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We study the evolution of localized wave groups in unidirectional water wave envelope equations
(nonlinear Schrodinger (NLS) and modified NLS (MNLS)). These localizations of energy can lead
to disastrous extreme responses (rogue waves). We analytically quantify the role of such spatial
localization, introducing a novel technique to reduce the underlying PDE dynamics to a simple
ODE for the wave packet amplitude. We use this reduced model to show how the scale-invariant
symmetries of NLS break down when the additional terms in MNLS are included, inducing a critical
scale for the occurrence of extreme waves.

Understanding extreme events is critical due to the
catastrophic damage they inflict. Important examples
of extreme events are: freak ocean waves [1, 2], opti-
cal rogue waves [3], capsizing of ships [4], and extreme
weather/climate events [5, 6]. In this work, we address
the formation of freak/extreme waves on the surface of
deep water. These waves have caused considerable dam-
age to ships, oil rigs, and human life [7, 8].
Extreme waves are rare, and available data describing

them is limited. Thus, analytical understanding of the
physics of their triggering mechanisms is critical. One
such mechanism is the Benjamin-Feir modulation insta-
bility of a plane wave to small sideband perturbations.
This instability, which has been demonstrated experi-
mentally, generates huge coherent structures by soaking
up energy from the nearby field [9–12]. The ocean sur-
face, however, is much more irregular than a simple plane
wave. The Benjamin-Feir Index (BFI), the ratio of sur-
face amplitude to spectral width, measures the strength
of the modulation instability in such irregular fields. For
spectra with large BFI, nonlinear interactions dominate,
resulting in more extreme waves than Gaussian statistics
would suggest. However, a large BFI does not provide
precise spatiotemporal locations where extreme events
might occur.
In large BFI regimes, spatially localized wave groups

of modest amplitude focus, creating the extreme waves.
Here we quantify the role of this spatial localization in ex-
treme wave formation. In addition to providing insight
into the triggering mechanisms for extreme waves, this
analysis will allow the development of new spatiotem-
poral predictive schemes. Specifically, by understanding
which wave groups are likely to trigger an extreme wave,
one could identify when and where an extreme wave is
likely to occur, in a manner similar to that of Cousins and
Sapsis [13] for the MMT model [14]. By analyzing the
evolution of spatially localized fields, the authors found
a particular length scale that was highly sensitive for the
formation of extreme events. By measuring energy local-
ized at this critical scale, the authors reliably predicted
extreme events for meager computational expense.
Two commonly used equations to model the envelope
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of a modulated carrier wave on deep water are the Non-
linear Schrodinger Equation (NLS) and the modified NLS
equation (MNLS) [15]. The focusing of localized groups
is well understood for NLS (see work of Adcock et. al.
[16, 17] and Onorato et. al. [18]). In this paper, we
study the less understood wave group focusing proper-
ties in the MNLS model. That is, given a wave group of
a particular amplitude and length scale, we determine if
this group will focus and lead to an extreme wave.

We find two striking differences between NLS and
MNLS dynamics. First, due to a lack of scale invariance
in MNLS, there is a minimal focusing length scale where
wave groups below this scale do not focus. Second, the
higher order nonlinear terms of MNLS equation greatly
inhibit focusing for some large amplitude groups. That
is, there is a considerably smaller set of wave groups that
would lead to an extreme event in MNLS in compari-
son to NLS. These features are critical for understanding
realistic extreme waves, as MNLS is significantly more
accurate in reproducing experimental results when com-
pared with NLS [19, 20].

We explain this difference in NLS and MNLS focusing
analytically by using a single mode, adaptive projection
where the length scale of the mode is allowed to vary
with time. We close this model by enforcing conservation
of L2 norm, which follows from the envelope equations.
This drastically simplifies the relatively complex MNLS
PDE, yielding a single ODE for the group amplitude.
This reduced model agrees favorably with direct numeri-
cal simulations. Furthermore, the simplicity of this ODE
model allows us to analytically explain various aspects
of group evolution in MNLS, such as the existence of a
minimal focusing length scale and the smaller family of
focusing groups relative to NLS.

NLS [10] describes the evolution of the envelope of a
slowly modulated carrier wave on the surface of deep wa-
ter:
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where u is the wave envelope, x is space, and t is time.
In deriving NLS, the bandwidth is assumed to be nar-
row and the steepness is assumed to be small. Dysthe
developed the modified NLS equation (MNLS) by incor-
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FIG. 1. (Color online) Ratio of first spatiotemporal local max-
imum amplitude divided by initial amplitude for NLS (a) and
MNLS (b). In each figure, the solid white line denotes the
onset of wave breaking in each respective PDE.

porating higher order terms [15]:
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where φ is the velocity potential, which may be expressed
explicitly in terms of u by solving Laplace’s equation [21].
To study the evolution of spatially localized groups, we
use initial data of the form u(x, 0) = A0sech(x/L0).
Using this family of initial conditions, we numerically

compute the value of the first spatiotemporal local max-
imum of |u|. In Figure 1, we display the value of this
local maximum amplitude divided by the initial ampli-
tude A0. This quantity is 1 when defocusing occurs and
the amplitude decreases. Values of this ratio larger than
1 indicate that the associated group focuses, increasing
in amplitude. We mention that the top portion of our
Figure 1 is similar to Figure 1 of Onorato et. al. [18],
where a similar topic was studied for the NLS equation.
For NLS, for each length scale there is an exact soliton

solution with A0 = 1/(
√
2L0), where the wave group

shape is constant in time. If the initial amplitude is
smaller than this solitonic amplitude, then the group
broadens and its amplitude decreases. If the initial am-
plitude is larger than this solitonic level, then the group
focuses and increases in amplitude. This behavior is
qualitatively the same for all length scales due to the
scale invariance of NLS. Furthermore, the degree of fo-
cusing increases for larger amplitudes. That is, for all
L0, Amax/A0 is an increasing function of A0.
We mention that a number of the cases pictures in

Figure 1 would yield breaking waves in a physical setting.
Although NLS and MNLS do not include such effects, the
wave breaking threshold is typically taken to be |u| = 0.4.
In Figure 1, we include a white line showing where the
maximally focused amplitude of the group exceeds 0.4.
For (A0, L0) above this white line, the envelope equations
are not physically accurate as they do not incorporate
wave breaking. Although some of the pictured (A0, L0)
do correspond to groups with breaking waves, there are
a variety of groups below the breaking threshold where
NLS and MNLS differ considerably.
For MNLS, the situation is more complex (Figure 1,

bottom). Similar to NLS, for some (A0, L0) we do have
an appreciable degree of focusing–thus MNLS posesses
a mechanism for generating extreme waves. However,
this behavior is not qualitatively the same for all length
scales due to the additional nonlinear terms that lead
to the breaking of scale invariance. In particular, there
is a minimum focusing length scale, where groups nar-
rower than this length scale do not focus, regardless of
how large their initial amplitude may be. Morever, even
when the length scale is larger, Amax/A0 is not a mono-
tonically increasing function of A0. There is thus a finite
range of amplitudes that lead to significant focusing. Fur-
thermore, certain groups that do focus do so in a weaker
sense compared to NLS. We reiterate that although some
amplitudes in Figure 1 exceed the well known physical
maximum wave steepness of ≈ 0.4 [22], NLS and MNLS
wave group dynamics do show substantial differences for
much lower, physically relevant amplitudes.
To develop an approximate model for NLS we approx-

imate solutions as u(x, t) = A(t)sech
(

(x− 1

2
t)/L(t)

)

,
which move at speed 1/2 as this is the group velocity
for the NLS equation. Applying the ansatz for u and
projecting the equation to estimate d|A|2/dt results in a
trivial equation:

d|A|2
dt

= A∗
dA

dt
+A

dA∗

dt
= 0.

This equation is not helpful (although it is correct–we
do observe the initial growth rate of groups to be zero
in the full NLS). We differentiate the NLS equation (1)
to obtain the second time derivative of |u|2. We apply
the ansatz for u, multiply the equation by the hyper-
bolic secant and integrate over the real line. This is not
sufficient to close the system as we have allowed both
amplitude and length scale to vary with time. NLS con-
serves the integrated squared modulus of u, which implies
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L(t) = L0|A0/A(t)|2. Using this dynamical constraint,
we obtain the following equation for A(t):

d2|A|2
dt2
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K

|A|2
(
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dt

)2

+
3|A|2(2|A|2L2 − 1)

64L2
(3)

where K = (3π2 − 16)/8. We are interested in trajec-
tories of (3) with initial conditions |A(0)|2 = A2

0 and
d|A|2/dt|t=0 = 0. Our reduced model has the correct,

solitonic, fixed point A0 = 1/(
√
2L0), and predicts fo-

cusing if the initial amplitude is larger than this solitonic
value, and decay if the initial amplitude is smaller (con-
sistently with [16, 17]). For a particular L0, the family
of solutions to (3) describes a surface in the coordinates
(A0, |A|, d|A|/dt) (although due to the scale invariance
of NLS these surfaces are qualitatively the same for any
L0 > 0. We plot this “phase surface” in Figure 2. The
solitonic fixed point is clearly visible. Solutions with A0

larger than the solitonic value grow to a new maximum
and oscillate periodically between this new maximum and
A0. Interestingly, values of A0 just less than the solitonic
amplitude decrease initially but oscillate periodically in
time, never exceeding the initial amplitude (Adcock et.
al. made similar observations [16]). A comparison with
a direct simulation of NLS reveals similar behavior, al-
though for NLS we have energy leakage away from the
main group.
Applying this methodology to MNLS is more compli-

cated as there is an amplitude dependent group veloc-
ity. To address this, we express the solution as u(x, t) =
A(t)sech((x− ct)/L(t)), where c is an unknown constant
group velocity. We first find the second temporal deriva-
tive of |u|2 in a coordinate frame moving with group ve-
locity c. Projecting the resulting equation gives
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(4)

where again L(t) = L0|A0/A(t)|2. We must also pre-
scribe a value for c. Consider the envelope |u| of a generic
wave packet, where, for each time t there is a single local
maximum whose spatial position is given by x = bt. If
we consider the evolution of |u| along the ray x′ = ct, we
have that |u(x′ = ct, t)| < |u(x = bt, t)| if c 6= b. Thus,
for wave group |u| traveling with speed b, the growth of
|u| along the ray x = ct is maximized (with respect to
c) when we set c = b. To select c in the reduced order
model (4), we apply this criteria, choosing the value of c
that maximizes the right hand side of (4), which governs
the growth of |A|. This gives

c =
7A2

0L
2
0 + 4L2

0 + 1

8L2

0

. (5)

FIG. 2. (Color online) Surface described by solutions to the
reduced order model (3) with various initial amplitudes, L0 =
1, along with predicted evolution for various wave groups.

As expected, c tends to the NLS group velocity of 1/2 as
L0 becomes large. Substituting (5) for c in (4) gives the
following equation for |A|2:

d2|A|2
dt2
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K

|A|2
(

d|A|2
dt

)2

− 3|A|2
2048L6

(196|A|4L4

− 64|A|2L4 + 168|A|2L2 + 32L2 + 27).

(6)

The reduced order MNLS equation (6) has a bifurca-

tion at L =
√

14/4 +
√

35/16 ≈ 3.35. If L0 < L∗, the
right hand side of (6) will initially be negative, regardless
of how large A0 may be. Thus, groups with length scale
less than L∗ do not grow. This is precisely the behav-
ior we observe in numerical simulations of the full MNLS
equation (Figure 1). To illustrate these analytical results,
we solve the reduced equation numerically for various L0

and A0 and display Amax/A0 in Figure 3.
For L0 > L∗, (6) has two fixed points. The amplitude

will grow only when A0 is between these two fixed points.
Even for some focusing groups, the degree of focusing
will be limited–the presence of the larger fixed point lim-
its the amplitude growth relative to NLS, agreeing with
direct numerical simulations of the MNLS PDE. Each
of these two fixed points suggests an envelope soliton of
MNLS. Although numerical simulations suggest that the
lower amplitude fixed point does correspond to a soliton,
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FIG. 3. (Color online) Maximal value of A(t) relative to A0

for solutions of the reduced order MNLS model (6). This com-
pares favorably direct numerical simulations of MNLS (Fig-
ure 1, bottom).

the larger amplitude fixed point does not and is thus an
artifact of the reduced order model.
To illustrate the dynamics for MNLS, we display phase

surfaces in Figure 4 for L0 = 3 and L0 = 4. For
L0 = 3 < L∗, all groups decay, with some groups os-
cillating periodically and others decaying monotonically.
For L0 = 4 > L∗, two fixed points emerge. Between these
fixed points is the region of focusing, with groups in this
region increasing in amplitude, but with smaller increase
compared with NLS.
Considering the surface elevation, the wave crest height

amplification can be larger in MNLS due to higher-order
terms in the formula for reconstructing the elevation from
the envelope [23]. Crest-to-trough wave height amplifica-
tion is lower in MNLS, agreeing with our observations of
the dynamics of the envelope |u| in this manuscript The
relevance of the crest height vs crest-to-trough height de-
pends on the particular application of interest.
In summary, we developed a new approach for the ana-

lytical understanding of one-dimensional wave group evo-
lution. Using a single-mode adaptive projection, we de-
rived a simple ODE that mimics the dynamics of the
underlying PDE remarkably well. The key of our ap-
proach allowing the localized mode to adaptively adjust
its length scale to respect the conservative properties of
the PDE. The reduced-order model explains a number
of salient, scale-varying features of group evolution in
MNLS.
Compared with existing methods, our approach pro-

vides a large amount of information while being simple
to implement. For comparison, the BFI is simple to com-
pute but does not provide the rich information of our ap-
proach. Methods based on the Inverse Scattering Trans-
form (IST) provide complete information but are com-
plicated to implement [24–26]. Additionally, the IST is
not applicable to two-dimensional wave dynamics where

FIG. 4. (Color online) Phase surface diagrams for solutions
to (6) with L0 = 3 (a) and L0 = 4 (b). The bottom figure
shows the emergence of two fixed points.

the governing equations are not integrable [27]. The ap-
proach presented here is similar in spirit to existing soli-
ton perturbation approaches for NLS [28, 29]. However,
these approaches either consider only small perturbations
about soliton solutions or require theoretical machinery
unavailable for MNLS.

The main limitation of our approach is the assumption
of a persistent sech-shaped profile. In some cases, initial
sech-shaped profiles can become multi-humped or asym-
metric, violating our assumed profile shape. However,
over short timescales the sech profile is nearly preserved.
We mention that these “short” timescales correspond to
physical time scales of a few minutes in a field with a
spatial wavelength of 200 m (typical in the deep ocean).

We intend to apply this methodology to wave group
evolution in the 2D MNLS equation and compare these
dynamics with existing results for 2D NLS [17]. More-
over, this analysis will be fruitful in developing a scheme
to predict extreme waves before they occur–we can use
this analysis to determine which groups in an irregular,
random wave field are likely to focus and create an ex-
treme wave. Our initial results suggest that our group-
based analysis remains valid in this random wave field
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scenario, with groups appearing in these random fields
evolving similarly to the predictions of the reduced-order
models introduced in this work [30].
We also plan to use this approach to develop quan-

tification schemes for the heavy tailed statistics of such
intermittently unstable systems using a total probabil-
ity decomposition [31]. Finally, this adaptive projection

approach respecting invariant properties of the solution
introduces a new paradigm that will be useful for other
systems involving energy localization [32, 33].
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