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Methods for forecasting time series are a critical aspect of the understanding and control of com-
plex networks. When the model of the network is unknown, nonparametric methods for prediction
have been developed, based on concepts of attractor reconstruction pioneered by Takens and others.
In this article we consider how to make use of a subset of the system equations, if they are known,
to improve the predictive capability of forecasting methods. A counter-intuitive implication of the
results is that knowledge of the evolution equation of even one variable, if known, can improve
forecasting of all variables. The new method is illustrated on data from the Lorenz attractor and
from a small network with chaotic dynamics.
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One of the hallmarks of chaotic systems is the break-
down of accurate prediction. Due to exponential diver-
gence of trajectories, long-term forecasting is seldom pos-
sible. On the other hand, short-term prediction is of-
ten feasible and significant progress has been achieved.
In particular, when the system is known through time
series observations alone, nonparametric methods have
been developed to forecast chaotic trajectories.

For relatively low-dimensional chaotic dynamics, Tak-
ens’ method of attractor reconstruction [1–4] has long
been the foundation of nonparametric time series predic-
tion methods. Under suitable genericity hypotheses, the
attractor may be represented by delay coordinate vec-
tors built from the time series observations, and meth-
ods of prediction, control, and other applications from
chaotic time series have been developed [5–7]. In partic-
ular, time series prediction algorithms locate the current
position in the delay coordinate representation and use
analogues from previously recorded data to establish a
local, low-order predictive statistical model, which can
be accomplished in several ways [8–21].

At the other end of the spectrum are paramet-
ric forecasting methods, applicable when a physically-
motivated, complete model for the network is available.
Nonlinear approaches to filtering [22–25] allow forecast-
ing models to use the model equations to develop close to
optimal predictions. Even if some variables are not ob-
servable, they may be reconstructed, provided that their
model equations are known. However, when the model
is not completely known, there has been little progress,
and few methods are known that are able to span the gap
between nonparametric and data assimilation methods.

In this article we consider the problem where not only
is time series data available from a dynamical network,
but in addition we possess a subset of the dynamical
equations for the network. This situation reflects the
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case of a “partial model”, in which evolution equations
for some, but not all, of the measured variables are avail-
able. We address the question of how best to extend non-
parametric methods with this added, partial information
for system prediction purposes.

This problem is endemic throughout the study of phys-
ical processes, where the amount of accessible data can
easily exceed the availability of physical parametric mod-
els. In geophysical processes, basic principles may con-
strain a variable in terms of other driving variables in
a way that is well understood, but the driving variables
may be unmodeled or modeled with large error [26–29].
In a numerical weather prediction code, the physics may
be known on the small scale but the large scale might be
poorly modeled [30, 31]. In a fast-slow system governing
excitable media, the slow variables are often driven in a
known way by fast variables that are unmodeled [32, 33].

A specific example serves to illustrate the problem.
Assume we can observe the x, y, and z variables of the
Lorenz-63 system [34]

ẋ = σ(y − x)

ẏ = x(ρ− z) − y (1)

ż = xy − βz

where σ = 10, ρ = 28, β = 8/3, but that we have no
knowledge of the generating equations. A reasonably
successful nonparametric forecasting method with pre-
diction horizon T can be derived from attractor recon-
struction techniques, using delay-coordinate versions of
the current x, y, and z to predict future y values, for
example. The direct prediction method begins by locat-
ing neighbors [y(t′), y(t′ − h), . . . , y(t′ − dh)] of the cur-
rent delay coordinates [y(t), y(t−h), . . . , y(t−dh)] in the
observed data, where h is the sampling step size. The
neighbors can be found by minimizing the Euclidean dis-
tance norm or any other appropriate norm. Then, the
known values y(t′ + T ) are used in a regression with a
local model (typically locally-constant or locally-linear)
to predict the future value y(t + T ). Since we know the
x and z variables as well, we can include their delay co-
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ordinates to improve location of appropriate neighbors,
which typically enhances the accuracy of the prediction
of y(t+ T ).

Now assume that in addition to the time series data,
we have extra knowledge in the form of a differential
equation for one of the variables, say the y variable of
the Lorenz system. In the current example, this as-
sumption may consist of knowing the single equation
ẏ = x(ρ − z) − y. Here we consider y to be the mod-
eled variable, whose evolution is known in terms of the
unmodeled variables x and z; the evolution equations for
x and z are considered to be unknown to us. The central
question of this article is how to use the new information.
Our proposed strategy is to use the differential equation
to interpolate the known data, use the results to supple-
ment the known data, and thereby substantially improve
the accuracy of direct prediction methods.
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FIG. 1: Using one equation from the Lorenz system, the
dataset is interpolated to reconstruct all of the system vari-
ables at subsample intervals. (a) Measured data y-values
(black circles) are interpolated by the multistep equation
solver (grey circles), approximately matching the exact solu-
tion of the Lorenz equations (grey line). At each interpolation
step, we use delay coordinates of the y variable to reconstruct
the corresponding (unmodeled) (b) x and (c) z variables. In
(b) and (c), the reconstructed x and z variables (grey circles)
are compared to the exact solution (grey line)

This is achieved by solving the differential equation on
a finer sampling scale. Assume the data is obtained by
sampling the system with step size h. Subdivide the sam-
pling interval into m smaller steps of length k, or h = mk.
We will use the training data defined on the grid of step
size h, and the single differential equation for y, to gener-
ate consistent x, y, z on the finer grid of step size k. The
procedure works as follows: At a given sampling time ti,
apply a multistep quadrature method (see Supplemen-

tary Material [35]) that uses previous x, y, and z time
series values on the step size h grid, and the differential
equation for ẏ, to approximate y(t + k), where k is the
new, smaller step size. This will require a quadrature
method for which the input and output step sizes can be
arbitrarily adjusted, since the input data has step size
h and the output has step size k. We used a modified
“fractional-step” multistep method that uses arbitrary
h, k and can be built with arbitrary order. As an exam-
ple, if h = 5k, a useful fourth-order multistep method for
ẏ = f(y) is

y(ti + k) ≈ y(ti) + k

4∑
j=1

bjf(y(ti − (j − 1)h)) (2)

where [b1, b2, b3, b4] = [3591,−1003, 533,−121]/3000. We
use an explicit method like (2) as a predictor, and then
use an analogous implicit method as corrector to improve
fidelity. The derivation and directions for carrying out an
explicit or implicit fractional-step multistep quadrature
method for arbitrary order and step sizes h and k are
given in the Supplementary Material.

Once y(ti + k) has been calculated on the entire time
grid, we use the delay-coordinates of the y variable at the
ti + k times to find its nearest neighbors and the corre-
sponding x and z values. This allows us to form a locally-
constant reconstruction of the x and z variables at time
ti + k, namely x(ti + k) and z(ti + k), by averaging their
respective nearest neighbors in delay-coordinate space.
Note the curious fact that although we only know the
differential equation for y, the modeled variable, we have
used the single equation to extrapolate our knowledge
to the unmodeled variables x and z at the new fine-grid
points. Now that we have computed values of x, y and
z at all ti + k times, we are in position to approximate
y(ti + 2k) with the same quadrature formula.
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FIG. 2: Forecasting an individual trajectory of the Lorenz-
63 y variable. Using the equation to supplement the forecast
(grey circles) is more accurate than the direct forecast method
alone (open circles). The black curve is the true y trajectory
and the black circles on the black curve denote the sampling
rate (h = 0.2).

The same idea is repeated to compute values at ti+2k,
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ti + 3k, and so forth until all variables x, y and z are
known on the finer k-grid. The result of this procedure
is essentially an interpolation of the training set data,
where the accuracy is leveraged by knowledge of the par-
tial model. In Figure 1(a), we have available a train-
ing set of 2000 observations each of x, y and z from the
Lorenz system at h = 0.2 time intervals. These intervals
are divided into m = 10 substeps, and a 4-step, fourth-
order multistep quadrature method is used to integrate
the known y equation. As discussed above, we can infer
the x and z variables as well at the small stepsize, which
are shown in Fig. 1(b-c). For this example, we used 8
delays, with a time delay of 0.2 time units, and 10 neigh-
bors to reconstruct the unmodeled x and z variables at
the finer grid points.

We have described the method as working forward in
time in steps of size k from the known data point on the
h-grid. Since ordinary differential equations are time-
reversible, we can integrate backwards in time and aver-
age the two results to improve fidelity of the reconstruc-
tion.
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FIG. 3: Forecasting error statistics versus prediction horizon
T for the Lorenz-63 (a) y, (b) x and (c) z trajectories over
5000 realizations (standard error is less than 0.15 at all fore-
cast horizons). The data set consists of 2000 points sampled
at h = 0.2. Using our knowledge of the y equation, we can
interpolate the training data at subsample step size k = 0.02
and supplement the original training set. Direct forecasting
using this interpolated data set (lower trace) outperforms di-
rect forecasting with access to only the original data set (up-
per trace). Note the finer forecasting resolution of the lower
trace. (d) Even under a moderate amount of observational
noise (8% of the standard deviation), our hybrid forecasting
offers better short-term prediction of the y-variable than the
nonparametric forecast.

After supplementing the training data set with the new

interpolated values, direct nonparametric prediction al-
gorithms can be applied with the augmented data set. As
previously described, direct prediction begins by locating
the neighbors [y(t′), y(t′ − h), . . . , y(t′ − dh), x(t′), x(t′ −
h), . . . , x(t′ − dh), z(t′), z(t′ − h), . . . , z(t′ − dh)] of
the current delay coordinates [y(t), y(t − h), . . . , y(t −
dh), x(t), x(t−h), . . . , x(t−dh), z(t), z(t−h), . . . , z(t−dh)]
where d is the number of delays and h is the sampling
step size. Since the unmodeled x and z variables are
observed, their delay coordinates can be included to en-
hance the identification of appropriate neighbors. The
known y(t′ + T ), x(t′ + T ) and z(t′ + T ) values are then
used with a local model (for example locally-constant,
which is just an average of the neighbors) to predict
y(t + T ), x(t + T ) and z(t + T ). Note that both the
standard nonparametric method and the proposed par-
tial model method use direct prediction. The difference
is that the while the nonparametric forecast relies on the
original training set at sample step size h to find the
nearest neighbors, the partial model method has access
to a finer resolution training set at sample rate h/m. Ef-
fectively, we have leveraged the partial knowledge of the
system to build a more robust training set for finding
better neighbors during direct prediction. Additionally,
use of this partial knowledge allows us to predict at arbi-
trary step size h/m allowing for finer prediction resolu-
tion. This combination of parametric and nonparametric
methods results in a hybrid method which improves the
predictability of the system compared with nonparamet-
ric methods alone.

Fig. 2 shows an example of this improvement. Time
series data of length 2000 is known up to time t = 0;
the solid curve is the prediction going forward by the
partial model method, compared with the exact trajec-
tory (dashed curve). The circles represent the time series
sampling rate from the known data, and the squares de-
note the nonparametric (direct forecasting) predictions
without use of the partial model.

Fig. 3(a)-(c) compares mean forecasting error for the
partial model method and the nonparametric method un-
der noiseless conditions. Both methods used 8 delays
with a time delay of 0.2 units and 10 nearest neighbors
in constructing a locally-constant forecast model. The
partial model method consistently outperforms the non-
parametric method at all short-term forecasting horizons.
Note a side benefit of the method: Even though the sam-
pling rate of the data is sparse, predictions can be made
not only at the original sampling rate but at any de-
sired intermediate time horizon. Even under a moderate
amount of observational noise (Fig. 3d) the partial model
method offers an improved short-term forecast of the y-
variable when compared to the nonparametric approach.

For very small sampling rates, the advantage of the
partial model approach decreases. For example, when
the sampling rate is reduced to h = 0.04, the partial
model approach has prediction error RMSE equal to 1.00,
compared with 1.34 for the nonparametric method, for
prediction horizon T = 0.2. These errors are averaged
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over 1000 realizations.
Now that we have shown a simple example in detail,

we describe the method in more general terms. In the
general network setting, assume x1, . . . , xp are generic
observable nodes in the sense of Takens [1, 3], and nodes
x1, . . . , xp, . . . , xr, where r > p, form the complete in-
put set to x1, . . . , xp. Assume further that x1, . . . , xr are
observed in the training data at step size h and that
we know the evolution equation of xi for 1 ≤ i ≤ p,
say ẋi = fi(x1, . . . , xr). As above, we apply a multistep
method to the known equations to upsample the values
of x1, . . . , xp, and use a nonparametric method with the
delay vectors of x1, . . . , xp to approximate the remaining
unmodeled variables at the same time points, resulting in
an interpolation of all r variables at the smaller time step
k. This augmented training set is then used along with
a nonparametric prediction algorithm to obtain forecasts
for all r variables.

As an illustrative example we consider a network of
p + 1 nodes, comprised of a central Lorenz-63 attractor
driving a coupled ring of p Lorenz-96 nodes [36]. We
assume that we know the differential equation of the ring
nodes

ẋi = (xi+1 − xi−2)xi−1 − cixi + Fi + bix
1
p+1 (3)

for i = 1, . . . , p, and lack knowledge of the evolution

equations for all three Lorenz-63 variables x
{1,2,3}
p+1 . In

other words, we are driving the Lorenz-96 ring with the
x-coordinate of the classical Lorenz attractor, while as-
suming that we know the Lorenz-96 equations but not the
classical Lorenz equations. We form the training set from
observations of variables x1, . . . , xp, x

1
p+1 (not including

the y and z variables of the classical Lorenz, since these
variables do not occur in (3)) and attempt to forecast the
Lorenz-96 system.

Fig. 4 shows results from a Lorenz-96 ring consisting
of p = 4 nodes with Fi = 2 and bi = 1/8 for i = 1, . . . , 4
and [c1, c2, c3, c4] = [1, 1.2, 1.4, 1.6]. We collect 4000 data
points from each node of the network, sampled at h = 0.4.
For this example, the prediction was done using 6 delays
with a time delay of 0.4 units and 20 nearest neighbors to
construct a locally-constant forecast. Without knowledge
of equation (3), we can use nonparametric methods to
forecast (upper trace in Fig. 4(c)). Assuming knowledge
of equation (3), we can interpolate the training data from
each node (Fig. 4(a)) and simultaneously reconstruct the
Lorenz-63 forcing term (Fig. 4(b)) at step size k = 0.05.
By augmenting the training data with these interpolated
values, the hybrid prediction (lower trace in Fig. 4(c))
offers an improvement in short-term prediction accuracy
compared to the nonparametric method.

As a hybrid method, this forecasting approach at-
tempts to explore the middle ground between data-driven
statistics, where no model information is known, and the
parametric case with complete knowledge of the model.
We have tried to place the idea in as general a setting
as possible, but it is clear that many further adaptations

can be formulated, depending on the different sampling
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FIG. 4: Improved short-term forecasting of a small network.
(a) Example interpolation of one node from the four node
chaotic network driven by Lorenz-63. The dataset (black
circles) is used to interpolate Lorenz-96 (grey circles). (b)
At each step of the interpolation, delay-coordinates recon-
struct the unmodeled Lorenz-63 forcing term (grey circles).
(c) Mean forecasting error of the chaotic network over 300 re-
alizations. Standard error is less than 0.01 at all forecast hori-
zons. (Fewer realizations were necessary compared with Fig. 3
due to smaller variation in the dynamics.) Direct forecasting
using this interpolated dataset (lower trace) outperforms di-
rect forecasting with access to only the original dataset (upper
trace).

rates of distinct variables, and varying levels of confidence
in the separate model equations. The fractional-step in-
tegrators discussed here are the foundation of the idea,
and generalizations to partial differential equation mod-
els may also be feasible and effective.

The limitations of this new hybrid prediction method
are similar to those faced by nonparametric approaches:
As the effective dimension of the dynamics increases,
even short-term prediction becomes more difficult. The
role of noise is also important. We have emphasized the
noiseless case to more clearly explain the method. For
data with observational or dynamical noise, the partial
model assumption that a differential equation is satisfied
no longer holds exactly. In such cases the method should
be generalized to include noise in the underlying model.
An optimal approach for this case is left for future work.
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