
tional approach presented by the authors in Ref. [16].
Consider a three-dimensional vesicle suspended in an
aqueous solution. Deviation from sphericity of the vesicle
shape is measured by a reduced volume parameter, v, de-
fined as the ratio of the vesicle volume, V , to the volume
of a sphere with the same surface area, A. Therefore the
reduced volume can be written as v = 3V/(4πr30) where

r0 =
√
A/4π is chosen as the characteristic length scale

for the given vesicle. The inner and outer fluids may have
differing fluid viscosity and conductivity. The membrane
is assumed to be inextensible with constant enclosed vol-
ume and surface area. Using the Helfrich model [24] the
sum of the membrane forces in three dimensions can be
written as

tmem = −κc(
H3

2
− 2HK +∇2

sH)n+ γHn−∇sγ, (1)

where n is the outward facing normal vector on the in-
terface (into the exterior fluid), γ is the interface tension,
κc is the bending rigidity, H is the total curvature (sum
of principle curvatures) and K is the Gaussian curvature
at the interface. The quantity ∇s =

(
I − nnT

)
∇ is the

surface gradient operator.
For a vesicle in the presence of an external electric field

these forces are balanced by the sum of the hydrodynamic
and electric stresses. The hydrodynamic stress at the
interface is given as

τhd = n · [T hd] = n ·
(
T+
hd − T

−
hd

)
, (2)

where T hd = −pI + µ(∇u+∇Tu) is the bulk hydrody-
namic stress tensor while µ, u and p refer to viscosity,
fluid velocity, and pressure, respectively. The + sign is
used when the interface is approached from the outer
fluid while the − sign represents the interface being ap-
proached from the inner fluid. Square brackets, [ ], indi-
cate the jump of a quantity across the interface.

The electric field stress at the interface is expressed as

τ el = n · [T el] = n ·
(
T+
el − T

−
el

)
, (3)

with the Maxwell tensor, T el, given as T el = ε(E ⊗E −
1
2 (E ·E) I), where E = −∇Φ is the electric field, ε the
permittivity, and Φ is the electric potential field.

By employing a level set method to implicitly track
the interface varying fluid properties at any point in the
domain can be written in a single relation, e.g. µ(x) =
µ−+(µ+−µ−)H(φ(x)) whereH is the Heaviside function
and φ is the level set function. One is therefore able
to write the momentum equations of binary fluids with
varying properties into one single formulation.

Define the viscosity ratio as η = µ−/µ+ and introduce
t0, u0, and E0 as the characteristic time, velocity, and
electric field. Note that the characteristic velocity re-
lates to the characteristic time and length by u0 = r0/t0.
Three important dimensionless quantities can be defined
as Ca = µ+(1 + η)r30/(t0κc), Mn = t0ε

+E2
0/(µ

+(1 + η))
and Re = ρu20t0/µ

+. The quantity Ca indicates the
strength of the bending forces while Mn indicates the
strength of the electric field effects, both with respect to
viscous effect, and Re is the Reynolds number. This al-
lows for the single-fluid formulation of the Navier-Stokes
equation to be written as [16]

ρ
Du

Dt
=−∇p+

1

Re
∇ ·
(
µ
(
∇u+∇Tu

))
+ δ (φ) ‖∇φ‖ (∇sγ − γH∇φ)

+
1

Ca Re
δ(φ)

(
H3

2
− 2KH +∇2

sH

)
∇φ

+
Mn

Re
δ(φ)‖∇φ‖

[
ε

(
E ⊗E − 1

2
(E ·E) I

)]
· n,

(4)

where δ(φ) is the Dirac delta function and all fluid prop-
erties are normalized with respect to the external fluid
values. In addition to the momentum balance equa-
tions, the fluid incompressibility and surface inextensi-
bility constraints are given as ∇ · u = 0 and ∇s · u = 0,
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respectively. Note that in Eq. (4) all quantities are
nondimensionalized and the singular contributions of the
bending, tension, and electric field forces have been trans-
formed into localized body force terms using the level set
and Dirac delta functions.

The leaky-dielectric model is used to obtain the electric
potential in the domain. The electric potential is the
solution to the Laplace equation in each region, ∇2Φ± =
0, with an electric potential jump at the interface due to
the capacitive property of the membrane. This potential
jump is called trans-membrane potential, Vm, and evolves
over time by the non-dimensional relation,

C̄m
∂Vm
∂t

+ u · ∇
(
C̄mVm

)
= n ·E+, (5)

where C̄m = (Cmr0)/(t0s
+) is the non-dimensional mem-

brane capacitance, Cm is the actual capacitance of the
membrane, and s± is the fluid electrical conductivity of
the inner and outer fluid. Note that any trans-membrane
conductance is currently ignored. In this work an im-
mersed interface method is used to take into account the
time-varying trans-membrane potential and the discon-
tinuous fluid conductivities. This is done by deriving
jump conditions for the electric potential and its first
and second derivatives in order to achieve second order
accuracy. For details of the numerical implementation
interested readers are referred to Ref. [25].

For the electrohydrodynamic computations with no
imposed shear flow the characteristic time, t0, is set
to the membrane charging time scale, i.e. t0 = tm.
For a spherical vesicle this time is given as tm =
(r0Cm/s

+) (1/λ+ 1/2), where λ = s−/s+ is the con-
ductivity ratio between the two fluids [7, 26]. Typical
experimental values reported for physical properties are
given as r0 ≈ 20 µm, κc ≈ 10−19 J, s+ ≈ 10−3 S/m,
ε+ = ε− ≈ 10−9 F/m, Cm ≈ 10−2 F/m2, ρ ≈ 103 kg/m3,
µ− = µ+ ≈ 10−3 Pa s and an electric field strength of
E0 = 105 V/m [4, 8, 12]. Using these values the dimen-
sionless parameters in the presence of an external elec-
tric field and in absence of shearing flow are found to be
Re = 0.19, Ca = 3.8× 104, Mn = 18 and C̄m = 0.1.

If the vesicle under the combined effects of electric field
and imposed shear flow is considered the time scale asso-
ciated with the applied shear flow is chosen as the char-
acteristic time, i.e. t0 = tγ̇ = γ̇−10 where γ̇0 ≈ 1 s−1 is
the applied shear rate. In this situation the correspond-
ing dimensionless parameters are Re = 10−3, Ca = 10
and C̄m = 2 × 10−4. Note that when both shear flow
and an electric field are applied only weak electric fields
are considered and thus the dimensionless strength of the
electric field is within the range of Mn = 10.

The moving interface is modeled through the use of
a semi-implicit, gradient-augmented level set jet scheme
which is an extension of the original jet scheme intro-
duced in Ref. [27]. The semi-implicit algorithm is imple-
mented in three steps. The first step is the Lagrangian
advection of the cell centers. In the second step the val-
ues at the cell centers are smoothed using a semi-implicit
scheme. This is done based on introducing a smoothing

operator similar to the idea used in Refs. [28, 29]. In the
third step the center values are projected back to grid
points and the jet of the solution including the gradients
are updated; see Ref. [16] for implementation details.

To tackle the hydrodynamic problem a recently devel-
oped Navier-Stokes projection method is used. Both lo-
cal and global fluid incompressibility and surface inexten-
sibility conditions are satisfied in the numerical method
by splitting the pressure and tension correction terms
into spatially-constant and spatially-varying components
and solving for the system of unknowns through the use
of a Schur complement decomposition strategy. For de-
tails of the numerical approach and the special discretiza-
tion see Ref. [16].

III. RESULTS

In all the present simulations the vesicle surface area
is fixed to 4π and the initial shape is a prolate ellipsoidal
vesicle. The computational domain is a box with the size
of [−4.5, 4.5]3. Periodic boundary conditions are taken in
the x− and z−directions while wall-boundary-conditions
are taken in the y−direction. The electric field is im-
posed by setting an electric potential equal to Φ = −y
on the wall-boundaries. In the case where shear flow is
also applied the velocity at the wall-boundaries is taken
to be u = y. Note that the electric field and fluid velocity
have been normalized by E0 and u0. A Cartesian collo-
cated mesh with uniform grid spacing is used and the
grid spacing is chosen to be h = 0.075 with a time-step
of ∆t = 5×10−4. Further information about the domain
size, time step, and grid spacing choices can be found in
Ref. [16].

First consider the behavior of a vesicle in the absence
of an externally applied shear flow. The vesicle configu-
ration is described by the deformation parameter:

D =
a‖

a⊥
, (6)

where a‖ is the axis length of the vesicle in the direction
parallel to the applied electric field and a⊥ is the length
of the axes perpendicular to the electric field, see Fig. 1.
A prolate shape is given by D > 1 (major axis aligned
with the direction of the electric field) while the oblate
shape has D < 1 (major axis perpendicular to the direc-
tion of the electric field). The deformation parameter,
D, is directly calculated from the interface location as
described by the level set.

The electrical properties of the two fluids, including
the permittivity and electric conductivity, are among the
most important factors in determining the dynamics of
vesicles exposed to external DC electric fields. The ratio
of the electric permittivity to the electric conductivity in
each fluid gives the bulk charge relaxation time expressed
as t±c = ε±/s± [10]. This time represents the rate at
which each fluid can supply charges to the interface which
is different for fluids with different electrical properties.
The ratio of the charge relaxation time of the interior
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fluid to the exterior fluid is given by t−c /t
+
c = ζ/λ where

ζ = ε−/ε+ and λ = s−/s+. This measure is of major im-
portance in vesicle electrohydrodynamics and shows the
competition between the two fluids in conducting charges
towards the membrane. For typical vesicle experiments
it is reasonable to assume ζ = 1 and hence the devia-
tion of the conductivity ratio from one is the factor that
determines different vesicle dynamics.

To illustrate the types of deformations in a full POP
transition and how it compares to an incomplete tran-
sition the shape of a vesicle with two different electric
field strengths, represented by Mn, are presented in Fig.
2 for an applied electric field in the vertical direction.
The bottom row of results are for a strong electric field
with Mn = 28 while a weaker field, Mn = 20, is used
for the results in the top row. In the former case, the
electric forces are strong enough to overcome the other
membrane forces of the vesicle and the viscous forces of
the fluid, which drives the vesicle into the oblate state
where D < 1. However, when the weak electric field
is applied the initially prolate vesicle transitions into a
slightly less prolate profile but is unable to obtain the
full prolate to oblate transition. Note that the final shape
is the same in both cases. This indicates that there ex-
ists a critical electric field strength, Mnc, above which
a full POP transition occurs to a suspended vesicle ex-
posed to an external DC field. As will be shown below,
this critical electric field strength depends on a number
of material parameters including the membrane capaci-
tance, C̄m, and the reduced volume, v, of the vesicle, as
well as the conductivity ratio, λ, and the viscosity ratio,
η, of the two fluids.
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FIG. 2. (Color Online) Simulation results showing the full
POP transition (bottom series) vs. a vesicle that remains in
the prolate regime (top series) for a vertically applied electric
field. The reduced volume in both simulations is v = 0.93
and other simulation parameters are set to Re = 0.19, Ca =
3.8 × 104, C̄m = 0.1, λ = 0.1 and η = 1.0. The colors on
the surface (online version) indicate the distribution of the
trans-membrane potential over time, with darkest blue (lower
pole) indicating a membrane potential of Vm = −1.6 and
darkest red (upper pole) indicating a membrane potential of
Vm = 1.6.

To study the role of the fluid conductivity ratio in POP
dynamics the critical Mason number, Mnc, is determined
for various conductivity ratios. This behavior is illus-
trated in Fig. 3 for a range of different reduced volumes.
The region above each curve shows where the POP tran-
sition occurs while the region below the curves indicates
the Mn values that are not strong enough to force the

vesicle to full POP transition. As the the conductivity
ratio λ increases, larger and larger electric field strengths
are required to induce the POP transition. Theoretically
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FIG. 3. The effect of the conductivity ratio, λ, on the POP
transition. The region above the curve shows where the POP
transition occurs while the region below the curve represents
a vesicle that remains prolate for all the time. The transi-
tion is plotted for four different reduced volumes, v = 0.90,
0.93, 0.95, and 0.98. The two regions are separated by the
critical field strength, Mnc, where the dynamics change from
purely prolate to prolate-oblate-prolate. The nondimensional
parameters are set to Re = 0.19, Ca = 3.8× 104, η = 1.0 and
C̄m = 0.1.

speaking, for a vesicle with λ = 1, i.e. matched con-
ductivity between the two fluids, the Mnc approaches
infinity. In fact, as will be demonstrated in Sec. III it
is not possible for a vesicle with match conductivity to
achieve a POP transition.

The membrane capacitance is another important fac-
tor in determining the dynamics of the vesicle in a DC
field. In particular, the capacitance appears as a pri-
mary parameter in the time scale associated with the
membrane charging given, tm. The larger the capac-
itance the larger duration of time electric field forces
can act on the membrane. In the context of the POP
transition an interesting comparison can be made be-
tween the membrane charging time scale and the elec-
trohydrodynamic time scale of the applied field given
by tehd = µ+(1 + η)/(ε+E2

0). The electrohydrodynamic
time scale largely depends on the electric field strength:
a strong electric field is associated with a shorter elec-
trohydrodynamic time. In theory, for a nearly spheri-
cal vesicle a full POP transition will occur if tehd < tm
[12]. In such situations electric field forces have suffi-
cient time to induce a full POP deformation before the
trans-membrane potential is saturated at time tm. As
the capacitance increases the charging time of the mem-
brane capacitance, tm, increases as well which implies
that even with a weaker electric field, which results in a
larger tehd, a full POP transition is still possible as long
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as tehd is sufficiently smaller than tm.
Note that the membrane capacitance affects the

amount of deformation as well. An increase of tm due
to larger capacitance leads to larger deformations as the
electric forces only influence the dynamics of the mem-
brane in proportion to the time that they are allowed to
act. Since the capacitance is a major factor in determin-
ing this time the implication is that the deformations are
smaller for smaller dimensionless capacitance, C̄m, and
deformations grow larger as C̄m does. This manifests
the importance of the membrane capacitance in the type
and magnitude of deformations.

Figure 4 shows how changes in the membrane capac-
itance leads to a vastly different critical field strengths,
Mnc, needed to observe a full POP transition. This be-
havior is consistent across all investigated vesicle reduced
volumes. For the four reduced volumes investigated here
the critical field strength scales as the inverse of the mem-
brane capacitance, Mnc ∝ C̄−1m . This relationship will
be further discussed in Sec. IV.
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FIG. 4. The effect of the membrane capacitance, C̄m, on the
POP transition. The region above the curve shows where the
POP transition occurs while the region below the curve repre-
sents a vesicle that remains prolate for all the time. The tran-
sition is plotted for four different reduced volumes, v = 0.90,
0.93, 0.95, and 0.98. The two regions are separated by the
critical field strength, Mnc, where the dynamics change from
purely prolate to prolate-oblate-prolate. The nondimensional
parameters are set to Re = 0.19, Ca = 3.8× 104, η = 1.0 and
λ = 0.1.

The effect of the viscosity ratio, η, on the dynamics of
the vesicle is shown in Fig. 5 for four different reduced
volumes. Numerical experiments demonstrate that as η
increases a stronger electric field is needed to overcome
the resisting hydrodynamic forces of the fluids. A larger
viscosity ratio is associated with a larger viscous damping
force which in turn leads to slower dynamics and thus a
stronger electric field is required to induce the full POP
transition. The critical electric field strength appears
to be linearly related to the viscosity, Mnc ∝ η, with

the proportionality constant depending on the vesicle size
(reduced volume).

One consequence of these results is that it appears that
given the same electrical properties, smaller reduced vol-
umes require a stronger field to achieve a full POP tran-
sition. This is most likely dependent on the initial shape,
as smaller reduced volumes begin as more prolate (more
stretched out) vesicles. This means that as the reduced
volume decreases larger deformations are required to ob-
tain the prolate-oblate transition. Future work will inves-
tigate this, as it is possible to have many different initial
vesicle shape conditions for the same reduced volume.
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FIG. 5. The viscosity ratio effect on the vesicle behavior tran-
sition from the prolate regime (region below the curve) to
POP regime (region above the curve). The two regions are
separated by the critical field strength, Mnc where the dy-
namics changes from one to another. This transition is plotted
for four different reduced volumes, v = 0.90, 0.93, 0.95, and
0.98. The non-dimensional parameters are set to Re = 0.19,
Ca = 3.8× 104, C̄m = 0.1 and λ = 0.1.

Next, the combined effects of an electric field and shear
flow are considered. In this case the strength of the ex-
ternal electric field is increased from zero to investigate
the changes in the dynamics of the vesicle. Note that
here the shear flow time scale is used as the characteristic
time scale. With typical experimental values this results
in non-dimensional parameters of Re = 10−3, Ca = 10
and C̄m = 2×10−4. For typical situations the shear flow
time scale is approximately tγ̇ = 1 s while the membrane
charging time scale is approximately 10−3 s [16]. There-
fore, in this situation the trans-membrane potential is
taken to respond instantly to changes in the membrane
configuration and is thus at a pseudo-steady-state.

The effect of the electric field is to align the vesicle
vertically with the direction of the field. For a vesicle
in the tumbling regime an increase in Mn will result in
a slower tumbling period. A close observation of vesicle
dynamics under the combination of shear and an external
weak electric field reveals that the periodic behavior in
this situation is more akin to vacillating-breathing mo-
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tion where the vesicle does not follow a rigid-body like
rotation but instead the poles retract and additional de-
formations are induced in the shear plane. If the field
is strong enough the electric field forces acting against
the shearing forces of the fluid can eventually bring the
vesicle into an equilibrium inclination angle.
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FIG. 6. (Color Online) Dynamics of a vesicle under the com-
bined effects of shearing flow and an applied electric field at
various times. The reduced volume is v = 0.93 and a viscos-
ity ratio of η = 10 is used. Other simulation parameters are
Re = 10−3, Ca = 10 and C̄m = 2 × 10−4. From left to right
the snapshots are given at t=0.0, 2.5, 6.0, 7.0, 8.0, 10.0, 15.0,
17.0. The top row shows the tumbling vesicle in the absence of
external electric field, Mn = 0. The middle row corresponds
to a vesicle with a vacillating-breathing like motion under an
electric field strength of Mn = 3. The bottom row shows a
tank-treading vesicle under an strong electric field strength of
Mn = 15.

These different dynamic regimes are shown in Fig.
6. In this example the vesicle has a reduced volume of
v = 0.93 and the viscosity ratio is η = 10. This ratio
is larger than the critical viscosity ratio needed to ob-
tain tumbling in shear flow when in the absence of an
electric field. The top row in the figure shows the dy-
namics over time when the electric field is not present
in the simulation, Mn = 0. As would be expected the
vesicle tumbles with the profile of the vesicle remaining
nearly constant and rotating periodically in time. The
vacillating-breathing like motion is seen for the results
shown in the middle row. In this simulation a weak elec-
tric field of Mn = 3 is used. Unlike the tumbling motion,
in this regime the profile of the vesicle undergoes changes
over time as it periodically rotates about the vorticity
axis. Finally the bottom row demonstrates the vesicle
dynamics of the same vesicle under an electric field with
a stronger strength, Mn = 15. The vesicle reaches an
equilibrium, tank-treading inclination angle and stays in
that position permanently.

The critical Mason number at which the transition
from tumbling like motion (either tumbling or vacillating-
breathing) to tank-treading occurs is denoted as Mnγ .
The required Mnγ for two different reduced volumes over
a range of viscosity ratios is plotted in Fig. 7. As is
expected, an increase in the viscosity ratio required a
stronger electric field to initiate the tumbling to tank-
treading transition.
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FIG. 7. Tumbling like to tank-treading transition for vesicles
with two different reduced volumes, v = 0.90 and v = 0.93,
under the combined effect of imposed shear flow and weak
DC electric fields. The non-dimensional parameters are set
to Re = 10−3, Ca = 10, χ = 1, C̄m = 2 × 10−4 and λ =
0.1. Membranes with Mn 6= 0 have a pseudo-steady-state
trans-membrane potential. The region above the curve is the
tank-treading regime while the region below the curve shows
the tumbling like regime. Increasing the field strength from
zero gives rise to a force which counter-acts the motion of a
normally tumbling vesicle.

IV. DISCUSSION

To better understand why a vesicle will undergo a
prolate-oblate-prolate transition in the presence of an
electric field let us consider the electric field forces acting
on the membrane. For simplicity and to match the com-
putational results assume that the electric permittivity
ratio is one, ε+ = ε−. Next, consider only the normal
electric field forces on the interface. Tangential electric
field forces will drag the fluid into motion but do not
induced changes in the vesicle membrane.

It is straightforward to write the normal electric force
in terms of the normal and tangential components of the
electric field,

τ el ·n =
ε+

2

(
(E+

n
2−E−n

2
)− (E+

t
2

+E+
b

2−E−t
2−E−b

2
)
)
,

(7)
where Et and Eb are the tangential and En is the normal
electric field at that point. Note that the notation here

is E+
n

2
= (E+

n )
2

and E−n
2

= (E−n )
2
.

This clearly shows both normal and tangential elec-
tric field components contribution to membrane deforma-
tion. To further simplify the discussion, consider the two
points A and B located at the top pole and the equator
of the vesicle, respectively, see Fig. 8. Due to the ax-
ial symmetry there are no tangential components of the
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electric field at point A and thus the normal electric field
force at that point is simplified to

τAel · n =
ε+

2

(
E+
n

2 − E−n
2)
, (8)

It should be noted that in the simulations presented in
this paper no symmetry is imposed other than the initial
condition.

One of the conditions on the interface is the continuity
of the Ohmic current J = sE in the normal direction,
(J+ − J−) · n = s+E+

n − s−E−n = 0. It is therefore
possible to write E+

n = λE−n and thus at point A the
normal electric force becomes

τAel · n =
ε+(λ− 1)

2
E−n

2
. (9)

At the equator (point B) the direction of the electric
field aligns with the y-direction, and thus there is no
normal electric field component. Therefore the force at
point B is written as

τBel · n =
−ε+

2

(
E+
t

2
+ E+

b

2 − E−t
2 − E−b

2)
. (10)
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Prolate to oblate transition Oblate to prolate transition
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FIG. 8. (Color Online) A sketch of the electric field, induced
charges and the dominant electric forces when an initially
prolate vesicle is transitioning to the oblate shape (left figure)
and when the oblate vesicle is evolving back to the equilibrium
prolate transition (right figure).

After the electric field is applied charges from both
the enclosed and surrounding fluids start migrating to-
wards the interface. However, due to the differing electric
conductivities the charges accumulate at differing rates.
This leads to an apparent charge,

Q = ε+(E+
n − E−n ), (11)

assuming matching permittivity.
Let the electric potential be activated at time 0. The

electric fields inside and outside the vesicle are initially
matched and non-zero: E+

n = E−n 6= 0, E+
t = E−t 6= 0,

and E+
b = E−b 6= 0. According to Eq. (10) the force along

the equator is zero. The direction of the force at the vesi-
cle poles depends on the conductivity ratio. When λ < 1
the normal force is in the −n direction, which is a verti-
cally compressive force. On the other hand, when λ > 1
the force is extensional and thus the POP transition can
not occur. This demonstrates the necessary condition of
λ < 1 when the fluid permittivities are matched.

Now consider what occurs when t→∞. Given enough
time charges are able to accumulate on both sides of the
interface. Therefore eventually Q = 0 and the electric
field inside the vesicle becomes zero, E− = 0 [12]. Ac-
cordingly, for matched permittivity E−n = E+

n = 0 while
E−t = 0 and E−b = 0. Note that in this case E+

t 6= 0 and

E+
b 6= 0. From Eq. (8) this results in a zero normal force

at point A while along the equator, point B, the normal
force reduces to a purely compressive force. Notice that
this behavior is independent of the fluid electrical con-
ductivities, indicating that the final shape will always be
a prolate one.

Now, a rational behind the influence of the three
main parameters investigated here, membrane capaci-
tance, fluid conductivity ratio, and fluid viscosity ratio,
on the critical electric field strength needed to obtain a
POP transition is presented. First examine the contribu-
tion of the membrane capacitance. The membrane capac-
itance influences how fast the trans-membrane potential
reaches a steady state value, Eq. (5). The time it takes
for the trans-membrane potential to reach steady state is
inversely proportional to C̄m. As the amount of time that
the electric forces can act on the membrane is directly re-
lated to the membrane-charging time, a decrease in tm
results in a system which does not have enough time to
respond and obtain a full POP transition. Therefore the
Mason number must increase at a rate proportional to
C̄−1m to ensure that the POP transition occurs.

Next consider the viscosity ratio, η. It was stated in
Sec. III that for a POP transition to occur the electro-
hydrodynamic time, tehd, needs to be smaller than the
membrane charging time, tm. Recall that the electrohy-
drodynamic time scale increases linearly with an increase
in the viscosity ratio, tehd ∝ 1 + η and that the mem-
brane charging time scale only depends on the particular
materials of the membrane, not the applied electric field
strength. Therefore, to maintain the relation tehd < tm
the electrohydrodynamic time scale needs to remain con-
stant. This means that the square of the electric field,
E2

0 , must increase linearly to counter-act the increase in
1+η. As Mn ∝ E2

0 , it is valid to state that Mnc ∝ 1+η.

The conductivity ratio presents a more complicated
picture. Based on the previous discussion only λ < 1 will
result in a POP transition and thus all cases with λ ≥ 1
are ignored. Examining tm it is clear that an increase
in the conductivity ratio will result in a decrease of the
membrane-charging time. This is due to the fact that
as λ → 1 the fluids are able to supply charges to the
interface at the same rate and thus a charge mismatch
does not occur. Following the discussion regarding the
viscosity ratio, a corresponding decrease in tehd would be
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required for a POP transition to occur. This is achieved
by increasing the electric field strength and therefore in-
creasing Mn. Analysis of the equations results in a scal-
ing of Mnc ∝ (2λ)/(2 + λ), which can not account for
the rapid increase of Mnc as λ approaches 1, Fig. 3. It is
thus necessary to turn to the forces acting on the mem-
brane and how they relate to λ, Eq. (9). Clearly, as the
conductivity ratio approaches 1 the forces acting on the
membrane asymptotically approach zero. It is therefore
expected that rapid growth of the electric field would be
needed to obtain a full POP transition. It is suspected
that at small conductivity ratios the increase in Mnc is
dominated by (2λ)/(2 + λ) while as λ → 1 the growth
seems to be dominated by (1 − λ)−1. While numerical
verification of this exponent is not presented here a jus-
tification can be obtained by examining Eq. (9) and the
definition of the normalized electric field strength, Mn.
At t = 0 both the force and Mn scale as E2

0 , meaning
that an increase in the required force at point A corre-
sponds to a similar increase in Mn. The required force
needed to obtain a POP transition should not depend on
the fluid conductivity ratio, but instead should depend
on quantities such as the vesicle shape and the fluid vis-
cosity ratio. Thus, to maintain the force needed to obtain
POP the quantity (λ−1)E2

0 ∝ (λ−1)Mnc should remain
constant. It follows that Mnc ∝ (1−λ)−1, where the sign
has been changed to have a positive value of Mnc.

Finally, consider the case of both shear flow and an ap-
plied electric field. It has been previously observed that
as the reduced volume of a vesicle decreases the viscos-
ity ratio required to obtain a tank-treading to tumbling
transition also decreases [15, 30]. Another way to inter-
pret this is that for a given viscosity ratio a vesicle with a
small reduced volume is “further” in the tumbling regime
than a vesicle with a large reduced volume. Similarly, for
a given reduced volume a vesicle with a higher viscosity
ratio is also “further” in the tumbling regime than a low
viscosity ratio vesicle.

As demonstrated above a fully-charged vesicle always
wants to align with the direction of an applied elec-
tric field. When the electric field is applied in the di-
rection perpendicular to the shear flow direction this
alignment counters the shear forces which account for
the tumbling motion. Based on the previous discus-
sion it is expected that the further a vesicle is from the
tank-treading/tumbling transition, the higher the elec-
tric field alignment force needs to be. This type of be-
havior is indeed observed, with an increase in the electric
field strength needed to obtain a tumbling/tank-treading
transition when either the viscosity ratio increases or the
reduced volume decreases. Unfortunately, due to the
large deformations and lack of symmetry when a vesi-
cle undergoes tumbling it is not possible to formulate
a simple scaling relationship as was done for the POP
transition.

V. CONCLUDING REMARKS

In this paper a parameter space study of 3D vesicles ex-
posed to DC electric fields was presented. In particular,
the focus of this work was on the effects of different fluid
and membrane parameters on the transition between pro-
late and oblate shapes for a suspended vesicle, in addition
to the transition from the tumbling to the tank-treading
regime of a vesicle under the combined effects of a DC
electric field and shear flow.

The electric field strength, indicated by the critical Ma-
son number, Mnc, required for a POP transition was de-
termined. A decrease in the reduced volume of the vesicle
was always accompanied with an increase in the critical
Mason number. While an increase in the viscosity ratio
between the inner and outer fluids brought about an al-
most linear increase of Mnc, the change in the dynamics
of the vesicle by varying the conductivity ratio between
the two fluids and the membrane capacitance of the vesi-
cle was found to be more dramatic and substantial.

The results of the vesicle behavior under the combined
effects of shear flow and weak DC electric fields revealed
the remarkable influence of the electric field in changing
the standard behaviors of tank-treading and tumbling
vesicles. Investigations showed that the application of
the electric field generates a force which counter-acts the
motion of a tumbling vesicle. If the electric field is strong
enough the tumbling vesicle stops the expected end-over-
end tumbling behavior and undergoes a tank-treading
motion. The critical electric field strength, Mnγ , for
this transition to occur was determined for vesicles with
two different reduced volumes over a range of different
viscosity ratios.

The results and analysis presented here assumed
matched fluid permittivities and only considered a single
initial vesicle shape. It is expected that different initial
vesicle shapes could result in differing dynamics while
the equilibrium shape would remain the same as pre-
sented here. Additionally, a relaxation of the matched
permittivity condition could result in behavior not ob-
served here. Furthermore, the addition of salt or metal-
lic nanoparticles can dramatically change the dynamics,
even for vesicles with conductivity ratios larger than one
[4, 31]. Future work will explore how the initial vesicle
shape, variations in electrical permittivity, and the inclu-
sion of salts or nanoparticles influence the dynamics of
vesicles exposed to DC electric fields.
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