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Lattice spin-fermion models are important to study correlated systems where quantum dynamics
allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are
treated quantum mechanically while the slow variables, generically referred to as the “spins”, are
treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED+MC)
is extensively used to solve numerically a general class of lattice spin-fermion problems. In this
common setup, the classical variables (spins) are treated via the standard MC method while the
fermion problem is solved by exact diagonalization. The “Traveling Cluster Approximation” (TCA)
is a real space variant of the ED+MC method that allows to solve spin-fermion problems on lattice
sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm
in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models
easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice
sizes studied for this family of models.

I. INTRODUCTION

The rich physical properties displayed by many mate-
rials arise from strong correlations among multiple de-
grees of freedom [1, 2]. Studying theoretically these ma-
terials has been a long standing challenge for materials
theory since treating those coupled multiple degrees of
freedom (DOF), such as the spin, charge, orbital, and
lattice, on equal footing in a model Hamiltonian calcu-
lation is extremely difficult. As a consequence, accurate
computational methods that render such complex prob-
lems more tractable have always been of considerable in-
terest. The Dynamical Mean Field Theory (DMFT) [3],
Dynamical Cluster Approximation (DCA)[4, 5], Determi-
nant Quantum Monte Carlo (DQMC) [6–8], and Density
Matrix Renormalization Group (DMRG)[9] are some of
these numerical approaches that have led to important
insights into the physics of correlated materials. These
methods treat fully quantum systems but, however, they
suffer from serious limitations. For example, DMRG is
restricted to one dimensional systems, DCA – an im-
provement over DMFT – only captures short range non-
local correlation, while DQMC – that can access about
1000 sites – suffers from the sign problem that typical
limits the method to high temperatures and cannot be
used for multiband systems where the sign problem is
more severe.

Another useful approximation is to exploit the relative
slow dynamics of some degrees of freedom as compared to
others. As discussed below, this approach allows for the
modeling of some complex materials with relative ease
and on reasonably larger lattice sizes.

In materials such as the manganites [10, 11], double
perovskites [12], rare earth nickelates [13, 14], diluted
magnetic semiconductors [15], and others, the slow and
fast separation is a good approximation. For example,
in the manganites, the electrons in the eg orbitals have
faster dynamics as compared to the dynamics of the lo-

calized t2g electrons and also compared to the Jahn-Teller
and breathing mode phonons [10, 16]. This allows for a
separation between “fast” and “slow” DOF. The quan-
tum+classical approach treats the slow variables in the
strict adiabatic limit, i.e., classically. Generically the
slow variables that are considered classically are called
“spins” and for this reason the models are commonly re-
ferred to as “spin-fermion” models.

The main advantage of this approximation is that the
original fully interacting quantum many body problem
can be mapped into a problem of noninteracting fermions
coupled with, in general, spatially fluctuating classical
fields. In the past, such classical+quantum approaches
have been extensively used. Some well known methods in
this context include the study of electron-phonon systems
[17, 18], the Born-Oppenheimer approximation [19], and
the Car-Parrinello method [20]. Spin-fermion models for
the manganites [16, 21–27], double perovskites [28, 29],
nickelates [30, 31], copper based high temperature super-
conductors [32–36], BCS superconductors [37–40], and
the recently discovered iron superconductors [41–46] have
all exploited the slow and fast variables to considerable
success.

Solving such spin-fermion models entails the search
for the optimal configurations of the classical DOF that
minimize the free energy. To achieve this goal, first the
fermionic problem is diagonalized for a fixed configura-
tion of the classical DOF and the energy is computed.
The classical variables are then updated and the energy
is recalculated in the updated background. The updates
are accepted or rejected via the Metropolis algorithm.
Finally the procedure is repeated until thermal equilib-
rium is reached and observables can be measured with
reasonable accuracy.

This Exact Diagonalization + Monte Carlo (ED+MC)
approach is free from the “sign problems” suffered by
Quantum Monte Carlo methods and it can also include
the study of long range spatial correlations unlike simple
DMFT approaches. Over the years the ED+MC method
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has enjoyed considerable success in understanding corre-
lated materials phenomena where the separation of slow
and fast DOF is possible [16]. However, even after the
considerable numerical simplification due to the quan-
tum+classical treatment, the ED for the fermion problem
still has to be carried out at every update of the classical
fields resulting in thousands of diagonalizations at every
temperature where the calculation is performed. Further-
more, the simulated annealing from high to low temper-
atures, which is often required to avoid being trapped in
metastable states, requires sequential temperature steps.
All these steps amount to a prohibitively large number of
diagonalizations to be performed in a standard ED+MC
calculation. This typically limits the accessible lattice or
system sizes that can be solved using ED+MC to ∼ 102.

The ability to solve such spin-fermion problems on
larger systems is needed to address issues such as large
length scale phase separation tendencies, to achieve accu-
rate estimations of thermodynamic order and transport
properties with small size effects, and to be able to per-
form reliable finite-size scaling analysis. Moreover, stud-
ies of the iron based superconductors have pointed out
the need to study spin-fermion and Hubbard-like models
incorporating multiple orbitals [47–51]. This task is chal-
lenging even on small system sizes due to large Hilbert
spaces. In these regards the simple “Traveling cluster
approximation” (TCA) [52] is an important step forward
as it allows access to system of ∼ 103 sites. This ap-
proximation is discussed below. In this publication, we
present an alternate way to organize the TCA algorithm
that allows for massive parallelization of the method. As
a result, the calculation of spin-fermion models can now
be performed on system sizes up to ∼ 105 sites. Addi-
tionally, as discussed later, in the present generalization
very large traveling clusters can be used for the TCA cal-
culation. The small size of the traveling clusters has, till
now, remained a limitation of the TCA approach.

Below we describe the parallelization scheme and
benchmarks that we developed. As discussed in the text,
techniques of the nature developed here will be instru-
mental in addressing problems in multiband Hubbard
models as well.

The paper is organized as follows. In section II, we ex-
plain the TCA technique and compare it with ED+MC.
In section III, we discuss our approach for parallelizing
the TCA algorithm. In section IV, we present bench-
marking results and in section V we provide some phys-
ically relevant results for the one orbital Hubbard model
both in two and three dimensions and compare them with
existing literature. In sections VI and VII, we discuss
some pertinent numerical issues and in section VIII, we
present the conclusions of the manuscript.

II. TRAVELING CLUSTER APPROXIMATION

Let us begin by briefly discussing the basics of the
ED+MC and TCA approaches.

FIG. 1. (color online) Two dimensional schematic of the TCA
approach. Here a finite lattice is displayed with classical DOF
at each site, represented by the red arrows. The Hamiltonian
defines the coupling of the classical spins with the itinerant
electrons on a lattice. The TCA algorithm consists of propos-
ing an update at a particular site (encircled in blue) for the
classical spins. The update is accepted or rejected based on
the energy of a cluster built around that site, indicated by the
shaded (green) rectangle. Here the cluster size is Nc = 9. In
a system sweep, the above procedure is carried out by visiting
each site of the system sequentially.

a. ED+MC : As mentioned before, the spin-fermion
model consists of a classical component and a quantum
component. A Hamiltonian for spin-fermion models de-
fine the coupling between the classical DOF and the
electrons and among the classical variables themselves.
In usual ED+MC approaches, the classical variables at
each site are updated one at a time and the energy of
the system is calculated by diagonalizing the Hamilto-
nian and adding the classical contribution. This energy
difference, before and after the update at a site, is used
to accept or reject the proposed update. The process is
then repeated over all of the sites visiting them either
serially or randomly. This constitutes a single system
“sweep”. The combined algorithm of ED+MC is numer-
ically rather costly, since the exact diagonalization must
be performed at every step and the cost scales as O(N3)
with N the number of lattice sites. Additionally, with
a sequential system sweep, the cost of a Monte Carlo
system sweep scales as N4 at each temperature.

b. TCA scheme: To reach reasonably large system
sizes, a real space variant [52] of the ED+MC approach
has been developed. As will be discussed below, this
allows for a linear scaling with the system size, N , as
opposed to the N4 scaling of the computational cost with
ED+MC.

In the TCA scheme one defines a region (cluster)
around the site where a MC update is attempted. The
cluster has a linear dimension Lc. Then, in a two dimen-
sional square lattice, for example, the number of sites in
the cluster is Nc = L2

c . Such a cluster is shown in Fig. 1.
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FIG. 2. The flowchart for a single sequential Monte Carlo
system sweep in the TCA approach. Here, we consider a
lattice of N sites. S[ ] is an array containing the classical
DOF at all the N sites. C[is] is an array of size Nc that
reads in the classical DOF from S[ ] around the “update site”
labeled by is. The loop over is runs over all the N sites of the
system, ensuring that the cluster is built around all the sites
sequentially and that an update is proposed at each site. The
flowchart is discussed in the text.

The cluster is built around a site called the “update”
site that it is encircled in blue. In this example Nc = 9.
The key difference with ED+MC is that the proposed
update is accepted or rejected on the basis of the energy
difference of the cluster and not the full system. As a
result one needs to diagonalize only the cluster Hamilto-
nian which costs N3

c as opposed to N3 for the full system
diagonalization in ED+MC.

The analytical basis for the approximation of using a
smaller cluster for the annealing process lies in the princi-
ple of “nearsightedness” of electronic matter, as discussed
by W. Kohn [53, 54]. Furthermore, the method has been
extensively tested and benchmarked in numerical stud-
ies. These tests include the study of clean and disordered
Holstein and Double Exchange models where both long
range ordering and transport have been studied and com-
pared with ED+MC [23, 52]. Additionally, the approach

has been successful in studying a large class of correlated
materials such as the manganites [55, 56], double per-
ovskites [57], and iron based superconductors[58]. It has
also been used to study the BCS/BEC crossover[59] and
disorder effects on superconductivity [60]. Consequently,
in the present publication we will assume the validity of
the approximation without further discussion. The above
update scheme is sequentially employed at every site of
the system. The cluster of size Nc is built around ev-
ery site where the update is attempted, hence the name
“Traveling” cluster approximation. Thus, within TCA,
and at each temperature, the computational cost of ED
for a system with N sites is O(N3

c ) and the cost of a full
sweep of the lattice is NN3

c or linear in N as opposed to
N4.

Many thousand MC system sweeps are performed at
every temperature and for each temperature a large num-
ber of annealed classical configurations are stored. These
are later used to construct and diagonalize the full sys-
tem if it is necessary for calculating the desired output
quantities. They are also useful for studying correlations
among the classical variables.

As discussed in the original TCA paper [52], the ge-
ometry of the cluster is chosen to be the same as the
system. Furthermore, one has to impose periodic bound-
ary conditions on the cluster while calculating energies.
These conditions ensure that in the limit of cluster sizes
approaching the actual system size, the spectrum be-
comes identical. The periodically identified cluster can
be considered to be an independent ensemble in contact
with the full system where equilibrium is maintained in
a grand canonical framework. An important aspect of
this setup is that any site on the cluster can be chosen
as the “update site”. In Fig. 1 we show this update site
to be equidistant from all the edges. However, any other
site, for example, the one in the top left corner, is also
a equivalently good choice. This equivalence has been
tested in many numerical studies [23, 52, 55] and we also
checked numerically the same concept in the context of
the Holstein model in section VII.

c. TCA flowchart: We end this section with the TCA
algorithm, and the corresponding flowchart is presented
in Fig. 2. In the flowchart the following nomenclature is
used, and the same will be used for discussing the PTCA
approach as well. We consider a system with N sites. S[ ]
is an array containing the classical variables at each site
and it has the length N , assuming one classical variable
per site. Hfull{S[ ]} is the Hamiltonian for the full sys-
tem, generated from the classical variables in S[ ]. The
array C[is] is of length Nc and it is the array holding the
classical DOF at the cluster sites built around the iths site
of the system. So this array reads the relevant part of
S[ ]. For example, in Fig. 1 C[is] will read in, from S[ ],
all classical variables that are at the lattice sites covered
in the green square. From this setup the cluster Hamil-
tonian, Hclus{C[is]}, is constructed around the iths site.
The iths site, where the update is proposed and around
which the cluster is built, is referred to as the “update
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FIG. 3. (color online) One dimensional example using N = 8
and Nc = 4. The light blue sites are the un-updated sites.
The red (hatched) site is chosen to be the site where the up-
date is attempted (update site). The clusters are indicated by
the boxes. The different rows present the cases of the cluster
traveling sequentially from left to right during a single sys-
tem sweep. The filled (blue) sites indicate the sites where
an update has been attempted. The system and cluster both
have periodic boundary conditions. For rows 1 through 5, the
clusters are built based on the original (un-updated) classi-
cal variable configurations and can be constructed simultane-
ously instead of serially as in TCA. For rows 6 through 8, the
clusters require the results of the update attempts on sites 1
through 3, respectively. So these clusters have to wait till row
4 and then can be built simultaneously.

site.” With these notations, the following are the main
steps explaining the TCA flowchart presented in Fig. 2.

1. In a single Monte Carlo system sweep, the index is
loops over all N sites of the full system. Around
each of the sites, is, a cluster will be built one at
a time, traveling sequentially, as is sweeps over the
full lattice.

(a) C[is] reads part of S[ ] around the site is.

(b) Hclus{C[is]} is generated and diagonalized.

(c) The classical DOF is randomly modified at
site is.

(d) Hclus{S[ ]} is generated with the update and
rediagonalized.

(e) A Metropolis algorithm decides if the pro-
posed update is accepted or not.

(f) If accepted the iths element in S[ ] is changed
to the updated value.

2. The above process is repeated for all sites of the
system.

III. SCHEME FOR PARALLELIZATION

We now illustrate that it is possible to further reor-
ganize the TCA algorithm to achieve parallelization.

For this we will use Message Passing Interface (MPI)
parallelization.

a. PTCA scheme: In Figure 3, a one-dimensional
lattice example is used to illustrate the parallelization
scheme of TCA. In the figure we show a N = 8 site sys-
tem with a Nc = 4 site traveling cluster indicated by a
rectangle. The update site is marked by red (hatched)
circle. We choose this site to discuss the method, as op-
posed to the natural choice where the update site is at
the center of the cluster, primarily to keep the discussion
simple. We later show that the results of the update site
being at the center are very similar to those obtained
using a site at the boundary of the traveling cluster.

Let us start with some initial values for the classical
DOF at all the sites. The sites where an update has not
yet been proposed are displayed by open circles. The
rows from top to bottom indicate the different steps of a
single MC system sweep where the update site traverses
from left to right sequentially. The sites where the update
has been attempted are (filled) blue circles. Here for
simplicity of presentation, we discuss the case where the
‘update site’ is the site on the extreme left. Other choice
of update sites are discussed in Sec VII. From the figure
it is easy to see that assuming the MC system sweep
starts from row one, the clusters in the first five rows do
not depend on the update of the previous row. Rows six,
seven, and eight depend on the outcome of the update
attempts at sites one; one and two; and one two and
three, respectively. In general, there are N − Nc + 1
clusters of the former kind and Nc − 1 of the later kind.
We refer to the later kind as “boundary clusters”.

In TCA the cluster diagonalization involved in all of
the eight steps are carried out sequentially. The obvious
way to parallelize the TCA is to diagonalize the indepen-
dent sets of clusters in parallel. The simplest strategy for
this is to divide the MC system sweep into two blocks,
L′1 and L′2, each consisting of four of the eight steps of
the MC sweep. It is easy to see that in this way all the
four clusters in the block L′1 can be diagonalized on four
processors simultaneously. Once the updated results for
L′1 are received, they are used to generate the clusters
for the L′2 block which can now be diagonalized in paral-
lel. Thus the computation cost is 2N3

c rather than NN3
c

as in TCA. For a d dimensional cubic system, the cost
of PTCA scales as 2dN3

c . The 2d factor comes from the
correct accounting of all boundary clusters that can not
be diagonalized simultaneously. This still is very advan-
tageous as compared to the NN3

c scaling of TCA.

In our approach, the one dimensional global system is
broken into two blocks, each having N

2 number of sites.
In two dimensions, the global square system is broken
into four blocks and into eight in three dimensions.

b. PTCA flowchart: We now discuss the implementa-
tion of PTCA. The flowchart is presented in Fig. 4 and it
is discussed below. For simplicity we discuss specifically
the one dimensional case, but a generalization to higher
dimensions is straightforward.
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FIG. 4. (color online) Parallelized TCA flowchart for a single system sweep. Unlike Fig. 2, the loop over the total number of
sites of the system is split into two loops: the outer one runs over the number of blocks, while the inner one runs from 1 to
the ratio of the number of sites in a block (NS) to the number of processors (NP ). The gray rectangles, labeled PC1, PC2, ...,
PCNP , are computed on processors with rank 1 through NP , respectively. The steps in a typical gray block are displayed on
the left. See text for discussion.

For PTCA we will useNP+1 processors with ranks 0 to
NP . As discussed below, of these the rank=0 processor is
the master and is involved only in receiving and sending
information, while the rest of the NP processors are the
ones that will be used for diagonalization of clusters. As
in the TCA case, we define S[ ] as the array holding all the
classical DOF for an N site one dimensional system. As
discussed above, we divide the system into two blocks,
the loop label running over the blocks is “K”. Within
each block, another loop, labeled by “I”, runs from one
to NS/NP . Here NS is the number of sites within a

block and we ensure that NS/NP is an integer. Note
that if NS = NP the clusters built at all the NS sites can
be diagonalized in one go. In PTCA the “update site”,
denoted by P , is a function of NS , NP , and the rank of
the processor on which the cluster built around P is to
be diagonalized. Thus the update site P is denoted by
P (K, I,Rank) in the flowchart. C[P ] is the cluster built
around the update site P (K, I,Rank). Hfull{S[ ]} and
Hclus{C[P ]} have definitions similar to that for TCA.

The MPI commands used are standard [61] and will
not be repeated here in detail. We use MPI Init,
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MPI Comm size, MPI Comm rank to allocate and assign
labels (ranks) to NP +1 number of processors. The ranks
of the processors range from 0 to NP .

1. Loop over blocks K (= 1, 2) for our one dimensional
example.

2. Loop over I goes over 1, 2, .., NS/NP .

3. For each I, assign the construction of the cluster
around the “update site” P (K, I,Rank = R) and
the subsequent update procedure to the processor
with Rank = R, (R > 0). The NP such assign-
ments are depicted with small gray NP rectangles
in Fig. 4.

4. For a processor with Rank = R, (R > 0), C[P ] will
read the relevant Nc site classical DOF data from
S[ ]. It will then diagonalize Hclus{C[P ]} before
and after proposing an update for the classical vari-
able at P . If accepted, the update of the P th site
is sent to processor with Rank=0 using MPI SEND.
This is shown in the expanded gray rectangle on
the left of Fig. 4.

5. Rank=0 processor receives update from all other
processors with ranks 1 to NP using MPI RECV and
suitably modifies the S[ ] on Rank=0 processor.

6. The “I” loop ends.

7. The Rank=0 processor broadcasts the modified S[ ]
to all the processors using MPI BCAST, once updates
from all processors have been received.

8. End the loop K.

The parallelization scheme holds for any dimensions,
as long as Nc < N which we guarantee by definition. For
the simplest case of NS = NP , the estimated total cost
of P1 MC sweeps with P2 full system diagonalization for
output calculations is P12dN3

c +P2N
3 (we stress that to

calculate observables that involve the quantum variables,
a full system diagonalization is needed and this is done
a number P2 of times during the full run. For observ-
ables involving the classical degrees of freedom a full di-
agonalization is not needed.) This estimation represents
a huge improvement in performance compared to TCA
for which the computational cost for the same would be
P1N ×N3

c +P2N
3. The improvement is significant when

P1 is a very large number, which is always the case. In
the next section we present actual results when NS > NP
that establishes that even in this case the reduction of nu-
merical cost is significant. For a fixed P1 and P2, beyond
a certain system size, the full system diagonalization will
dominate the total computational cost for the PTCA if
these are “done on the fly”. We suggest saving config-
urations and performing the full system diagonalization
separately. A strategy for this process using Scalable
LAPACK is suggested in section VI.

IV. NUMERICAL BENCHMARKS

Let us now discuss benchmarks comparing TCA with
PTCA. For this purpose we will use the following spin-
fermion Hamiltonian:

HHubb−MF = −t
∑
〈i,j〉,σ

c†i,σcj,σ (1)

+
U

2

∑
i

(〈ni〉ni −mi.σi)

+
U

4

∑
i

(mi
2 − 〈ni〉2)− µ

∑
i

ni.

This Hamiltonian is the SU(2) invariant Hartree-Fock
mean field Hamiltonian for the Hubbard model. We have
recently established [62] that if the mean field expecta-
tion values in HHubb−MF are treated as classical vari-
ables and annealed via a classical MC process involving
a slow reduction of the temperature, then the finite tem-
perature results for all the observables we tested agree
qualitatively and often quantitatively with Determinant
Quantum Monte Carlo. In this model mi is the mean
field magnetization at the ith site and it is treated as
a classical vector. t is the hopping parameter and U is
the Hubbard onsite repulsion. We further set 〈ni〉 = 1
for the case of half filling. This model that involves free
electrons interacting with the classical spins defines our
spin fermion model. We will present results in two and
three dimensions and compare with those obtained using
ED+MC and TCA in our earlier work [62]. The meth-
ods used in [62] have also been independently derived
and applied in the context of the Hubbard model on an
anisotropic triangular lattice [63] and on geometrically
frustrated face centered cubic lattices [64]. Earlier simi-
lar approaches but for the attractive Hubbard interaction
(negative U) were reported in Refs.[37–40, 65–67].

For the results presented in the present paper, the TCA
cluster size used is Nc = 43 in three dimensions and Nc =
42 in two dimensions. We also checked the independence
of our results to variations in the traveling cluster size.

For a L×L×L system in three dimensions, with a total
number of sites N = L3, the matrix size of the Hamil-
tonian for a given configuration of classical fields {m} is
2N × 2N . The factor of two comes from the two spin
species of the fermions. Figure 5 is the main numerical
result that establishes (i) the efficiency of PTCA over
TCA and (ii) the dependence of the performance of the
PTCA on the number of processors NP . In (a) we dis-
play the bare time, without focusing on measuring phys-
ical results, for a N = 83 lattice in three dimensions with
cubic geometry. We have performed 2000 MC system
sweeps at a fixed temperature, that amounts to 83×2000
or 1.024 × 106 exact diagonalizations of 2 × 43 matrices
defining the traveling clusters. These are performed using
the PTCA approach and employing different numbers of
processors. The corresponding time needed is plotted in
blue against NP . Since large NP increases the communi-
cation time between the processors, for comparison in (a)
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FIG. 5. (color online) (a) Time required for asynchronous
ED and full ED with message passing against the number of
processors NP at a fixed U = 8.0t. See text for definitions.
The data is presented for a N = 83 lattice using 2000 MC
system sweeps at a fixed temperature. The dashed line is
the plot of 1/NP ; (b) Time needed for 200 system sweeps for
the full calculation with message passing plotted against L,
for a system size N = L3. The data for different number of
processors, NP , are shown. NP values are indicated on the
right. The dashed line indicates that the computational cost
for solving a N = 323 system using PTCA with 64 processors
is almost the same as the time needed using TCA on an 83

system with a single processor. Calculations were done using
multiple Intel Xeon E5-2670 processors which have eight cores
with base frequency of 2.6 Ghz and 8 GB RAM per processor.

we have also shown the time required to diagonalize the
same number of matrices but with no interprocessor com-
munication, labeled as asynchronous. This is indicated
in red. Also the curve 1/NP (the dashed line) establishes
that the time needed for the asynchronous ED varies as
1/NP within the PTCA scheme. When the processors are
allowed to communicate (using MPI SEND, MPI RECV and
MPI BCAST), the time increases with Np, but this only
adds a fews seconds to the total time even for a large
number of processor. This is labeled as Full in Fig. 5 (a).

In the previous section we had estimated that the cost
of a system sweep in PTCA is P12dN3

c , for P1 diagonal-

izations of the traveling cluster. However, this assumed
that all independent traveling clusters in one block can be
diagonalized simultaneously. Since the system sizes can
be very large, this is seldom possible. As a result only a
fraction of traveling clusters in one block can be diagonal-
ized simultaneously. It is easy to check that this would
lead to the 1/NP dependence seen in Fig. 5 (a) apart from
the additional processor communication time. In (b) we
show the time needed for 200 MC system sweeps within
PTCA against L, for a N = L3 system. This is displayed
for different NP values indicated on the right. From (b)
it is clear that the time for the 200 system sweeps for a
N = 83 system with single processor (or within TCA)
is almost equal to the PTCA cost for a 323 system with
NP = 32.

With this clear advantage of PTCA, in the next section
we discuss some particular physics results and compare
them with existing literature.

V. RESULTS FOR THE HUBBARD MODEL IN
TWO & THREE DIMENSIONS

In Fig. 6 we discuss the magnetic properties of the
Hubbard model in two and three dimensions by studying
Hamiltonian Eq. (1) at finite temperature using PTCA.
In our recent work we have extensively studied this sys-
tem using EDMC and TCA [62]. At half filling the Néel
temperature, TN , has a non monotonic dependence on
U . These results are presented here in two and three di-
mensions. In Fig. 6 (a) we plot TN against U for three
different system sizes, 43, 163, and 403. These are all
obtained using PTCA. The 43 results are identical to the
43 results in our earlier work. For the larger system sizes
studied here we find that TN converges and it has a weak
dependence on the finite size of the system. We em-
phasize that until now in the literature there have been
no results for spin-fermion models employing such large
number of sites. We use these large system values of TN
to perform finite size scaling. In Ref. 62 we had estab-
lished that the magnetic structure factor obtained with
the TCA agrees with the ED+MC data at all temper-
atures. This indicates that finite size effects associated
with the cluster size do not affect the finite temperature
evolution of the magnetic state appreciably. Thus, the
finite size scaling using TCA or PTCA is justified.

For these results on finite systems, the bulk TN es-
timates are obtained by an inspection of the S(π, π, π)
data shown in (b). Information regarding the Néel AFM
order is obtained from the magnetic structure factor for
the m variables,

S(q) =
1

N2

∑
i,j

eiq·(ri−rj)〈mi ·mj〉, (2)

where q = {π, π, π} is the wavevector of interest.
Then, assuming that the correlation length ξ(TN (L)−

TThermoN ) = aL on a L3 system, and given that
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FIG. 6. (color online) (a) TN vs. U/t for system sizes with
43, 163, and 403 sites. (b) The spin structure factor S(π, π, π)
vs. temperature, for system sizes 43, 63, 163, and 403 at U =
8.0t. The results are obtained using a 43 traveling cluster and
16 processors. The data is averaged over 200 configurations
obtained from 2000 MC steps for the cases N = 43 and N =
63, while only 1250 MC steps were used for N = 163 and
N = 403 with an average over 50 configurations. The magenta
arrow indicates the thermodynamic TN in this case. (c) and
(d) present the corresponding results in two dimensions. (c)
TN vs. U/t and (d) the corresponding S(π, π)’s for system
sizes 82, 1002, and 2562. The results are obtained using a 42

traveling cluster and 16 processors.

ξ(x) ∝ |x|−ν , one arrives at the scaling form, TN (L) =
TThermoN + bL1/ν . Here, L denotes data from a system
size N = L3. We plot the finite system Néel tempera-
tures against 1/L and use TThermoN , b, and ν as fitting
parameters. Details of this process are presented in our
earlier work, and here in Fig. 6 (a) we simply present the
results (green diamonds). We have found that indeed
both the 163 and 403 results converge to the true ther-
modynamic Néel temperature. For the antiferromagnetic
structure factors for different system sizes in (b), we find
that the PTCA results for N > 163 are virtually identical
and appreciably better than the 43 and 63 results which
have non-negligible finite size effects. The arrow in (b)
indicates the thermodynamic TN as obtained from finite
size scaling for the case U/t = 8.

In (c) and (d) we show the corresponding results in
two dimensions. Here, as it is well known, in principle
the Mermin-Wagner theorem establishes that there is no
true TN in two dimensions for an O(3) magnet. However,
this theorem is valid only for short-range spin-spin inter-
actions. In our case, the integration of the fermions leads
to effective spin-spin interactions at all distances. The
rate of decay of the couplings with distance is unknown,

except in simple cases such as RKKY. This makes the
detailed finite size analysis of the two dimensional data
of much interest. Panels (c) and (d) indicate that the
N = 1002 and N = 2562 results, while significantly lower
than the 82 result, are very close to each other suggest-
ing convergence. However, this subtle matter requires
further discussion and larger clusters to be fully under-
stood and our goal in this section is merely to check the
performance of the proposed PTCA method. The clarifi-
cation of the validity of the Mermin-Wagner theorem for
spin-fermion models is left for the future.

VI. DIAGONALIZATION OF FULL SYSTEM

In this section we will discuss the strategy for diagonal-
izing large full systems to calculate fermionic observables
that in principle require all eigenvalues and all eigenvec-
tors for each configuration of classical variables. In the
PTCA scheme, given the large matrix sizes for the full
system, we find that it is best to first simply anneal the
classical variables, then store many equilibrium configu-
rations at each temperature generated during the Monte
Carlo process, and then at the end perform full system
diagonalizations to calculate the fermionic observables
separately. In the special cases where we are interested
only in the correlation among classical variables of course
we can certainly measure those correlations for each MC
configuration. But for the fermionic observable cases that
require, e.g., full Green functions we suggest using Scal-
able LAPACK for the parallel diagonalization of the full
system using the equilibrium configurations.

Let us assume NQ are the number of processors used
for diagonalizing the large matrices employing Scalable
LAPACK. Figure 7 (a) shows the memory required to
store all of the arrays that are necessary to diagonalize
a large double complex hermitian matrix. It should be
noted here that the Hamiltonian as one complete array
is never created on an individual processor. Instead, the
Hamiltonian is evenly spread out in blocks among all of
the processors. This greatly reduces the total RAM re-
quired as well as the RAM per processor [68]. The total
RAM and number of processors for a given system is a
constant, therefore the ratio of RAM per processor is a
fixed quantity. For example, in the traveling cluster used
for these calculations, every job (run) submitted is allo-
cated 2 Gb per processor. If one job uses more RAM than
this, some processors can not be used since they do not
have memory available to them. Therefore, when diag-
onalizing large matrices using the number of processors
that approaches this fixed ratio will optimize the CPU
time and memory usage. In (a) we see that, as expected,
the memory requirement grows with matrix and system
size, but reduces with increasing NQ. The NQ values of
4, 8, and 16 are indicated in the figure. The gray re-
gion in (a) is where memory needed per processor is 4Gb
or less. For typical computational resources of multicore
workstations this is easily available. This requirement
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FIG. 7. (color online) Memory and time needed for a sin-
gle diagonalization using Scalable LAPACK. In (a) we show
the RAM (in Gb) per processor that is required to store the
arrays necessary to diagonalize a double complex Hermitian
matrix. The gray region is defined by a limit of 4Gb RAM
per processor, which can diagonalize a Hamiltonian for a 243

system (27648 dimensional matrix) with 8 processors. The
data is also presented for 4 and 16 processors; (b) the time
needed for a single diagonalization for 163 and 243 systems
vs. the number of processors NQ used in Scalable LAPACK.

corresponds to a system size of about 243 sites.
The other issue is the time needed for diagonalization.

In Fig. 7 (b) we present the typical time needed for single
diagonalization corresponding to N = 163 and 243 sys-
tem sizes or matrix sizes 8192× 8192 and 27648× 27648,
respectively. The results are for NQ = 4, 16, 24, and 32
processors. In both cases the time gain is quite significant
with increasing NQ. If all the configurations over which
the output quantities are to be averaged at a fixed tem-
perature are calculated in parallel, then for NQ = 8 we
require only about 0.1 hours of additional computation
time for a N = 163. For N = 243 the additional time
is about 2 hours. The additional time goes down further
for larger NQ. High end workstations and small clusters
should easily be able to supply the resources needed for
such system sizes.

VII. DISCUSSION

In this section, we will discuss two related numerical
issues and provide an estimate for the cost of solving
spin-fermion models derived from multiorbital Hubbard
models:

a. Cluster size effects: The first is the dependence of
results on the traveling cluster size. In Fig. 8 (a) we show
the antiferromagnetic structure factor vs. temperature
for a lattice with 322 sites employing different sizes for
the traveling clusters, using the same mean field Hubbard
model discussed before.

While small cluster sizes are good enough to capture
the long range order as well as the rough location of the
transition temperature for this model, the finite cluster
sizes introduce finite size effects of their own. To reduce

these, one needs to employ larger traveling clusters. In
Fig. 8 (a) we see that finite size effects in TN reduce
rapidly with larger clusters, Nc = 122 and 162, for the
same fixed system size. Furthermore in physical problems
where there is long wavelength order, large Nc would be
crucial to capture the correct phases. In TCA, the lin-
ear dependence of the numerical cost on the system size
limits Nc to 82. Larger Nc = 122, 162, results are only
possible within the current scheme. We would like to em-
phasize that this is an additional significant improvement
over TCA.

b. Choice of the update site: In Fig. 2 we had displayed
a scheme for setting up the PTCA. There we had chosen
the leftmost site of the cluster as the site where the up-
date is attempted. Choosing this leftmost “update site”
was mainly for convenience. Here we briefly demonstrate
the effect of choosing other update sites. The paralleliza-
tion, of course, applies to any such choice. In Figs. 8 (b)
and (c) we show the comparison of results for different
choices of the update site. For this purpose, we study the
adiabatic Holstein model in one dimension at half filling.
The Hamiltonian for this model is

HHol = −t
∑
〈i,j〉,σ

c†i,σcj,σ (3)

+
∑
i

(λxi − µ)(ni − 1) +K/2
∑
i

x2i ,

where ni = (ni,↑ + ni,↓). In the particle-hole symmetric
adiabatic Holstein model, the classical variables {x} at
every site denote the static lattice distortions. λ is the
electron lattice coupling and K regulates the elastic cost
of the lattice deformation. In this model the goal is to
generate equilibrium configurations of the {x} variables
at a given temperature through importance sampling. At
half filling the model exhibits a checkerboard charge or-
der together with large and small lattice distortions [69].
The charge order can be probed by plotting the structure
factor for the classical variables. This is defined by

N(q) =
1

N2

∑
i,j

eiq(ri−rj)〈xi · xj〉, (4)

where q = π is the wavevector of interest.
In our study two schemes were used: scheme ‘1’ where

the update site is the leftmost site of the traveling cluster,
and scheme ‘2’ where the (Nc/2 + 1)th site is the update
site. In the one dimensional study with N = 32 and
Nc = 8, the sites 1 and 4 are the choices for the update
site and the two schemes are referred to as ‘corner’ and
‘central’, respectively. We do not present the details of
the algorithm for ‘central’ scheme here, which is very
similar to the earlier scheme. We just mention here that
one needs to choose a different way of distributing which
clusters are to be diagonalized in parallel. The numerical
advantage is comparable in both schemes.

In Fig. 8 (b) we study the correlation between the clas-
sical variables. N(q = π), as defined before, is plotted
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FIG. 8. (color online) (a) Antiferromagnetic order, S(π, π),
for the two dimensional Hubbard model at U/t = 8 using a
N = 322 lattice with difference traveling cluster sizes as in-
dicated. (b) The one dimensional checkerboard charge order
parameter vs. temperature for the adiabatic Holstein model.
(c) shows the corresponding average energy of the system with
temperature. The data is presented for two schemes indicated
as ‘central’ and ‘corner’, see text for discussion. The param-
eters for (b) and (c) are the same. The results shown are for
K/t = 1.

as a function of temperature. At low temperature an al-
ternating large-small pattern generates a peak at q = π
in the charge structure factor. As seen in the figure, the
results from both schemes match with each other. In
addition in (c) we show the average energy with temper-
ature, which also agrees over a wide temperature range.

c. Numerical cost for multiorbital Hubbard model: To
derive the general formula for numerical cost of PTCA for
a multiorbital Hubbard system, we first note from Sec.
IV, that we had divided the system into 2d blocks. Thus
NS = N/2d, where NS is the number of sites in a block.
Secondly, since we build a cluster around each of those
NS sites in a block, the time taken for a MC system sweep
is simply the cost of a single cluster diagonalization times
the number of blocks. To do so, however, requires us
to diagonalize all NS clusters in a block simultaneously.
This would require NS processors. Typically, for large
systems, the number of processors NP , is much smaller
than NS . In such cases only NP number of clusters in a
block can be diagonalized simultaneously. Thus the cost
to complete the diagonalizations of all NS clusters in a
block would be NS/NP times the cost of diagonalization
of a single cluster.

From these, it is easy to deduce that the cost for P1 MC
steps in the PTCA as discussed in section IV, P12dN3

c ,
can be written as P1(Nc)

3 × N
NP

. As a consequence, the

cost for P1 MC steps for NO orbitals (with two spins
per orbital), would be P1(2NONc)

3 × N
NP

. From this
expression it can be shown that if N = NP then the cost
of PTCA is the cost of P1 cluster diagonalizations. If
NP = 1, then the cost grows linearly with N , which is
precisely the case for TCA. Finally for a general NP , the
cost scales as 1/NP .

VIII. CONCLUSIONS

In conclusion, we have provided a reorganization of
the TCA algorithm that allows for a straightforward
parallelization. To test the method, we have presented
results for the Hubbard model in two and three dimen-
sions treated in the mean field approximation and for
the Holstein model with classical lattice distortions in
one dimension. A comparison with earlier work clearly
shows that the PTCA approach can produce reliable
results on very large lattices. Apart from accessing large
system sizes for the case of the single orbital Hubbard
model, the new approach will facilitate the study of finite
temperature effects in multiorbital Hubbard models,
treated in the mean field approximation, where the large
orbital degeneracy (up to five orbitals in models for iron
superconductors) severely limits the number of sites that
can be solved employing ED+MC, even when including
the TCA improvement.
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