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Abstract 

We explore the scaling behavior and complexity in the shear-branching process 

during the compressive deformation of a bulk metallic glass (BMG), 

Zr64.13Cu15.75Al10Ni10.12 (at. %) at cryogenic temperatures. The fractal dimension of 

the stress rate signal ranges from 1.22 to 1.72 with decreasing temperature, and a 

larger shear-branching rate occurs at lower temperature. A stochastic model is 

introduced for the shear-branching process. Especially, at the temperature of 213 K, 

the shear-branching process evolves as a self-similar random process. In addition, the 

complexity of the stress rate signal conforms to the larger activation energy of the 

shear transformation zone at lower temperatures.  
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To explore the plastic deformation mechanism during compressive deformation 

for bulk metallic glasses (BMGs), the serrated flow signal is usually discussed by 

various methods, such as the chaotic time series analysis [1], the statistical analysis 

[1-4], and the spatio-temporal dynamic model [5-8]. Shear-band-slip avalanche is the 

dominant mechanism of plastic deformation in BMGs, which demonstrates the 

agreement between high temporal resolution measurements of the slip statistics, and 

the dynamics with the predictions of a simple mean-field theory [9, 10]. The multiple 

shear-band patterns show fractal characteristics in the severely deformed BMGs under 

specific loading conditions [11]. For the BMGs with good ductility, the dynamics of 

the serrated plastic flow manifests a self-organization critical (SOC) state, which has a 

power-law scaling behavior [1]. 

Recently, a few of studies focus on the deformation behavior of BMGs under 

extreme conditions, such as at cryogenic temperatures or high strain rates [12-16]. 

The shear-banding behavior and the plastic flow for the inhomogeneous deformation 

of BMGs are considered to be affected by deformation units [14]. The activation 

energy increment of the deformation units at lower temperatures is the main factor 

influencing the fracture strength of BMGs [17]. In fact, the plasticity of BMGs is 

unexpectedly improved with decreasing temperature [4, 12]. However, the exact 

elucidation of how the temperature influences the plastic deformation of BMGs is still 

unclear. In the current work, the scale-free fractal behavior, and the complexity 

information in the shear-branching process of a BMG is investigated to provide 

valuable information to further characterize the evolution of the shear bands and 

plastic deformation mechanism of BMGs at cryogenic temperatures, since the 

intermittent serrated flow is not appropriate for the continuous system, and the 

stress-time signal of metallic glasses appears quite complicatedly and irregularly. 

A Zr64.13Cu15.75Al10Ni10.12 (at. %) BMG is compressed at a temperature ranges 

from 133 K to 305 K with a strain rate of 2.5 × 10-4 s-1. The stress-time curves are 

established in Fig. 1, which shows that as the temperature decreases from 305 K to 

133 K, the amplitude of serrations reduces gradually, and disappears at the 

temperature of 193 K. Clearly, there is a transition from the serrated to non-serrated 
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plastic flow with decreasing temperature. Hence, it is required to investigate the 

plastic deformation mechanism not only based on the serrated flow but also based on 

the non-serrated flow.  

It was shown in previous works [18-21] that some degrees of short- and 

medium-range order did exist in BMGs, which means there are self-similarity 

characteristics hidden in BMGs. Xi et al. found a fractal-like dimpled structure on the 

fracture surface of a Ti-based BMG [22]. Afterwards, Sun et al. further quantitatively 

analyzed the fractal characteristic on the 2-dimension fracture surface of Zr-based 

BMG [11]. The analysis based on the 2-dimension fracture surface reflects the local 

feature of the shear-branching process for which actually spread in a 3-dimension 

space. Considering that the measurement of shear bands distributed spatially is 

difficult to be achieved, we focus our research on the temporal stress rate signal of 

Zr64.13Cu15.75Al10Ni10.12 BMG,  (see Fig. 2), because it 

reflects the global feature of the shear-branching process.  

 The calculation of the fractal dimension is according to the box-counting 

method [23] based on the stress rate signal, . Square 

boxes with a length of l can cover the total data set, which needs at least N(l) boxes.  

Changing the box size, l, we can obtain a series of N(l). Fitting (l, N(l)) in a double 

logarithmic plot, the slope of this fitting curve is expressed as, 

0

log ( )lim
logl

N lD
l→

= −  ,                              (1) 

where D is the fractal dimension of stress rate signal. 

The fractal dimension, D, as a function of the temperature is plotted in Fig. 3. It 

can be seen that the D value increases with decreasing the temperature from 305 K to 

133 K, suggesting an enhanced fractal behavior at low temperature. The largest D 

value appears at the temperature of 133 K, indicating the largest shear-branching rate. 

In this case, numerous shear bands with hierarchical structure can propagate in a 

scale-free manner. The fractal dimension of the shear-branching structure actually 

reflects the branching rates of a primary shear band evolving to the secondary shear 
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band. The formation of the fractal structure is resulted from the interactions among 

shear-band hierarchies located at different places and directions. For BMGs at lower 

temperatures with a larger fractal dimension, the plasticity is also improved, which is 

attributed to the concurrent nucleation of a large number of shear bands throughout 

the sample. The higher density of shear bands in turn can induce a hierarchical 

structure in the length scales of shear banding. Thus, a large number of shear bands 

usually are accompanied by the spread of the hierarchical structure. The 

shear-branching process include short-range interactions from the intersection of the 

shear bands, the consequent arrest, and long-range interaction of the strain fields 

initiated from different shear bands. Along with the shear-branching process, the 

serrated flow behavior is manifested in the plastic regime in the Zr-based BMG. Each 

stress drop in the serration event corresponds to the system surmounting the barrier, 

and then jumping to a neighboring metastable state, which was believed to behave a 

self-organization critical (SOC-type) dynamics, especially at lower temperatures 

(cryogenic level) [4]. 

Based on the stress rate signal, , the detrended 

fluctuation analysis is used to quantify the evolution of the shear-branching structure. 

The process of the detrended fluctuation analysis is described as following [24-27]. 

Divide the signal  into Nq (where Nq = N/q) zones with each zone 

containing q elements. In the k-th zone, the local trend is defined as a linear function 

of ˆ ( )kx j , , which is linearly fitted by the original series, 

. The detrended time series is, , with a 

mean-square error, 2 2

1

1 ˆ( ) ( ( ) ( ))
q

k k
j

F k x j x j
q =

= −∑ . The root-mean-square is expressed 

as,
1

2 2

1

1( ( ))
qN

q
kq

F F k
N =

= ∑ , in the total Nq zones. Fq is a power function of the scale, q, 

H
qF q∼ , where H is the Hurst exponent reflecting the long-range memory 

dependence of the signal.  
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According to the above detrended fluctuation analysis, the Hurst exponent, H, vs. 

temperature is shown in Fig. 3. The Hurst exponent, H, ranges from 0.11 to 0.48 (see 

Table.1). Here (0,0.5)H ∈  means a negative correlation and an anti-persistent 

process during the shear-branching process, which implies the evolution trend of 

shear-branching is opposite to the past progress due to the absence of the 

long-memory dependence. The stress rate increases persistently in a period of time, 

and then decreases in the next period of time. This trend is consistent with that of the 

serrated flow, which increases during the elastic energy aggregation, and then 

decreases during the energy release. 

As the temperature decreases, Hurst exponent increases to the maximum value of 

0.48 at 213 K and then decreases (see Fig. 3). The maximum Hurst exponent at 213 K 

reflects that the stress rate signal is a self-similar random process with a weak 

negative correlation. The shear-branching process behaves a random walk, which 

induces a homogenization in some degrees. On the other hand, the small H value 

(such as H = 0.11 at 133 K) means a strong negative correlation of the 

shear-branching process. This strong anti-persistent behavior is accompanied with 

increasing the hybridization of shear bands. In this case, the deformation caused by 

multiple interactions between shear bands is characterized by a low degree of 

homogenization, i.e., heterogeneity.  

An inner correlation between the fractal dimension and Hurst exponent can be 

described by the modified Cauchy class [28], as a stochastic process. The modified 

Cauchy class consists of a stationary Gaussian random processes, Z(x), x R∈ , which 

are characterized by their correlation function, ( ) ( ), ( )c r Z x Z x r=< + > , x R∈ , and a 

correlation function satisfying ( / ) 1( ) (1 | | ) (1 (1 ) | | )c r r rα β α αβ− −= + + − , r R∈ , where 

(0,2]α ∈ , 1β > . The fractal dimension, D, is given by D = n+1-α/2, and the Hurst 

exponent, H, given by H = 1-β/2. Considering the result that we calculated here, 

(0,0.5)H ∈ , we give the restriction of β > 1 in the modified Cauchy class, which can 

feature the negative correlation of the signal.  
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The stochastic model is suitable for the current situation because not all of the D 

and H conform to the linear relationship, i. e., D + H = 2, see Fig. 3 (The curve of D + 

H vs. temperature). Especially, at the temperature of 213 K, the value of D + H is 

equal to 1.88 (approximately equal to 2), which suggest that the signal is more close 

to a self-similar random process. This result is consistent with the above analysis that 

Hurst exponent H = 0.48 at 213 K, reflecting that the stress rate signal is a self-similar 

random process with a weak negative correlation. In addition, from Fig. 2, we observe 

that the signal, , is smoothed as the Hurst exponent increases. 

The tendency here is consistent with the identification of the modified Cauchy class: 

the more close to 0.5 of the Hurst exponent, the smoother of the signal curve [28]. 

To further characterize the complexity of the system, the concept of entropy is 

introduced. We can obtain the accurate result about the system by the approximate 

entropy (ApEn) method [29]. The calculated value of ApEn is shown in Table. 1, and 

the ApEn as a function of temperature is presented in Fig. 4. A large value of ApEn 

plotted at low temperature range suggests the stress rate signal exhibiting a high 

complexity, which is consistent with the above fractal analysis, and the detrended 

fluctuation analysis. A large fractal dimension at low temperatures reflects the high 

shear-branching rate with a complex hierarchical structure. A small Hurst exponent 

(i.e., a strong negative correlation) reflects a low degree of homogenization. The 

heterogeneity in stress rate signal induces a disordered and complicated 

shear-branching process, which can also be observed from the fracture surface.  

The activation energy 2 2(8 / ) CW Gπ γ= Ω , where G is the shear modulus, Ω is the 

effective shear transition zone (STZ) volume, and cγ  is a critical shear strain for 

BMGs (γc = 0.036 is found to be a constant for BMGs at room temperature) [30]. The 

activation volume of STZ can be calculated by the formula 

[31], where , R ≈ 0.25, 3ς ≈ ; T is the 

environmental temperature, k is Boltzmann constant (1.381×10-23 J/K), τC0 is the 
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yield shear stress at 0 K (τC0 = 1124 MPa), G0T is the shear modulus at the 

temperature of T (G0T =31.2 GPa); The critical shear stress τCT satisfies, 

2/3
0 1/ ( / )CT C C gG T Tτ γ γ= − , where 0Cγ = 0.036, 1Cγ  = 0.016. The necessary 

mechanical properties of the Zr64.13Cu15.75Al10Ni10.12 BMG compressed at different 

temperatures are shown in Table. 2. Based on the above information, the volume and 

activation energy of STZ can be calculated (see Fig. 5). The volume of STZ increases 

as temperatures decreasing from 305 K to 133 K, the activation energy of STZ 

increases correspondingly. This result is consistent with the calculation results of the 

ApEn value, i.e., a more complexity of the shear-branching process appearing at low 

temperature. The larger fractal dimension reflects a more complex hierarchical 

structure of the shear-branching process at lower temperatures. The high complexity 

of the shear-branching process at low temperature confirms theoretically that there is 

a large activation energy used for activating the STZ, which facilitates the plastic flow 

of BMGs. 

In summary, the self-similar behavior and complexity in the temporal scale of the 

stress rate signal are investigated at temperatures well below the glass-transition 

temperature. The obvious fractal behavior suggests that the shear-banding process is 

accompanied with larger branching rates from a primary shear band to a secondary 

shear band. In fact, at the temperature of 133 K, there is a large amount of shear-band 

interacting with each other and more elastic energy that the sample contains, which is 

facilitated to produce the good plasticity of metallic glasses. A Cauchy class model is 

introduced for the stochastic shear-branching process, which connects the fractal 

dimension and Hurst exponent, as well as features the negative correlation process. In 

addition, the Hurst exponent reaches the maximum value of 0.48 at temperature of 

213 K; especially, at the temperature of 213 K, the value of D + H approaches 2, 

suggesting the shear-branching process evolves as a self-similar random process, 

which induced a degree of homogenization in shear bands. Furthermore, the analysis 

of approximate entropy suggests there is complicated hierarchy structure at low 

temperatures, which can be interpreted as, at the lower temperatures there are large 
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amounts of shear bands interacting which induced to SOC state. We give an 

explanation of the super plasticity of the BMGs from the perspective of the temporal 

scaling behavior and complexity at low temperature.  
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Figure captions 

 

Fig. 1 (Color). Comparative stress-time curves for Zr64.13Cu15.75Al10Ni10.12 glassy 

metal deformed at different temperatures, 133 K, 153 K, 173 K, 193 K, 213 K, 

233 K, 253 K, 273 K and 305 K with a strain rate of 2.5 × 10-4 s-1. 

Fig. 2 (Color online). The plot of the stress rate signal, d / dtσ , curves for the 

Zr64.13Cu15.75Al10Ni10.12 glassy metal compressed at a strain rate of 2.5 × 10-4 

s-1 at different temperatures, 133 K, 153 K, 173 K, 193 K, 213 K, 233 K, 253 

K, 273 K and 305 K with a strain rate of 2.5 × 10-4 s-1 (For clearly observing 

the difference between each other, here we capture part of the overall data). 

Fig. 3 (Color online). The fractal dimension, D [“the red (middle) line”], Hurst 

exponent, H [“the green (lower) line”], and D + H [“the black (upper) line”] of 

the stress rate signals, d / dtσ , for the Zr64.13Cu15.75Al10Ni10.12 glassy metal 

compressed at a strain rate of 2.5 × 10-4 s-1 and at different temperatures, 133 K, 

153 K, 173 K, 193 K, 213 K, 233 K, 253 K, 273 K and 305 K with strain rate of 

2.5 × 10-4 s-1. 

Fig. 4 (Color online). The approximate entropy ApEn at different temperatures, 133 K, 

153 K, 173 K, 193 K, 213 K, 233 K, 253 K, 273 K and 305 K with strain rate of 

2.5 × 10-4 s-1. 

Fig. 5 (Color online). (a) The volume of STZ at different temperatures. (b) The 

activation energies at different temperatures, 133 K, 153 K, 173 K, 193 K, 213 

K, 233 K, 253 K, 273 K and 305 K. 
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Table. 1 The fractal dimension, D, Hurst exponent, H, values of D + H, and ApEn of 

the signal {d ( ) / d , 1, 2, , }i t i Nσ = L  at different temperatures, 133 K, 153 K, 173 

K, 193 K, 213 K, 233 K, 253 K, 273 K and 305 K with strain rate of 2.5 × 10-4 s-1. 

 

Temperature 133 153 173 193 213 233 253 273 305 

D 1.72 1.64 1.7 1.7 1.4 1.33 1.28 1.31 1.22 

H 0.11 0.12 0.12 0.13 0.48 0.32 0.35 0.28 0.25 

D + H 1.83 1.76 1.82 1.83 1.88 1.65 1.63 1.59 1.47 

ApEn 1.25 1.2 1.3 1.35 0.77 0.21 0.19 0.24 0.48 

 

 

Table 2 Mechanical properties of the metallic glass compressed at different 

temperatures. T is the temperature, G0T is the shear modulus, and τCT is the 

critical shear stress. 

T (K) 183 203 213 223 273 293 

G0T (GPa) 30.2 30.0 29.9 29.8 28.9 28.5 

τCT (MPa) 1087 1080 1076 1073 1040 1026 
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Fig. 2 
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