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Hyungwon Kim,1, 2 Mari Carmen Bañuls,3 J. Ignacio Cirac,3 Matthew B. Hastings,4, 5 and David A. Huse1

1Physics Department, Princeton University, Princeton, NJ 08544, USA
2Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
4Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

5Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA

We numerically construct slowly relaxing local operators in a nonintegrable spin-1/2 chain. Re-
stricting the support of the operator to M consecutive spins along the chain, we exhaustively search
for the operator that minimizes the Frobenius norm of the commutator with the Hamiltonian. We
first show that the Frobenius norm bounds the time scale of relaxation of the operator at high
temperatures. We find operators with significantly slower relaxation than the slowest simple “hy-
drodynamic” mode due to energy diffusion. Then, we examine some properties of the nontrivial
slow operators. Using both exhaustive search and tensor network techniques, we find similar slowly
relaxing operators for a Floquet spin chain; this system is hydrodynamically “trivial”, with no con-
servation laws restricting their dynamics. We argue that such slow relaxation may be a generic
feature following from locality and unitarity.

PACS numbers: 05.30.-d, 05.70.Ln

I. INTRODUCTION

It has been proposed that an isolated quantum many-
body system with a few local conservation laws can still
thermalize, in the sense that local observables approach
their thermal equilibrium values [1–3] set by conserved
quantities. Quantum many-body systems with exten-
sive number of local conserved quantities (integrable sys-
tems) still relax to stationary states, which are described
by the diagonal ensemble [4]. These stationary states
of integrable systems can sometimes be equivalent to a
generalized Gibbs ensemble [5–8] but not in general [9–
11]. See Ref. 12 for a review. Experimental studies
have increased the interest in these questions [13, 14].
One proposed theoretical explanation of thermalization
of a generic quantum many-body system is the eigenstate
thermalization hypothesis (ETH) [1–3, 15–21], which ar-
gues that many-body eigenstates of thermalizing noninte-
grable Hamiltonians have local reduced density operators
that are thermal; then, at long times, dephasing between
different energy eigenstates brings small subsystems to
thermal equilibrium.

However, not all systems show this local thermaliza-
tion in an accessible time scale [22]. One possibility is
that the ETH is false for the system of Ref. 22 but it
seems unlikely [20]; another possibility is that the time
scales required to thermalize locally are too long to be
numerically accessible. A question is: how can such slow
thermalization arise, when a nonintegrable system like
the one studied has no conserved local quantities other
than energy?

In this work, we illustrate how such slow relaxation can
emerge by showing that indeed slow, almost-conserved lo-
cal operators are present in many nonintegrable systems
(note that Ref. 22 studied slowly thermalizing initial
states). We construct these operators numerically, by ex-
plicitly searching for operators with a small commutator

with the Hamiltonian. For numerical reasons discussed
below, much of our work focuses on the Frobenius norm
rather than the operator norm to measure the commuta-
tor, but we also discuss the operator norm and make a
connection to Ref. 22.

One such operator with small commutator is the one
that results from the thermal diffusion due to a spatially-
smooth inhomogeneity in the energy density. This oper-
ator and its commutator with the Hamiltonian match
the expectations from diffusive hydrodynamics, with the
square of the Frobenius norm of the commutator decreas-
ing as ∼ M−2 for the slowest such operator on a sub-
region containing M spins. However, we show numeri-
cally that these are not the operators with the smallest
commutator. We construct operators whose commuta-
tor with the Hamiltonian, for the accessible system sizes
of M ∼ 100, is quantitatively and substantially smaller
(slower) than that of the simple diffusive mode, and ap-
pears to decrease with a larger power of length than the
diffusive ∼ M−2. Thus we find “unexpected almost-
conserved quantities” for these systems.

To further understand the presence of such approxi-
mately conserved quantities we turn to a Floquet spin
chain where energy is not conserved. We also find slowly
relaxing operators in this Floquet system. In fact, we ar-
gue that some slowly relaxing operators must be present
in any Floquet system or more generally in any quantum
circuit. However, these slowly relaxing operators are in a
sense morally similar to the slowly relaxing operator in a
Hamiltonian system describing energy fluctuations: these
slow operators are present in any such system, so long as
the unitary dynamics is local. They themselves do not
inhibit relaxation of the local density matrices “as fast as
possible” i.e., on a time scale proportional to the length
of the interval; (see Ref. 23 for a proof that this happens
for random local circuits). Thus, the real surprise is our
numerical observation that there are other operators in
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some nonintegrable Hamiltonian systems (and possibly
in some quantum circuits) with even slower relaxation.

The rest of this work is organized as follows. In section
II, we study a model Hamiltonian system, where energy
conservation is the only local conservation law. We ex-
plain how to find the local operator of lengthM that gives
the smallest Frobenius norm of the commutator with the
Hamiltonian and we connect such quantity to thermal-
ization time of local operators. Then, we show how the
Frobenius norm decreases as we increase the length M
of the operator. By comparing with the simple diffusive
mode, we establish that there exist some local operators
that do thermalize slower than diffusion. Next, we study
the operator norm of the commutator with the Hamilto-
nian to make a more natural connection to the previous
work. In section III, we study systems without any local
conservation law. We study a Floquet system, which is
a natural counterpart to the Hamiltonian system with-
out energy conservation, and do the same analysis to find
slow operators. We find slowly relaxing operators, whose
thermalization time is bounded below by 1/M . Then, we
show that this phenomenon is generally true by finding
the same scaling in random quantum circuits. In section
IV, we summarize what we have found.

II. HAMILTONIAN SYSTEM: PRESENCE OF
LOCAL CONSERVATION LAW

A. Model

As a nonintegrable model Hamiltonian, we choose a
spin-1/2 Ising chain with both longitudinal and trans-
verse fields:

H =

∞∑
i=−∞

gσxi + hσzi + σzi σ
z
i+1 , (1)

where σxi and σzi are Pauli matrices of the spin at
site i. Ref. 22 has found a nonthermalizing state for
this model within the accessible time scale. We choose
(g, h) = (0.905, 0.809), at which this model is known to
be robustly nonintegrable even for a relatively small sys-
tem size [24]. See appendix for another set of parameters
and different model Hamiltonians.

B. Method

We consider local operators supported on a finite inter-
val of M consecutive sites. (We have also studied trans-
lationally invariant operators [25].) Since every traceless

Hermitian operator ÂM can be expressed by a linear com-
bination of 4M − 1 traceless Hermitian basis operators,
we write

ÂM =

4M−1∑
`=1

c`Ô(M,`) , (2)

where c` is a real number and Ô(M,`) is the correspond-

ing basis operator. We choose Ô(M,`) to be mutually
orthogonal using the Hilbert-Schmidt inner product so
that tr(Ô(M,`)Ô(M,k)) = 0 for ` 6= k.

The dynamics of an operator comes from the commu-
tator with the Hamiltonian. Therefore, we want to min-
imize the magnitude of [ÂM , H] to construct a slowly
relaxing local operator of length M . We use the square
of the Frobenius norm, tr(ÔÔ†), to quantify the commu-
tator since it gives a quadratic form (Eq. (3)) of which
we can readily find the minimum. Although the operator
norm generally controls the dynamics of arbitrary states
at arbitrary time, its numerical minimization is very chal-
lenging. As we show below, the (square of) Frobenius
norm can actually bound the thermalization time scale
at infinite temperature, where we expect the dynamics to
be fastest. Furthermore, we can get the upper bound of
the operator norm by using the operators that minimize
the Frobenius norm. The behavior of upper bounds is
consistent with the results we obtained using the Frobe-
nius norm.

We minimize the following:

f(ÂM ) =
tr([ÂM,H][ÂM,H]†)

tr(ÂMÂ†M)

=
∑
`,k

c`cktr([Ô(M,`),H][Ô(M,k),H]†)∑
j c

2
j tr((Ô(M,j))2)

. (3)

We define λ(M) to be the minimum of f(ÂM ): λ(M) =

min{f(ÂM )}, and we call the corresponding ÂM the
slowest operator acting on M sites. Since the Hamilto-
nian has time-reversal symmetry, we can consider even
and odd operators under time-reversal separately. It
turns out that for M ≥ 4, the minimizer of f(ÂM ) al-
ways comes from the even sector. Up to M = 11, we
obtain exact results and for larger M we minimize Eq.
(3) using a matrix product operator (MPO) ansatz [26]

for ÂM . For M ≤ 28, we find the values of λ(M) have
converged within 1% error.

First, let’s understand the physical meaning of f(ÂM ).

We consider an initial mixed state ρ = I/Z + εÂM ,
where Z is the normalization factor, I is the identity
and ε is chosen to make ρ nonnegative. ÂM serves as a
small inhomogeneity in the infinite temperature ensem-
ble and is assumed to have unit Frobenius norm. Let’s
define aM (t) as the expectation value of ÂM/ε at time t:

aM (t) = (1/ε)tr(ρÂM (t)) = tr(ÂM ÂM (t)), where ÂM (t)
is in the Heisenberg picture. [Note that aM (0) = 1.]
Using Cauchy-Schwarz inequality, we have the following:

∣∣∣∣d2aM (t)

dt2

∣∣∣∣ = |tr([ÂM (t), H][ÂM , H])| ≤ f(ÂM ) , (4)

Then, we can bound the distance between aM (t) and
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aM (0).

|aM (t)− aM (0)| =
∣∣∣∣∫ t

0

dτ

∫ τ

0

dτ ′
d2aM (τ ′)

dτ ′2

∣∣∣∣ ≤ f(ÂM )t2

2
.

(5)

In thermodynamic limit and finite M , the thermal ex-
pectation value is athM = tr(ÂM) = 0. Therefore, the
following inequality holds:

|aM (t)− athM | ≥ |aM (0)− athM | − |aM (0)− aM (t)|

≥ 1− f(ÂM )t2

2
. (6)

Consequently, f(ÂM ) bounds the thermalization time

scale τ of ÂM from below by τ ≥ f(ÂM )−1/2, and small

λ(M) implies a long thermalization time of ÂM . In ad-
dition, since λ(M) is the minimum of Eq. (4) at t = 0,

the optimal ÂM is the slowest operator at early time.

C. Results and Comparison with energy diffusion

Figure 1 (a) plots λ(M). It is clear that λ(M) de-
creases with M as it should. The data can be well-fitted
by two functional forms; power-law decay with exponent
2.62 and a logarithmic correction to 1/M2, which is, more
precisely, a fit to a/(M ln(bM))2, with a and b as fitting
parameters. In either case, the rate of decrease with M
is faster than 1/M2, which is the scaling of the slowest
diffusive energy mode as we show now.

A slowly relaxing energy mode can be constructed by
considering an energy modulation of wavelength 2M :

ÊM =
∑
i

cM (i)hi =

M/2∑
i=−M/2

cos

(
iπ

M

)
(gσxi + hσzi )

+

M/2−1∑
i=−M/2

cos

(
(i+ 1/2)π

M

)
σzi σ

z
i+1 ,

(7)

where hi is the energy density operator (gσxi + hσzi +
1/2(σzi−1σ

z
i + σzi σ

z
i+1)) and cM (i) is the cosine modula-

tion function restricted to lie in [−M/2,M/2]. Since the
energy is conserved, we can use the continuity equation:
dhi/dt = −∇·ji, where ji is the energy current density at
site i: ji = g(σyi σ

z
i+1−σ

y
i+1σ

z
i ). Combining this with the

Heisenberg equation of motion, we have the following.

i[H, ÊM ] =
d

dt
ÊM = −

∑
i

cM (i)∂i · ji (8)

=
∑
i

ji∂icM (i) ' − π

M

∑
i

sM (i)hi, (9)

where ∂i is the discrete spatial derivative and sM (i) is
the sine modulation. Therefore,

tr([H, ÊM ][H, ÊM ]†)

tr(ÊM Ê
†
M )

∼ 1/M2 . (10)

FIG. 1. (color online) (a) Decay of λ(M), minimum of Eq.
(3), as a function of M with power-law and logarithmic cor-
rection fits. Inset: λ(M) vs. M for best MPO results (green
dots). It can also be well fitted by both power-law with al-
most the same exponent (-2.62 for exact and -2.55 for MPO)
and logarithmic correction. (b) λE(M), the minimum of Eq.
(3) with only terms in the Hamiltonian, vs. M . M−2 de-
cay is consistent with thermal diffusion. Inset: Structure of
the optimal operator for M = 11. X = σx

` , Z = σz
` , and

ZZ = σz
`σ

z
`+1. We locate the σz

`σ
z
i+1 term at ` + 1/2. Coef-

ficients are normalized as
∑

` c
2
` = 1. It shows a clear sinu-

soidal energy modulation with the expected wavelength 2M ,
and with the relative ratios equal to those in the Hamiltonian.

Here, we adapt a more conservative approach. We do
the same numerical search as before but restrict the op-
erator space within the terms in the Hamiltonian so we
only consider 3M − 1 basis operators instead of 4M − 1.
Figure 1 (b) plots λE(M), the minimum of f(ÂM ) in this
restricted space. As expected, we have almost perfect
1/M2 scaling. Since there are only a few basis operators,
we can easily look at the details of the structure of the
optimal operator. The inset of Figure 1 (b) is the struc-
ture of the optimal operator in terms of the local terms
in Hamiltonian. It is indeed of the form of Eq. (7) and
thus the energy modulation of the longest wavelength is
the slowest energy mode. Note also the fact that apart
from displaying a different scaling, λ(M) is much smaller
than λE(M).
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This hydrodynamic description, however, only consid-
ers operators that are linear in energy density operators.
Combinations of higher power of energy density terms,
such as hihj , hihjhk, . . ., may yield the slowest operator
given by exhaustive search. Although we are unable to
obtain the exact slowest operators, we find a deviation of
the scaling of λ(M) from M−2 by adding nonlinear en-
ergy density operators. Furthermore, most of the weight
(measured by Hilbert-Schmidt norm) of the slowest op-
erator turns out to be energy density modulation. In
actuality, we can obtain slow operators (not slowest) by
“dressing” the modulated form. See Appendix for de-
tails.

D. Operator Norm

The operator norm is mathematically more convenient
for studies of time scale since we can directly interpret
the relaxation of the operator in terms of Lieb-Robinson
bounds [27, 28]. Optimizing the operator norm numer-
ically is, however, very challenging. Therefore, we have
minimized the (square of) Frobenius norm. Neverthe-
less, once we have an operator, it is easy to compute the
operator norm of the commutator with the Hamiltonian.

Our first task is to relate the operator norm with the
thermalization time scale. Let us assume that ÂM satis-
fies the following:

||[ÂM , H]|| ≤ χ(M), (11)

where H is the Hamiltonian and || . . . || means the opera-
tor norm of the argument and χ(M) is some nonnegative
valued function. Then, using the Heisenberg equation of
motion, we have∣∣∣∣∣∣∣∣ ddtÂM (t)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣e−iHt( d

dt
ÂM (t)

)
eiHt

∣∣∣∣∣∣∣∣
= ||[ÂM (t = 0), H]|| ≤ χ(M) (12)

||ÂM (t)− ÂM (0)|| =
∣∣∣∣∣∣∣∣ ∫ t

0

(
d

dτ
ÂM (τ)

)
dτ

∣∣∣∣∣∣∣∣
≤
∫ t

0

∣∣∣∣ d
dτ
ÂM (τ)

∣∣∣∣dτ ≤ χ(M)t ,

(13)

where we have used the fact that e−iHt is a norm-
preserving unitary operator. This inequality bounds the
distance of an operator evolving under Hamiltonian dy-
namics from its initial configuration. Note that we have
previously used the square of the Frobenius norm to
bound the distance from the thermal value, where we
find the bound of the thermalization time is given by√
λ(M).
Next, we consider an initial state ρ such that

|〈ÂM 〉0 − 〈ÂM 〉β | = γ(M) , (14)

where 〈. . .〉0 is the expectation value of the initial condi-
tion, 〈. . .〉β is the thermal expectation value and γ(M) is

5 6 7 8 9 10 11
0.1

0.2

0.4

 

 

M

√

λ
(M

)

|[ÂM ,H]|F
|ÂM |F

||[ÂM ,H]||

||ÂM ||

FIG. 2. (color online) Normalized magnitude of [ÂM , H] mea-
sured by the Frobenius norm (| . . . |F ) and the operator norm

(|| . . . ||) in log-linear plot. ÂM is obtained by minimizing the
Frobenius norm of the commutator with Hamiltonian as is in
the main text. Two norms give quantitatively similar values.

some nonnegative valued function. Now we can estimate
the distance between the thermal expectation value and
the expectation value at time t (for t ≤ γ(M)/χ(M)):

|〈ÂM 〉t − 〈ÂM 〉β |

≥
∣∣∣|〈ÂM 〉0 − 〈ÂM 〉β | − |〈ÂM 〉t − 〈ÂM 〉0|∣∣∣

≥ γ(M)− tχ(M) (15)

where 〈. . .〉t is the expectation value at time t. There-

fore, if we have a sequence of M -body operators {ÂM}
for which the operator norm of the commutator with
the Hamiltonian decays fast with M and an initial state
which does not allow a fast decrease of γ(M), the time

scale of thermalization of ÂM is

τM ≥
γ(M)

χ(M)
. (16)

In particular, if χ(M) decreases faster than a power law
with M , thermalization may take longer than polynomial
time in contrast to the case of diffusion.

Figure 2 plots the decay of the Frobenius norm and the
operator norm of [ÂM , H], where ÂM is obtained in the
main text by minimizing the Frobenius norm. It shows
that the value of λ measured by the operator norm is
numerically similar to that of the Frobenius norm. It
appears that the operator norms computed for these op-
erators exhibit exponential-like decrease with M but the
range of M is not enough to draw a conclusion.

1. Initial State and Thermalization Time Scale

Ref. 22 reports nonthermalization of spin polarized
initial state along x direction and weak thermalization
of spin polarized initial state along z direction. Hav-
ing slowest operators from the Frobenius norm, we study
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FIG. 3. (color online) Distance between expectation values of
initial spin-polarized states and corresponding thermal states.
For the x-polarized state (blue square), the distance does not

decrease as M increases. ÂM is obtained by minimizing the
Frobenius norm of the commutator with Hamiltonian. Label
means that direction along which the initial state is polarized.

their expectation values with respect to spin-polarized
states. Figure 3 plots the distance between the expec-
tation values of spin-polarized initial states and corre-
sponding thermal states. The operator ÂM is obtained
by minimizing the Frobenius norm as we explained be-
fore. It is noteworthy that the distance does not decrease
for x-polarized state. From Eq.(16) and Figs. 2 and 3,
we see that thermalization time scale increases fast for
x-polarized state, which is consistent with Ref.22. How-
ever, it needs some care to make direct connection to
Ref. 22 since our operator is not translation invariant
and we do not minimize the operator norm. We leave
this problem for later studies.

III. SYSTEMS WITHOUT LOCAL
CONSERVATION LAW

A. Floquet system

Refs. 29–31 test whether the energy conservation is
important in the slow relaxation of local operators. We
adopt the same Floquet operator used in Ref. 20:

UF = exp(−iHxτ) exp(−iHzτ) , (17)

where Hx is the σx part (
∑
i gσ

x
i ) and Hz is the σz part

(
∑
i hσ

z
i + σzi σ

z
i+1) of the Hamiltonian. We choose τ =

0.8. Although UF does not conserve energy, it acts locally
on the system. This type of Floquet operator is shown
to thermalize a local operator to the infinite temperature
ensemble [20, 32].

B. Method

We minimize the square of the Frobenius norm of the
commutator with the Floquet operator. Up to M = 11,

we obtain exact results and for larger M ≤ 16 we use the
MPO ansatz to find the minimum of the following

g(ÂM ) =
tr([ÂM , UF ][ÂM , UF ]†)

tr(ÂM Â
†
M )

. (18)

Again, we define λ(M) = min{g(ÂM )} and call the cor-

responding ÂM the slowest operator.
Let’s relate g(ÂM ) with the thermalization time scale.

As in the case of Hamiltonian system, we consider
the same initial state; ρ = I/Z + εÂM . Since the
time step in the Floquet system is discrete, we define

a
(N)
M = tr(ÂM (N)ÂM ), with a

(0)
M = 1 and ÂM (N) =

U†NF ÂMU
N
F . Using Cauchy-Schwarz inequality, we can

show that

|a(n+1)
M − a(n)M | = |tr([ÂM (n), UF ]ÂMU

†
F )| ≤

√
g(ÂM ) .

(19)

Then, the following inequality follows:

|a(N)
M − a0M | ≤

N−1∑
n=0

|a(n+1)
M − a(n)M | ≤ N

√
g(ÂM ) . (20)

Since the thermal expectation value âM is indeed zero in
the Floquet system [20], we have,

|a(N)
M − athM | ≥ |a

(0)
M | − |a

(N)
M − a(0)M | ≥ 1−N

√
g(ÂM ) .

(21)

Therefore, g(ÂM ) bounds the thermalization time of ÂM
from below by N ≥ g(ÂM )−1/2. Again, small λ(M) im-
plies a long thermalization time.

To extend to larger systems, we optimize the commu-
tator over operators of a specific form. We consider oper-
ators in the space spanned by UnÔU−n for Ô a traceless
Hermitian operator acting on a single site and taking a
finite number of powers of unitary operator U (this case,
the Floquet UF ). Considering the operator of the follow-
ing filtered form,

ÃN =

N∑
n=−N

cnU
nÔU−n , (22)

where ÃN is supported on M = 2N + 1 sites for
the Floquet system, we find ÃN that gives λ̃(M) =

min{tr([ÃN , U ][ÃN , U ]†)/tr(ÃN Ã
†
N )} by varying the co-

efficients {cn} and Ô. This method can be considered as a
version of the Lanczos method as it also works in a Krylov
subspace, but here we use a tensor network method to ap-
proximate tr(Ô†UnÔU−n). Thus λ̃ is a variational upper
bound of the true minimum λ. Interestingly, this simple
model with only 2N + 4 real variables (2N + 1 for cn’s

and 3 for Ô) agrees very well with the available exact
results (M = 11 or N = 5). Moreover, we find that the

filtered ÂN that gives λ̃(M) is obtained from the same
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FIG. 4. (color online) (a) Decay of λ(M) (blue cross), the

exact minimum of Eq. (18) and λ̃(M) (green dot), a varia-
tional upper bound found in the form of Eq. (23). The frac-

tional difference between λ(M) and λ̃(M) is less than 1/200

for M ≤ 11. λ̃(M) decreases close to M−2 asymptotically.
Note that there is a strong parity effect in the exact result:
λ(2N−1) ' λ(2N). (b) Structure of coefficients cn (dots) for
N = 20 (blue, most narrow), 60 (red, intermediate width),
and 100 (black, widest). A cosine function with wavelength
4N + 2 fits well except near n = 0 of N = 20.

single site operator Ô for all values of N . For the given
model and the parameters, Ô = 0.04σx−0.66σy+0.75σz.
Note that ÃN can only be supported on odd number of
sites. It turns out that the exact operator of even support
can be approximated by a simple symmetric extension:
ÃN ⊗ σ0 + σ0 ⊗ ÃN , where σ0 is an identity. Therefore,
λ(2N − 1) ' λ(2N). It is noteworthy that the filtering
method is unable to capture the slowest dynamics in the
Hamiltonian system.

C. Results

Figure 4 (a) is the plot of λ(M), the minimum value

of Eq. 18, and λ̃(M), which was obtained by the form

of Eq. (23). λ̃(M) asymptotically decreases very close
to M−2 and its optimal distribution of {cn} is close to a
cosine modulation (Figure 4 (b)), which we expect to be
a generic feature of quantum circuits with local dynamics
(see the Appendix).

FIG. 5. (color online) λ̃(M) for a random circuit model com-
puted by matrix product method with the filtered of operators
(Eq. (23)). 1/2σz is chosen for the single site Hermitian oper-
ator. We averaged 50 realizations of random circuits. Asymp-
totically, the data follows very closely M−2. Inset: λ(M) is
the result of exhaustive search without using the filtered form
for the same model. These values cannot be matched by the
simple filtered operator we consider.

Comparing Figure 4 (a) with Figure 1 (a), we see that
λ(M) decreases slower than that in Hamiltonian cases,
which indicates that the Floquet system thermalizes the
local operator faster. Since the only apparent difference
between the Hamiltonian system and the Floquet system
is the existence of the energy conservation, we attribute
this faster relaxation to the absence of conservation law.
Nevertheless, Figure 4 clearly exhibits that the rate of
relaxation in the Floquet system becomes slower as the
support M increases, thus ÂM is again an approximately
conserved quantity.

D. Quantum Circuit

To determine whether this phenomenon is more gen-
erally true, we also study a family of quantum circuits,
each composed of two rounds, where in the first round,
gates act on pairs of sites ..., (1, 2), (3, 4), ... and on the
second round gates act on pairs ..., (0, 1), (2, 3), (4, 5), ...
We choose all gates in a given round to be the same, but
choose them randomly. The results are shown in Fig. 5.
We find again that even in this random case, slow oper-
ators are present.

To study larger systems, we again apply the matrix
product method to the same form of the operators:

ÃN =

N∑
n=−N

cnU
nÔU−n . (23)

Since our random circuit consists of two alternating non-
commuting unitaries, the support of ÃN is now 4N + 1
instead of 2N + 1. In this random circuits, generally
there is no single site Hermitian Ô that matches the exact
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calculation for a small system size, unlike in the Floquet
operator we studied in the main text. Therefore, we just
choose Ô = 1/2σz as a single site Hermitian operator.
The weights cn again agree very well a cosine shape and
λ decays close to 1/M2. This hints that 1/M2 would be
a generic feature.

Such a decay 1/M2 would be exact with a cosine if

tr(ÔUnÔU−n) = 0 for all n 6= 0. We are unable to prove
this decay in general but show weaker results in appendix.
Finally, we do not preclude possibilities that there might
be some quantum systems without local conservation law
where λ(M) decreases faster than 1/M2, which would be
very interesting.

IV. SUMMARY AND OUTLOOK

We have numerically constructed a series of local oper-
ators that relax slower than local energy fluctuations do.
Although we can approximate these slow operators by
adding nonlinear energy density operators or assuming
special filtered forms, their exact origin requires further
exploration. We have also performed the same analy-
sis in similar systems without energy conservation, e.g.
Floquet systems, again finding slowly relaxing operators.
These operators present a new class of observables; if
they can be studied experimentally, they may reveal un-
suspected slow relaxation.

Our method is by no means restricted to the particular
Hamiltonians or Floquet operators we studied or to non-
translationally invariant operators. As explained in the
Appendix, it is very easy to apply this method to find in-
stead the slowest translationally-invariant operator. For
any given any spin Hamiltonian, Floquet operator, or
quantum circuit, our method should find the slowest local
operator of given length M . If unknown local conserved
operators in terms of spin operators exist, this procedure
should be able to detect them. Therefore, this may be
used to find out unknown local conserved operators or
unsuspected slow dynamics (e.g. quasi many-body local-
ization in translation invariant systems [33, 34]) if the
system of interest has such things.
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Appendix A: Structure of Slowest Operators and
Construction of slow operators in Hamiltonian

System

The main conclusion of this work is that the minimum
value of the commutator with Hamiltonian measured by
Frobenius norm decreases faster than expected from hy-
drodynamics type arguments as we increase the range of
operators M . First, let’s understand why this is nontriv-
ial.

There are exponentially many (4M − 1) linearly or-
thogonal operators for a given M. Thus, it may not seem
surprising that there exists a sequence of operators whose
commutator with the Hamiltonian show Frobenius norm
with fast decreasing scaling. However, what is important
is that λ(M) is the minimum value of commutator with
the Hamiltonian, which is not a random sequence. For
instance, it is possible to construct a series of operators of
range up to M (range 1, range 2, . . ., range M operators),
such that their commutators with the Hamiltonian scale
with a larger exponent than the one we found. However,
they are not the operators that minimize the commuta-
tor with Hamiltonian and thus not the slowest operator
at a given range. We do not call them slow operators.
What we found, instead, is that the scaling of the slowest
operators is different from hydrodynamics, which is usu-
ally considered to be the slowest mode of a given range
(wavelength).

1. Structure of slowest operator

Although our understanding of the nature of the slow-
est operators in a Hamiltonian system is incomplete, we
can extract some useful information by analyzing the op-
erators found. First, we look at how different the slowest
operator is from the energy density modulation, which
is expected to be the slowest mode from hydrodynamics.
Once we find the slowest operator, we can decompose the
operator in an operator basis (Eq. (2) in the main text)
and study the magnitude of the different components,

c` = tr(ÂM Ô
†
M,`)/tr(ÔM,`Ô

†
M,`), where normalization is∑4M−1

`=1 (c`)
2 = 1. It turns out that the slowest oper-

ator consists mainly of linear energy density operators;
(σxi , σ

z
i , σ

z
i σ

z
i+1). For example, when M = 11, the square

sum of c`’s of energy density operators is 0.87, which is
remarkably large given the fact that there are only 32
such operators out of 411 − 1 basis operators. However,
the relative magnitude of c`’s does not exactly follow a
cosine modulation, although it shows some similarity, so
there exists some kind of “dressing” to energy modula-
tion.

Next, we look at the overlap of the slowest operator
with the energy density operators of higher powers. It is
easier to analyze the operator in terms of two site energy
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density operator, hn:

hn =
1

2

(
g(σxn + σxn+1) + h(σzn + σzn+1)

)
+ σznσ

z
n+1 .

(A1)

Normalizing hn to have a unit Frobenius norm, we com-
pute the overlap on (we omit the range index M for
brevity) resolved by the position n.

o1n = |tr(ÂMhn)| , (A2)

where the superscript 1 means the overlap of the linear
order of hn. Note that tr(hnhn+1) 6= 0 thus on contains
some contribution from hn−1 and hn+1. The overlap of
quadratic order of energy density operator o2n(x) (super-
script 2 means the quadratic order) is obtained by,

o2n(x) = |tr(ÂMhnhn+x)| . (A3)

We can continue this to arbitrary powers of hn’s. Since
(hn)2 is not identity, the o2n(x) terms may contain some
contribution already counted in o1n. Despite this certain
degree of double-counting, this decomposition reveals an-
other structure in the slowest operator. Figure 6 is the
plot of o1n and o2n(x) (x = 0, 1, 2, 3) of the slowest op-
erator obtained by the MPO ansatz for M = 28. It is
clear that the slowest operator takes more contribution
from local operators (for quadratic order, smaller x) than
non-local operators (large x). For the same order and x,
their relative magnitudes are similar to cosine modula-
tion but not exactly the same. These features suggest
that the slowest operator can be built by adding nontriv-
ial dressing to energy density modulation and its higher
powers.

In the following subsection, we build a sequence of slow
operators that shows a fast decaying scaling based on
the above observation. In both cases, we are able to
construct slow operators that are close to the slowest
ones but unable to make them as close to have the same
scaling.

2. Construction of Slow Operators

a. Nonlinear energy density operators

Figure 6 implies that the slowest operator contains
nontrivial contributions from higher powers of the energy
density operators. Therefore, we build operators consist-
ing of nonlinear powers of energy density operators. For
a given power α(= 1, 2, . . .) and range M , we construct
operators of the following form:

B̂M,1 =
∑
n

cnhn (A4)

B̂M,2 =
∑
n≥m

cn,mP (n,m)hnhm (A5)

B̂M,3 =
∑

n≥m≥l

cn,m,lP (n,m, l)hnhmhl , (A6)

FIG. 6. (color online) ÂM is computed using MPO with bond
dimension 140 and M = 28. (a) o1n is the overlap between the

slowest operator ÂM and the energy density operator hn. The
shape resembles a cosine modulation (highest in the middle
and the lowest at the edges) but does not exactly match it.
(b) o2n(x) is the overlap between the slowest operator and
hnhn+x. The weight decreases as the separation x increases.
For each x, the shape is similar to the other cases.

and so on. Here P (. . .) is the symmetric permutation
operator that makes each term Hermitian. Here we allow
hn to be identity so that B̂M,α includes all B̂M,β where
β ≤ α. The range of each term in the summation is
restricted within M . We optimize the coefficients c... to
have the minimum commutator with the Hamiltonian in
the Frobenius measure. Note that B̂M,1 should just be
an energy modulation as we saw in the main text.

Figure 7 is the plot of λ(M), the minimum value of the
square of the Frobenius norm of the commutator with
the Hamiltonian for powers 1, 2, and 3. At linear power,
λ(M) decreases with M−2 as expected from conventional
hydrodynamics. For the quadratic order, however, we do
not see a faster decay. It has instead a smaller exponent
for the range we have constructed, although it should de-
cay at least as fast as M−2, since the quadratic order op-
erator contains the linear order operator. Starting from
cubic power, we see a signature of slow operators, where
λ(M) decreases faster than M−2. How these nonlinear
order of energy density operators contribute to slow re-
laxation remains unclear but our results suggest that they
have some nontrivial consequences.
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FIG. 7. (color online) λ(M) is the minimum value of the
commutator with the Hamiltonian measured by the square
of Frobenius norm. Operators are constructed as Eq. (A6).
For power 1, λ(M) ∼ M−2 as expected. For power 2, we do
not make slow operators. From power 3, we start seeing a
sequence of slow operators whose scaling of λ(M) decreases
faster than M−2.

b. Filtered operator

Another way of constructing slow operators is the fil-
tering of energy modulation. A conventional filtering
method (see Eq.(23)) is discussed in the main text where
we construct the slowest operator of the Floquet system.
In the Hamiltonian case, however, the method should be
modified since in principle for any t 6= 0, exp(−iHt) is a
global operator that makes a local operator of range M
act on every site. In addition, it turns out that it is not
easy to build slow operators for a Hamiltonian system
if we start from a single site operator. Instead, we use
the cosine modulation of the energy density operator as
starting operator and trace out the external sites to re-
strict the range of operators to be M at every step. We
construct an operator of the following form:

ÂM,N =

N∑
n=−N

cnâM,n (A7)

âM,n = tr\M(eiHnδtâM,n−1e
−iHnδt) , (A8)

where âM,0 is the range M cosine modulation of energy
density operator, tr\M traces out the region outside M
consecutive spins and δt is the small time step. First we
obtain the 2N + 1 âM,n’s and then we compute the coef-
ficients cn that minimize the Frobenius norm of the com-
mutator with the Hamiltonian. For a sufficiently small
δt, we can approximate eiHt with H acting on M + 2
sites (another site at each edge) with negligible error at
each step. We took δt = 0.667 and checked that results
do not change by increasing the approximate range of
eiHt. The underlying idea of this construction is that we
start from the expected slowest mode (energy modula-
tion) and then “filter out” the fast component, if exits,
at each small time evolution. We make the total evolu-
tion step number N be proportional to the range M .

FIG. 8. (color online) Filtering operator of the Hamiltonian
system. (a) λ(M) is the minimum value of the square of the
Frobenius norm of the commutator of the filtered operator
(Eq. (A7)) with Hamiltonian. It decreases faster than the
diffusion scaling, M−2. Therefore, they are slow operators.
(b) The coefficients of slowest filtered operator. It is highly
peaked near n = 0 as expected. In addition, they get small
but nonnegligible contributions from the later step operators.

Figure 8 (a) is the plot of λ(M), which is the square
of the Frobenius norm of the commutator between the
slowest operator found by the filtering scheme and the
Hamiltonian. It decreases faster than energy diffusion
and thus we can say that these are indeed slow opera-
tors. The coefficients cn are highly peaked around n = 0,
which is consistent with the previous observation that the
largest contribution to the slowest mode comes from the
energy density modulation. Nevertheless, we are unable
to get the exact slowest operator by varying δn, N , and
âM,0.

Appendix B: Results of another set of parameters
and different model Hamiltonians

1. Another set of parameters

In this section, we show that the results in the main
text do not depend on the parameter choice. We choose
another set of parameters (g, h) = (−1.05, 0.5), which is
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FIG. 9. (color online) (a) λ(M) is the minimum value of the
Frobenius norm of the commutator with Hamiltonian. Here
we choose the parameters to be (g, h) = (−1.05, 0.5). λ still
decreases faster than 1/M2. Inset: λ(M) vs. M using tensor
network method (MPO approximation). The results are in-
distinguishable from available exact results. (b) λE(M) is the
same as when we restrict the search space within the terms
in the Hamiltonian. As expected, it has M−2 scaling and the
structure is cosine modulation (inset).

the parameter choice of Ref. 22.
Figure 9 (a) is the minimum value of Eq.(3) in the

main text with the other parameter choice. We can see
that it decays faster than 1/M2. As is the case of the
parameter choice in the main text, the data can be well-
fitted by two methods; a power-law and a logarithmic
correction to 1/M2. Since the power-law exponent could
depend on the parameter choice, we do not attempt to
draw a strong conclusion from this data except that λ(M)
decreases faster than 1/M2, the scaling of the diffusive
energy mode.

Figure 9 (b) is the plot of the minimum value of Eq.(3)
in the main text when only terms in Hamiltonian are al-
lowed for two sets of parameters. Unlike the case where
all operators are used, the decay scaling remains the same
as 1/M2 as expected from the hydrodynamics. There-
fore, we again explicitly demonstrate that the longest
wavelength energy modulation is the slowest mode of a
conserved quantity.

FIG. 10. (color online) λ(M) is the minimum value of
the Frobenius norm of the commutator with Hamiltonian,
Eq. (B1). (a) (Jz, g, h) = (0.5, 0.8, 0.4). (b) (Jz, g, h) =
(0, 0.8, 0.4). Both cases, λ(M) decreases faster than M−2 and
thus there exist nontrivial slow operators.

2. Different model Hamiltonians

In this section, we consider another nonintegrable
Hamiltonian and show that there exist slow operators
with nontrivial scaling of λ(M).

We consider the XXZ model with fields along x and
z directions.

H =
∑
i

σxi σ
x
i+1 + σyi σ

y
i+1 + Jzσ

z
i σ

z
i+1 + gσxi + hσzi .

(B1)

This model is nonintegrable when at least two of three
parameters (Jz, g, h) are nonzero. We choose two cases:
(Jz, g, h) = (0.5, 0.8, 0.4) and (Jz, g, h) = (0, 0.8, 0.4).
These choices have fewer discrete symmetries than the
other two possibilities; when only g = 0, this model con-
serves total spin along z direction and when only h = 0,
this model is symmetric under all spin flip (Ising symme-
try).

Figure 10 is the plot of λ(M) vs. M , where λ(M) is the
smallest value of the Frobenius norm of the commutator
with the Hamiltonian for an operator of range M . We
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can clearly see that in both cases λ(M) decreases faster
than diffusive scaling, M−2. Therefore, there exists some
slow operator that relaxes slower than diffusion in this
nonintegrable model. We have obtained similar results
for the other two possibilities of parameter choices and
there we found larger exponent, which may result from
existence of other symmetries.

Appendix C: Results of Matrix Product Operators
with various bond dimensions

In this section, we present more results of the ma-
trix product ansatz with various bond dimensions for the
Hamiltonian system. For a fixed bond dimension D, we
compute the matrix product operator (MPO) that mini-
mizes λ(M). This gives another upper bound to the true
minimum value of given support M . Fig. 11 shows the
results of D = 4, 20, 80, and 140. Since the energy mod-
ulation can be expressed by a matrix product operator
with bond dimension 3, operators of bond dimension 4
contain the energy modulation. This explains what we
see in the Fig. 11 where λ(M) ∼ M−2 (same behavior
as the energy diffusion) at D = 4. For growing bond di-
mensions, we see increasingly larger deviations from the
diffusion scaling (M−2). This supports our conclusion in
the main text that there exists nontrivial slowly relaxing
operators in the nonintegralbe Hamiltonian system.

Appendix D: Translation invariant operators

In the main text, we have studied non-translationally
invariant operators in order to compare with the visu-
alized sinusoidal energy modulation. However, the gen-
eral procedure of minimizing the square of the Frobe-
nius norm of the commutator with Hamiltonian is not
restricted to non-translationally invariant system. In ad-
dition, translation invariant system is more directly con-
nected to Ref. 22.

First, we define the length M translation invariant op-
erator B̂M as following:

B̂M =
∑
i

ÂM,i , (D1)

where ÂM,i is the length M traceless Hermitian operator
supported on sites from i to i + M − 1. Now, we just
search for an optimal operator B̂M that minimizes the
Frobenius norm of the commutator with Hamiltonian as
Eq. (3). What changes here is that once we expand ÂM,i

in terms of basis operators as Eq.(2), the denominator
in Eq. (3) becomes different since basis operators from
different sites may no longer be orthogonal. Therefore,
finding the minimum becomes a generalized eigenvalue
problem.

Figure 12 is the results of minimum λ(M) for the trans-
lation invariant operators. Again, we see that the decay

FIG. 11. (color online) (a) λ(M) computed by the matrix
product ansatz at fixed bond dimension D. Straight lines are
power-law fittings to the λ(M)’s computed. At D = 80, we
already see significant deviation from the diffusion scaling.
This is a strong evidence that we have operators relaxing
slower than the hydrodynamic mode. (b) Same calculation
with a different parameter set; (g, h) = (−1.05, 0.5). Qualita-
tive features are the same.

rate of λ(M) is faster than M−2 although it is not simply
connected to M−2 decay of energy modulation.

Appendix E: Existence of Slow Operators for
Arbitrary Quantum Circuits

We now show that a slowly relaxing operator must al-
ways exist, on an interval of length M with the relaxation
rate going to zero as M gets large. Let U be the unitary
of the quantum circuit restricted to an interval of length
slightly larger than M (in this way, we can consider only
finite dimensional spaces).

Let E(Ô) be a super-operator defined by E(Ô) =

UÔU†. The space of operators can be regarded as a
vector space, with inner product (A,B) = tr(A†B), and

with E(Ô) being a linear operator on this space. The
operator E is non-Hermitian but it is a normal operator,
since its Hermitian conjugate is equal to E†(Ô) = U†ÔU

and E(E†(Ô)) = E†(E(Ô)) = Ô and so [E , E†] = 0. Let
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FIG. 12. (color online) (λ(M) of translation invariant oper-
ators for two sets of parameter choices. Both cases, λ(M)
decreases faster than M−2.

Eh = 1
2 (E + E†) and Ea = 1

2i (E − E
†).

We begin by constructing an operator Ô supported on
an interval of lengthM such that Eh(Ô) = xÔ+ε̂ for some
x and for ε̂ = O(1/M). Let A be any traceless operator
supported on a single site in the center of the interval.
We consider the Krylov space generated by the vectors
A, Eh(A), E2h(A), .... Let K be the number of vectors we
take; K will be proportional to M and will be chosen
such that all these operators are supported on the interval
of length M . Since Eh is Hermitian, using the Lanczos
procedure we can write it as a tridiagonal matrix T in
this Krylov space. We claim that there exists a vector v
supported on the first K − 1 vectors w1, ..., wK−1 such
that |Tv−xv|2/|v|2 ≤ O(1/K2). To verify this claim, let
ψ be any eigenvector of T with at least half its weight
on the first K/2 vectors with ψ =

∑
k akvk; let x be

the corresponding eigenvalue; let v =
∑
k ak(1−k/K)vk.

The basis in which the matrix is tridiagonal has basis
vectors w1, w2, ..., with wk being in the span of the first
k vectors A, Eh(A), ... Hence, the vector v gives us the

desired operator Ô.
Now consider the operators

hatO± = (
√

1− x2 ± Ea)Ô, (E1)

with Ô normalized such that ||Ô|| = 1. Note that

E(Ô±) = Eh(Ô±) + iEa(Ô±) = xÔ± + i(
√

1− x2Ea ±
E2a)Ô + O(1/M). Using the fact that E2h + E2a is equal

to the identity super-operator, (
√

1− x2Ea ± E2a)Ô =√
1− x2Ea ± (1 − x2))Ô + O(1/M) = ±

√
1− x2Ô± +

O(1/M). Hence,

E(Ô±) = zÔ± +O(1/M) (E2)

with

z = x± i
√

1− x2, (E3)

so that |z| = 1. At least one of the two operators Ô± must
have non-negligible norm. Let X be the corresponding
operator, normalized to have norm 1. Hence, we have
constructed an operator X supported on the interval of
length M such that E(X) = zX +O(1/M).

This already implies that there is some operator X
which is slowly relaxing but perhaps oscillating; i.e., since
X is an approximate eigenoperator of E , if z = 1 then
X changes slowly over time, while if z 6= 1, then the
expectation value of X oscillates.

In fact, we can always construct an operator Y which
is an approximate eigenoperator of E . Here is one
way. Consider many disjoint intervals of length M . Let
X1, X2, ... be the operators on these intervals with eigen-
values z1, z2, ... Choose some subset S of these intervals
such that the product of the zi on that subset is close to
1:
∏
i∈S zi ≈ 1. Then, let Y =

∏
i∈S Xi. This requires

some analytic estimates to determine the support of Y
required: since Y is a product of many operators, the
error (in that each Xi is only an approximate eigenoper-
ator) may add, so the support of Y may scale as a fairly
large polynomial in the error. We leave this estimate for
later.

Appendix F: 1/M2 scaling of filtered operators

We show 1/M2 scaling of filtered operators of the form

Eq. (23) if tr(ÔUnÔU−n) = 0 for all n 6= 0, where Ô is a
traceless Hermitian acting on a single site. First, observe
that

tr([ÃN , U ][ÃN , U ])

tr(ÃN Ã
†
N )

= 2−
( N∑
n,m=−N

cncmtr(Un−m−1ÔU−n+m+1Ô

+ Un−m+1ÔU−n+m−1Ô)

)
/tr(ÃN Ã

†
N ) .

(F1)

Therefore, if tr(ÔUnÔU−n) = δn,0tr(ÔÔ†), the above
expression simplifies to

tr([ÃN , U ][ÃN , U ])

tr(ÃN Ã
†
N )

= 2

(
1−

∑N−1
n=−N cncn+1∑N
n=−N c

2
n

)
. (F2)

This is a trivial quadratic optimization problem and the
solution is cn = cos(nπ/(2N + 2)). Therefore, the mini-

mum value λ̃ for sufficiently large N is

λ̃ = min

[
tr([ÃN , U ][ÃN , U ])

tr(ÃN Ã
†
N )

]

= 2− 2 cos

(
π

2N + 2

)
' π2

4(N + 1)2
∼ 1

M2
, (F3)

where we used the fact that the support M = 4N + 1.
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Ref. 20 has shown that the UF (the Floquet opera-
tor) thermalizes a local operator at infinite temperature,

and thus tr(ÔUnÔU−n) = 0 for a sufficiently large n.
For the Floquet system, therefore, the above condition
is approximately satisfied for a large enough N . Figure
4 in the main text shows that for N = 60 and 100, the
form is very close to the cosine and the scaling for large
M = 2N + 1 closely follows M−2 scaling. For a general
random circuit, Figure 5 again shows M−2 scaling. The
structure of {cn} is found to follow cosine modulation
similar to the Floquet case.

One example of quantum circuits that satisfies the con-
dition that tr(ÔUnÔU−n) = 0 for all n 6= 0 is the swap
operator Usw.

Usw =
∏
n

V2n,2n+1

∏
m

V2m−1,2m , (F4)

where Vx,y swaps the spins Sx and Sy; Vx,y|Sx,Sy〉 =

|Sy,Sx〉. Then, for an Ô acting on site 0, Usw moves Ô

to the site −2n and U−nsw moves Ô to the site 2n and
thus the condition is satisfied. In this case, we can write
every step analytically and prove 1/M2 scaling and the
cosine modulation. In a generic quantum circuit, how-
ever, these features are seen only for sufficiently large M .
Furthermore, in a translation invariant system, Usw has
an exact local conservation law. For instance, any trans-
lation invariant single site operator commutes with Usw
and is thus conserved.

In the main text, we have connected λ(M) to the ther-

malization time scale by 1/τ ∼
√
λ(M) (Eq.(21)). At

first glance, 1/τ ∼
√
λ(M) ∼ 1/M may seem trivial

for an operator of support M by Lieb-Robinson bound
type argument, but an important point here is that we
computed the relaxation of an operator by the Frobenius
norm, not the operator norm by which the Lieb-Robinson
bound has been computed [27].
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