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Equilibrium states of a closed semiflexible polymer binding to a cylinder are described. This may
be either by confinement or by constriction. Closed completely bound states are labeled by two
integers, the number of oscillations, n, and the number of times it winds the cylinder, p, the latter a
topological invariant. We examine the behavior of these states as the length of the loop is increased
by evaluating the energy, the conserved axial torque and the contact force. The ground state for a
given p is the state with n = 1; a short loop with p = 1 is an elliptic deformation of a parallel circle;
as its length increases it elongates along the cylinder axis, with two hairpin ends. Excited states with
n ≥ 2 and p = 1 posses n-fold axial symmetry. Short (long) loops possess energies ≈ pE0 (nE0),
with E0 the energy of a circular loop with same radius as the cylinder; in long loops the axial torque
vanishes. Confined bound excited states are initially unstable; however, above a critical length each
n-fold state becomes stable: the folded hairpin cannot be unfolded. The ground state for each p is
also initially unstable with respect to deformations rotating the loop off the surface into the interior.
A closed planar elastic curve aligned along the cylinder axis making contact with the cylinder on
its two sides is identified as the ground state of a confined loop. Exterior bound states behave very
differently, if free to unbind, as signaled by the reversal in the sign of the contact force. If p = 1,
all such states are unstable. If p ≥ 2, however, a topological obstruction to complete unbinding
exists. If the loop is short, the bound state with p = 2 and n = 1 provides a stable constriction
of the cylinder, partially unbinding as the length is increased. This motif could be relevant to an
understanding of the process of membrane fission mediated by dynamin rings.

PACS numbers: 46.70.Hg, 68.47.Pe, 87.10.Pq

I. INTRODUCTION

The confinement of semi-flexible polymers or filaments by curved surfaces is increasingly recognized to be a key
element in a number of physical processes. The best studied examples are presented in biology: DNA, actin filaments,
and microtubules, for instance, have persistence lengths of 50 nm [1], ∼16µm [2] and several millimeters [3], respec-
tively. Because such polymers need to navigate an intracellular environment crowded by membranes and proteins,
over and over again one needs to understand how they interact with these structures. DNA in eukaryotic cells, for
instance, makes a virtue of necessity, wrapping around the core of cylindrical histones to facilitate their condensation
[4–6]; intermediate filaments (such as spectrins or lamins) may adsorb onto membranes and, in the process, modify
their elastic properties [7–9]; membrane fission is also frequently driven by the polymerization of tightly winding stiff
filaments of the protein dynamin, whose winding around the neck of a nascent vesicle is believed to cut the vesicle from
its parent membrane [10–12]. Since in these and other examples the persistence length can be quite a bit larger than
the radii of curvature to which these polymers are confined, it is a good approximation to ignore additional thermal
fluctuations and focus on ground state solutions, which is what we will do in this paper. The opposite limit, confining
highly flexible filaments, is a classical topic in polymer science, which is reviewed in Ref. [13]. While stiff filaments
are especially frequent and well studied in the context of biology, they also occur in other situations, and confinement
issues arise there, too. For instance, single walled carbon nanotubes have a diameter dependent persistence length
in the tens of micrometer range [14], and their adsorption onto surfaces or their interplay with other mesoscopic
microstructures is currently a subject of considerable interest for engineers as well as physicists [15, 16].
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The defining feature of semi-flexibility is that the polymer’s persistence length substantially exceeds molecular scales,
such as the monomer size or thickness. This is physically important, because it means that the energetics of bending
decouples from the minutiae of the chemical structure and can thus be described to very good accuracy by a continuum-
elastic Hamiltonian depending largely on geometry. The simplest such energy functional describes a semi-flexible
polymer as a one-dimensional smooth space-curve and quadratically penalizes its Frenet curvature, κ(s) [17–20]:

HB =
A

2

∫
ds κ(s)2 , (1)

where s is the arc length along the curve, and A is the bending rigidity. Since there are no other energy terms
competing with the bending, from now on we set the bending rigidity to unity, A = 1. A functional variation δHB = 0
leads to the Euler-Lagrange (EL) equations which characterize the solutions that minimize this energy.

Substantially more complicated functionals are not only conceivable but have also been studied, adding for instance
stretching, twisting [21–23], spontaneous curvature [24] or the higher derivative Frenet torsion [25]. An environmental
bias may imply a separate dependence on the geodesic and normal curvatures, or even the geodesic torsion [26]. For
the purpose of this paper we restrict our attention to the elementary energy, Eq. (1). The problem is still non-
trivial because the energy needs to be amended with the constraint confining the space-curve to the surface. One
needs to accommodate this constraint in the calculus of variations, as described for example in [27]. We will only
consider the limiting case in which the surface is much stiffer than the polymer itself, so that the shape of the surface
remains unaffected. The opposite limit, in which the polymer is infinitely rigid and the surface adjusts, has recently
been studied by Božič et al. [28], who considered a circular ring constricting an axisymmetric neck. Of course, in
many physically relevant situations both the polymer and the surface respond to each other’s presence. However, the
discussion of two elastic objects of different dimensionalities pitting their forces against each other through a mutually
confining geometric constraint is a long story which will have to await a future treatment.

The first general discussion of surface-constrained elastic curves à la Eq. (1) was given by Nickerson and Manning
[29, 30], who derived the Euler-Lagrange (EL) equation for this constrained minimization problem. As an application,
they studied cylindrical confinement with a particular choice of boundary conditions [30]. Later, Marky and Manning
considered the wrapping of DNA around a histone octamer taking into account an adhesive interaction between the
polymer and its substrate [31]. More recently, the problem was treated by van der Heijden, who also included a twist
degree of freedom on isotropic [32] and anisotropic [33] rods with forces applied at the boundaries. Later still, van der
Heijden et al. [34] studied self-contacts of a cylindrically confined elastic rod. In this work, the elastic curve is treated
as a Kirchhoff-rod or more generally within the context of Cosserat theory. We will follow the strategy introduced
by two of the authors in Ref. [27], where the surface constraint was enforced using a local Lagrange multiplier in the
variational principle, which can be identified as the external source of stresses to which the polymer is subject due to
the confinement. This provides direct access to the magnitude of the confining forces as well as their sign which will
vary along the polymer. Formally, the multiplier is identified with the normal projection of the derivative of the force
vector, which permits one to quantify the loss of Euclidean invariance of the constrained system. In this approach it
is unnecessary to assume any constitutive relations between the bending moments, the energy density and the strains:
the balance of forces and torques follow from the minimization of the energy; these two vectors are also identified.
For simplicity we will restrict our attention to closed polymer loops.

The equilibrium shapes of semiflexible polymer loops, modeled as elastic curves, confined by a sphere were examined
in some detail in Ref. [27], (see Refs. [35, 36] for a more physical and realistic treatment, involving numerical analysis,
see also [37, 38] for a detailed study of the dynamics of confined semiflexible polymers employing simulations, as
well as [39, 40] addressing the effect of electrostatics on the adsorption of polymers rings onto surfaces with spherical
and cylindrical geometry.). The analytical treatment in Ref. [27] was facilitated by identifying the three conserved
quantities—corresponding to the three components of the torque—associated with the spherical symmetry. The EL
equations could be integrated completely in terms of elliptic functions. It was shown that the physics of these states
depends very sensitively on the length of the loop. Indeed, the ground state itself alternated between two states as
the length was increased. The forces transmitted to the sphere was also shown to depend both non-monotonically and
discontinuously on this length. As the length becomes increasingly large, all bound states tend increasingly towards
geodesic behavior. The aim of the present paper is to investigate systematically the binding of a semi-flexible polymer
loop to a cylinder, not only by its confinement within it but also by the forced constriction of the cylinder by an
exterior loop. In the absence of additional adhesive forces the latter has no analogue on a sphere.

A cylinder is distinguished from a sphere both geometrically (curvature anisotropy) and topologically. Specifically it is
non-compact. Each of these features will play a role: some times alone, other times together with unexpected outcomes.
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We begin by showing how the conservation laws associated with the residual Euclidean symmetries conspire not only
to yield a quadrature, but also to provide the appropriate observables for characterizing the underlying physics. While
we lose rotational symmetry about the local surface normal, the underlying axial and translational symmetry still
provide two conservation laws, one for the axial torque and another for the axial force. These first integrals are each
of third order in derivatives of the embedding functions. However, the two can be combined into a single equation
eliminating one derivative, which can be cast as a simple quadrature in terms of the tangent angle. This quadrature
involves three parameters, the two conserved quantities as well as a Lagrange multiplier associated with the fixed
length of the polymer.

We are particularly interested in how the equilibrium states, and in particular candidate ground states depend on
the length of the loop. For a given length, such loops will be characterized uniquely by two integers, the number of
times the loop wraps around the cylinder, p, and the number of oscillations it executes in the process (its dihedral
symmetry of order n). These states differ from their spherical counterparts, also labeled by two integers, in a number
of ways. If its length is small, the loop does not yet explore the non-compact direction; the reduced symmetry however
identifies the bound ground state as an elliptical deformation of a circular loop (with n = 1, see Fig. 1(a)), a state
without any equilibrium counterpart on a sphere. As the length increases the loop elongates along the cylinder axis
terminating in two hairpin ends. At some point, as we will show, the loop self-intersects, thereafter scissoring–in
accordion fashion–along the axial direction. States with higher dihedral symmetries are unstable initially (a state
with n = 2 is illustrated in Fig. 1(b)). As the length is increased, however, these excited states also grow along the
non-compact direction, forming folded hairpins. And once they develop, it costs energy to undo these folds. The
important point is that beyond some critical length, the folded state become snagged energetically on the cylinder;
they are stabilized. There is no analogous process for loops binding to a sphere. Also, unlike a sphere where states
morph periodically into multiple coverings of a geodesic circle with increasing loop length, the hairpins that develop
diverge increasingly from geodesic behavior, while at the same time tending towards a simple characteristic structure.
Indeed the asymptotic energy assumes the remarkably simple form, Ep,n → nE0, independent of p, where E0 is the
energy of a circular loop with a radius equal to that of the cylinder. It is independent of the topology, so that the
energy of these limit states is highly degenerate. We will describe in detail how the axial torque, the energy and,
perhaps most importantly, the forces responsible for confinement depend on the length of the loop for each pair of
integers, n and p. The direction of the normal force transmitted to the surface obviously depends on which side the

(a) (b) (c)

FIG. 1: (Color online) (a) Elliptic state with n = 1 and p = 1. (b) Two-fold state with n = 2 and p = 1. (c) Folded eight-figure
state, n = 1 and p = 2. The arrow indicates the local normal vector to the surface, which signifies the direction along which
confining forces have to act in order to keep the polymer on the surface, with a sign convention further discussed in the text.

polymer is bound to: when the loop is inside, positive (negative) values represents outward (inward) forces. If the
loop is outside, these sign conventions are reversed. The latter are especially interesting because, as we will show,
an external polymer may constrict the cylinder, a happy conspiracy permitted by the topology, an impossibility on
a sphere. While in the spherical case the confining force on an interior bound loop always pushes it up against the
sphere, we will see that for cylinders the sign of the confining force generally changes along equilibrium bound states.
This would indicate that additional forces are required to stabilize the state (deriving for instance from an adhesion
energy) if it is free to unbind. In the case of interior bound states, we find that the offending regions are extremely
localized in the neighborhood of hairpins, suggesting that the state is stabilized if the loop simply takes a shortcut
off the surface so as avoids these regions. If the reader feels uncomfortable taking shortcuts, they may assume that
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an additional constant sticky force is provided where necessary. We will also provide an exact description of states
confined within the cylinder making partial contact with its walls. The corresponding ground state is a planar loop
aligned along the cylinder axis making contact on its two sides: a vertical safety pin. This state has lower energy than
its bound counterpart. In the absence of additional adhesive forces, the bound interior ground state–if sufficiently
short–is expected to be unstable with respect to deformation into the cylinder rotating it into this state. As its length
increases, however, it would appear to turn stable with respect to such deformations, protected by an ever-increasing
energy barrier. A bound exterior state winding the cylinder once (p = 1) would, on the other hand, simply peel off
relaxing towards a circular loop. If the loop winds twice or more times around the cylinder (see Fig. 1(c)), however,
this is no longer the case.1 A figure of eight possesses a lower energy than a free doubly-wound circular loop, and
would be expected to remain completely attached to the cylinder if the loop is sufficiently short. Longer loops will not
be completely attached but they would nevertheless be expected to embrace the cylinder at least partially, applying a
force at the points where they remain in contact. This is because the presence of the cylinder obstructs their passage
to a singly-wound circular loop. The existence of such a motif might be relevant to the constriction of membrane
necks, indicating as it does that topology may facilitate the constriction process.

The axial torque also depends in a surprisingly non-trivial way on the length of the loop. It vanishes as this length
become increasing large in all equilibrium loops. However it does not do so monotonically: we discover the existence
of intriguing non-trivial states in which the axial torque vanishes which occur when the length is tuned appropriately.
These states admit an analytic description.

The paper is organized as follows: In section II, we develop the general framework for axially symmetric binding.
The first integral of the Euler-Lagrange (EL) equation, associated with rotational symmetry, is derived in (IIA).
This framework is applied specifically to the cylinder in Sect. (III). The equilibrium states of a closed curve are
constructed in Sect. IV. The axial torques, the energies, and the forces they transmit to the surface are determined.
This is done perturbatively for loop states approximating a multiply-covered circle and numerically otherwise. We
end with a discussion and a few suggestions for future work in Section V. A number of useful identities and derivations
are collected in a set of appendices where the analysis of vertical confined loops, loops with vanishing axial torque
and force, and the comparison of elastic curves on the cylinder with their planar counterparts are also presented.

II. CURVES CONSTRAINED TO SURFACES

Consider a space curve in Euclidean space E3, Γ : s → Y(s) parametrized by arc-length constrained to lie on a
surface Σ. This surface is described in parametric form by the mapping Σ : (u1, u2)→ X(u1, u2) ∈ E3. The tangent
vectors adapted to this parametrization are ea = ∂X/∂ua, a = 1, 2, the unit vector normal to the surface is n, the
induced surface metric is gab = ea · eb and the extrinsic curvature tensor is Kab = ea · ∂bn. The confined curve can
then also be described as a surface curve ΓΣ : s → (U1(s), U2(s)). The surface-bound curve also carries a Darboux
frame, {T, l,n}, where T = Y′ is the unit tangent vector to Γ,2 n(U(s)) is the restriction of the unit normal vector
along the curve, and l = n×T is the conormal tangent to the surface, that is, the vector normal to the curve Γ but
tangent to the surface. The structure equations–analogous to the Frenet-Serret (FS) equations–describing how the
Darboux frame rotates along the curve, are given by [41]

T′ = κgl− κnn , l′ = −κgT + τgn , n′ = κnT− τgl , (2)

where the geodesic and normal curvatures, κg and κn, as well as the geodesic torsion τg, are defined by

κg = T′ · l = latb∇bta , κn = −T′ · n = tatbKab , τg = l′ · n = −talbKab . (3)

Here ta and la are the components of the vectors T and l with respect to the surface tangent basis ea, a = 1, 2:
T = taea, l = laea. ∇a is the covariant derivative compatible with gab. Whereas κn and τg depend on the extrinsic
curvature; κg is defined intrinsically, it depends only on the surface metric gab. The FS frame is related to its Darboux
counterpart through a rotation by an angle ω about the tangent direction. This connection between the two frames
provides a decomposition of the FS curvatures into its intrinsic and extrinsic parts

κg = κ cosω , κn = κ sinω , τ = τg − ω′ , (4)

1 Note that a short interior bound figure of eight would be expected to unwind into the confined planar vertical hairpin state
2 Here, and elsewhere, prime represents derivation with respect to the arc-length s.
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so that κ2 = κ2
g + κ2

n. The torsion τ is given by the difference between the geodesic torsion and ω′, the rotation rate
of one frame with respect to the other. Note that τg involves two derivatives whereas τ involves three. The extra
derivative is associated with the derivative of ω.

In equilibrium, one finds that the tension along the curves is balanced by a normal force due to the confinement by
the surface [26, 27]

F′ = −λn , (5)

where the tension in the loop F is given by

F =

(
κ2
g + κ2

n

2
− C

)
T +

(
κ′g + κnτg

)
l− (κ′n − κgτg)n . (6)

F represents the tension on a curve segment exerted by the segment with lower value of arclength [25], for instance,
for a spiral traversed upwards, it provides the force exerted on a segment by the region below. The constant C is
associated with the constraint of fixed length and can be identified with the Hamiltonian [26].

The tangential Euler-Lagrange derivative εT = F′ · T vanishes identically, a consequence of the fact that the only
relevant degrees of freedom are geometrical.

The projection of Eq. (5) onto l provides the EL equation

εl = F′ · l = κ′′g + κg

(
κ2
g + κ2

n

2
− τ2

g − C

)
+

(
κ2
nτg
)′

κn
= 0 . (7)

This equation was first derived in reference [30] using a procedure different from that in [27]. Note that it involves
the two curvatures as well as the geodesic torsion. In general, the curve will not follow a geodesic with κg = 0.

The corresponding projection onto n determines the magnitude of the force λ transmitted to the surface

λ = −F′ · n = κ′′n + κn

(
κ2
g + κ2

n

2
− τ2

g − C

)
−
(
κ2
gτg
)′

κg
. (8)

Thus the normal force is completely determined when the local geometry is known. Its magnitude will vary along the
contact region even for confinement by a sphere. For a curve confined inside the surface, when λ is positive (negative)
the curve is pushing (pulling) the surface. This expression is missing in the framework presented in [30]. It was
presented in [27].

A. Axial symmetry and residual conserved torques

The integrability of the EL equations for the unconstrained curve is a consequence of the Euclidean invariance of its
energy, which implies the conservation of both forces and torques. The constrained counterpart will not be integrable,
for there will not be a sufficient number of conserved quantities; in general, under confinement, one surrenders not
only translational invariance, but also rotational invariance. The torque about the origin per unit length of the curve,
M, is given by two contributions, the torque due to the force F about the curve’s position and an intrinsic torque

M = Y × F + S , where S = κg n− κn l . (9)

Like the tension vector F, the vector M provides the torque on a curve segment exerted by the one with a lower
value of s. For a free curve the torque vector is conserved, M′ = 0, which can be cast in the manifestly translational
invariant form T× F + S′ = 0 [25]. By contrast, for a confined curve one has instead

M′ = εl (Y × l)− λ (Y × n) . (10)

Thus, in a confined equilibrium, M will not generally be conserved, even though εl = 0, because in general, neither
the normal force λ vanishes, nor are Y and n parallel.



6

Let us now consider a curve confined by a surface with axial symmetry (about the the Z axis, say). The axisymmetric
surface is described by the radial and height coordinates R and Z of the generators, parameterized by the arclength `.3
The azimuthal angle will be denoted by ϕ (see Appendix A). The curve is described by the embedding s→ (`(s), ϕ(s)),
or Γ : s→ Y(s) = R(s)ρ̂(s) +Z(s)ẑ, where ρ̂(s) = (cosϕ(s), sinϕ(s), 0). The tangent and conormal vectors are given
by

T = cosα ϕ̂+ sinα e` , l = − sinα ϕ̂+ cosα e` , (11)

where ϕ̂(s) = (− sinϕ(s), cosϕ(s), 0) and e`(s) = Ṙ(s) ρ̂(s) + Ż(s) ẑ; α is the angle that the tangent of the curve
makes with the azimuthal direction ϕ̂. Comparison with the expression (A2) for the embedding functions of an
axisymmetric surface gives

sinα = `′ cosα = Rϕ′ . (12)

Using Eqs. (11) and (12), the acceleration T′ along the curve is given by

T′ = (α′ − R′

R
cotα) l− (sin2 ακ⊥ + cos2 ακ‖)n , (13)

where κ⊥ and κ‖ are the principal curvatures along the meridians (generators with constant ϕ) and the parallels
(circles of constant `), respectively (see A). Thus the geodesic curvature of Γ, κg = T′ · l, is given by

κg = − (R cosα)′

R sinα
; (14)

the corresponding normal curvature κn = −T′ · n is given by Euler’s equation for the axisymmetric surface,

κn = sin2 ακ⊥ + cos2 ακ‖ . (15)

Likewise the geodesic torsion τg is given by

τg = sinα cosα(κ‖ − κ⊥) . (16)

Using the above expressions for the Darboux frame of a curve on an axisymmetric surface, along with the expression
Ż = Rκ‖ (see Appendix A) and the identity cosακ‖ = − cosακn− sinα τg, obtained by a linear combination of Eqs.
(15) and (16), one finds that the torque about the symmetry axis, MZ = M · ẑ, is given by [26]

MZ = R

(
− sinα (κ′g + 2κn τg) + cosα

(
κ2
g − κ2

n

2
− C

))
+ Ṙ κg . (17)

It is easy to confirm that this component is conserved: projecting Eq. (10) onto ẑ, one gets

MZ ′
= M′ · ẑ = Y · (εll× ẑ− λn× ẑ) . (18)

In an axisymmetric surface the three vectors Y, n and ẑ are coplanar and l × ẑ = − sinαρ̂ − cotαR′ϕ̂, therefore
MZ ′

= − sinαR εl, so it vanishes in equilibrium as claimed. Eq. (17) provides a first integral of the EL equation (7),
which is not obvious by inspection.

To reconstruct the curve, the second order differential equation (17) needs to be solved for the angle α with fixed
MZ and C, and appropriate boundary conditions (BCs), which could be specifying the initial angle and its derivative
(Cauchy BCs) or the angle at the boundaries (Dirichlet BCs). Once α is known, the position on the surface is
determined using the relations (12). The two constants MZ and C can be tuned to fix the length of the curve, L, and
total azimuthal angle turned, ∆ϕ.

III. CYLINDRICAL CONFINEMENT

Now we apply this framework to treat curves lying on a cylinder. Despite the apparent simplicity of the cylindrical
geometry, the determination of the equilibrium configurations of curves on a cylinder is not straightforward. However,
as explained below, the additional translational symmetry facilitates the integration of the EL equation.

3 Derivatives with respect to ` will be denoted by an overdot, ˙= ∂`.
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A. Derivation of the quadrature

The height function is given by the meridian arc length, Z = `. We normalize all lengths in terms of the cylinder
radius R0. Scaled quantities will be denoted by lowercase letters or by an overbar, e.g. the scaled height function is
z := Z/R0. Curves on the cylinder will be parameterized by scaled arc length s/R0.4

The scaled geodesic curvature is given by

κ̄g := R0 κg = α′ , (19)

The two scaled principal curvatures are κ̄⊥ := R0 κ⊥ = 0 and κ̄‖ := R0 κ‖ = 1, so that the scaled normal curvature
and geodesic torsion are given by

κ̄n := R0 κn = cos2 α ; τ̄g := R0 τg = sin α cosα . (20)

Inserting these expressions into the Euler-Lagrange equation (7), it is easily seen to read (c = R2
0 C)

εl = α′′′ + α′
(
α′2

2
+

3

2
cos4 α− 6 sin2 α cos2 α− c

)
= 0 . (21)

The scaled first integral, Eq. (17), (m := R0 M) reads

m := m · ẑ = − sinα
(
κ̄′g + 2κ̄n τ̄g

)
+ cosα

(
κ̄2
g − κ̄2

n

2
− c

)
. (22)

On could now solve this third order differential equation (second order for α) following the procedure outlined at the
end of the previous section. However it is possible to do better. We have yet to exploit the translational invariance
along the cylindrical axis. When we do, we obtain a quadrature for α.

Translational invariance along ẑ implies that the projection of the scaled stress vector f := R2
0F along the cylinder

axis is constant. Projecting f onto ẑ, and making use of definitions of T and l given in Eq. (11) one identifies the
first integral

f := f · ẑ = cosα
(
κ̄′g + 2κ̄nτ̄g

)
+ sinα

(
κ̄2
g − κ̄2

n

2
− c

)
. (23)

It is straightforward to confirm that f ′ = R2
0 cosα εl.

Both first integrals are of second order in derivatives of α (this dependence enters through κ̄′g in Eqs. (22) and (23)).
One can now take an appropriate linear combination to eliminate this second derivative: specifically, the definition

µ(α) := m cosα+ f sinα =
κ̄2
g − κ̄2

n

2
− c , (24)

will lead to a quadrature for α. Substituting for κg and κn one gets:

1

2
(α′)2 + U(α) = c , where U(α) = −cos4 α

2
− µ(α) . (25)

It is not obvious at the level of the Euler-Lagrange equation that two integrations are possible. However, it should
be remarked that the poor man’s derivation of the quadrature using a variational principle adapted to symmetry
demystifies this “coincidence”. It is provided in Appendix B, a special instance of a more general construction presented
in [26].

4 Since there is no possible confusion, the scaled arc-length will also be denoted by s
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One may ask if any additional information is to be gleaned by taking some other linear combination of f and m.
Consider

ν(α) := −m sinα+ f cosα = κ̄′g + 2 κ̄n τ̄g . (26)

In terms of α this second order DE reads

α′′ + 2 cos3 α sinα− ν(α) = 0 . (27)

On the one hand, taking into account expression (19), one has µ′ = νκg. On the other hand, using the identity for
the cylinder κ̄′n = −2κ̄g τ̄g, the derivative of the rhs of eq. (24) can be written as(

κ̄2
g − κ̄2

n

2
− c

)′
= (κ̄′g + 2 κ̄n τ̄g)κg . (28)

These two relations confirm that Eq. (26) follows from differentiation of Eq. (24). Alternatively, substituting identity
(28) in Eqs. (22) and (23)) for m and f , and integrating them one obtains the quadrature (24). Further differentiation
of Eq. (26) and substitution of the EL equation to replace κ′′g in favor of terms quadratic in the Darboux curvatures
only reproduces Eq. (24).

The quadrature (25) provides us with an analogue of a particle with unit mass and energy c in a potential U(α).
While the hard work lies ahead, this will prove to be very useful throughout this paper. That c plays the role of the
energy in this identification is particularly appropriate, because c is also the conserved quantity, i.e. the Hamiltonian
function, associated with the absence of an explicit dependence on s in the bending energy density, as detailed in
Appendix B.

The first term in U , proportional to cos4 α (or κ̄2
n), reflects the anisotropy of the sectional curvatures on the cylinder,

which breaks the rotational symmetry about the normal vector. As a result, despite the fact that the cylinder is
isometric to a plane, its extrinsic geometry is anisotropic and elastic curves on a cylinder behave differently from their
counterparts on the plane. It is precisely this term that distinguishes elastic curves on the cylinder from their planar
Euler elastic counterparts, which are integrable in terms of elliptic functions, as described in Appendix C. This can
be see by introducing the change of variables α → ψ + β, f → F sinβ and m → F cosβ. Now one has µ → F cosψ
and ν → −F sinψ, so without the κ2

n term and its derivative, the quadrature (25) and the first integral (26) reduce
to Eqs. (C8). If the curve lies close to a parallel or the cylinder has a very large radius, R0 � 1, so that κn → 0,
τg → 0 and κg becomes the FS curvature of the curve on the plane, the two descriptions coincide. The comparison
between the two will be discussed in Sec. IVB.

The two coordinate functions of the curve on the cylinder, are determined by the relations (12), which in terms of the
scaled quantities reduce to

z′ = sinα , ϕ′ = cosα . (29)

B. Total bending energy and constraining force

The scaled bending energy of the constrained curve is given in terms of the angle α by

hB := R0HB =
1

2

∫
ds (α′2 + cos4 α) . (30)

Using the quadrature (24) , the derivative can be eliminated in favor of α, so that

hB =

∫
ds
(
cos4 α+ f sinα+m cosα+ c

)
. (31)

Taking into account the relations z′ = sinα and ϕ′ = cosα, the last terms can be integrated

hB =

∫
ds cos4 α+ f∆z +m∆ϕ+ c l , (32)
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where ∆z = ∆Z/R0, ∆ϕ and l = L/R0 are the total scaled height, winding and scaled length of the curve. For a
closed curve ∆z = 0 and ∆ϕ = 2πp. This relation makes explicit the respective interpretations of f , m, and c as
coupling to the height, rotational extent and length.

Likewise, using the quadrature (25) and Eq. (27) to eliminate derivatives of α in the expression (8) for the magnitude
of the scaled local constraining force on the cylinder, λ̄ = R3

0λ, can be expressed as

λ̄ = 2 κ̄2
n (5− 6 κ̄n) + (6− 11 κ̄n)µ− 4 τ̄2

g ν + 6 c (1− 2 κ̄n) , (33)

or in terms of α and constants m, f and c

λ̄ = 2 cos4 α
(
5− 6 cos2 α

)
− 6 c cos 2α− 3 f sinα

(
5 cos2 α− 2

)
− 5m cos α

(
3 cos2 α− 2

)
. (34)

It depends only on the local value of the turning angle.

IV. CLOSED EQUILIBRIUM CONFIGURATIONS

Now we will focus on isolated loops, i.e. closed curves without external sources of tension other than those due
to confinement.5 Let the loop have length L = 2πR, p be the number of times it winds the cylinder and n the
number of periods in completing a circuit of the loop. Loops are characterized by p and n: loops with different p
are homotopically inequivalent; n distinguishes equilibrium states within a given homotopy class. We will denote the
sequence of loops with fixed values of these two integers, generated by varying the length of the loop by Lp,n. Define
the scaled total length l = L/R0 = 2πr, where r = R/R0 is the scaled radius of the loop. Since l ≥ 2πp, the scaled
radius is bounded from below by the number of windings, r ≥ p. The length will be expressed in terms of the scaled
excess radius ∆r = r − p ≥ 0.

We will examine loops that oscillate symmetrically about a parallel, which we set at z = 0 and refer to as the equator.
This implies that the odd term linear in sinα vanishes, so f = 0. Note that the potential U appearing in (25)
now possesses up-down symmetry, α → −α. However, the constant m does not necessarily vanish which breaks the
left-right symmetry α→ π − α.

The tangent angle α will be bounded in a closed loop. It will now oscillate symmetrically between the turning points
of the even potential, −αM and αM . These turning points will occur at the intersection of the loop with the equator;
α = 0 occurs on the two extremal parallels.

The two parameters m and c are determined by imposing the periodicity on the coordinates, required by the closure
constraint. Note, first of all, that closure in the axial direction is consistent with f = 0. To see this, note that for a
closed curve, after one half period one has ∆z = 0 [18, 20]; using the quadrature (25) and the relation (29 connecting
z to α one has

∆z =
1√
2

∫ αM

−αM

dα
sinα√
c− U(α)

= 0 . (35)

This is because U(α) is an even function of α so that the integrand is odd.

The remaining two parameters m and c can be related to the three geometric quantities p, n and ∆r by integrating
the quadrature (25) along with the relation connecting ϕ to α, (Eq. (29)) using the fact that the azimuthal range ∆ϕ
is quantized: i.e. ∆ϕ/(2π) = p. One obtains

∆r =
4n√
2 2π

∫ αM

0

dα
1√

c− U(α)
− p , (36a)

p =
4n√
2 2π

∫ αM

0

dα
cosα√
c− U(α)

. (36b)

5 Recall that we ignore polymer twist, so one might wonder whether this could change the solutions. However, if the polymer is rotationally
symmetric, having no “preferred side” for it to adhere onto the surface and no preferred bending direction, any local twist does not
couple to the surface constraint, and so we only need to consider the global constraint. If we now start with an untwisted circle and
imagine extending its length in such a way that no twist is added, ignoring twist right from the start is permissible.
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In Eq. (36b) we have used the fact that α completes n periods while the loop completes p trips around the cylinder.

Before analyzing the loops in the nonlinear regime, we will first solve the quadrature in a perturbative manner for
loops which deviate slightly from a circular loop covering the equator p times. The insight we obtain will prove to be
useful when solving the quadrature (25) numerically.

A. Perturbative solutions about a circular loop

To examine deformations of a circular loop perturbatively, we let α1 represent a small perturbation about α0 = 0.
We set f = 0 and expand the constants, m = m0 + m2 + . . . and c = c0 + c2 + . . . ,6 . The subindices represent the
order in the expansion. The approximation of the quadrature (25) at lowest order reads

m0 = −c0 −
1

2
; (37)

Note that m0 and c0 appear in the combination m0 + c0 which is constant independent of n and p. At second order
the quadrature describes harmonic oscillations:

1

2
(α′1)

2
+ V2(α1) = E2 , (38)

where we have defined

V2(α1) = a0 α
2
1 , a0 = m0/2 + 1 and E2 = m2 + c2 . (39)

Thus the behavior of the perturbation can be described in analogy to a particle of unit mass and energy E2 moving
in a quadratic potential V2. The parameter a0 is necessarily positive. Otherwise V2 would be a downward parabola,
α would not be periodic, and the corresponding loops would be open.

The two turning points of V2, corresponding to the maximum and minimum values of α, are ±αM 1, where

αM 1 =

√
2E2

q
and q2 := 2a0 = m0 + 2 . (40)

Solving Eq. (38) one identifies

α1 = αM 1 cos q s ; (41)

combining Eqs. (37) and (40), m0 and c0 can be expressed in terms of q

m0 = q2 − 2 , c0 =
3

2
− q2 . (42)

The condition that the periodic perturbation should complete n periods, while the curve winds p times around the
cylinder implies that the wave number is given by the ratio of periods to windings,

q =
n

p
. (43)

Notice that m0 does not vanish because q is a rational number. A critical axial torque is required to deform a loop
of radius R0 into a state with a given ratio q. In particular, m0 is negative when n = 1 and positive for all higher
values of n. This sign change has physical significance. Superficially, states with the same p and different values of n
may appear to be identical when ∆r = 0. However, as we will see, the different values of m0 and c0 in these states
determine the critical buckling forces required to initiate the deformation of the circular loop into the appropriate
state.

6 First order terms will not be considered, because they will be proportional to first order changes in the length of the circle, which
vanishes on account of the geodesic character of the parallel.
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From the relation (40) between E2 and αM 1, one concludes that the sum of their second order corrections is constrained
by the amplitude

E2 = m2 + c2 =
q2

2
α2
M 1 . (44)

To identify a second relation between m2 and c2 we use the conditions (36), which relate the excess radius and the
azimuthal range in terms of the potential. Since to first order the turning points are ±αM 1, the denominator in these
expressions can be expanded as

c− U(α) ≈ (α2
M 1 − α2

1)(χ− ξα2
1) , (45)

where

χ =
1

2

(
q2 +m2

)
− ξ α2

M 1 , ξ =
1

24

(
18 + q2

)
; (46)

thus

1√
2
√
c− U(α)

≈ 1

q
√
α2
M 1 − α2

1

[
1 +

1

q2

(
ξ
(
α2
M 1 + α2

1

)
− m2

2

)]
. (47)

Substituting this expression into the two conditions (36) and integrating, one obtains

∆r =
p

2 q2

(
3 ξ α2

M 1 −m2

)
, m2 =

(
3 ξ − q2

2

)
α2
M 1 . (48)

From these two equations one finds that the excess radius is proportional to the square of the perturbation amplitude

∆r =
p

4
α2
M 1 . (49)

Using this relation in Eqs. (44) and (48) one can express m2 and c2 in terms of the excess radius:

m2 =
3

p

(
3− 1

2
q2

)
∆r , c2 =

1

p

(
7

2
q2 − 9

)
∆r . (50)

To complete the construction of the constrained curve one needs to determine its position coordinates z and ϕ by
integrating the relations (29). To first order

z′1 = α1 , ϕ′1 = 0 ; (51)

consequently This confirms to first order that a non-vanishing value of the conserved axial force f is inconsistent with
closed deformations of a parallel circle. Note first that, if f 6= 0, the potential V2 defined in Eq. (39) gains up a linear
term so that z1 picks up a helical contribution proportional to arclength, which is inconsistent with closure.

z1 =
2

n

√
p∆r sin qs , ϕ1 = 0 . (52)

In contrast to its spherically confined counterpart, the elliptic deformation of an elastic loop on a cylinder with n = 1
and p = 1 is not identified with a rotation, but with a tilt of the loop extending its length.

1. Energy and confining force of perturbed loops

In the quadratic approximation the bending energy hB is given by

hB ≈ π
(
p+

(
2 q2 − 3

)
∆r
)
. (53)

Using the fact that r−1 ≈ p−∆r, the energy can also be expressed in terms of the energy of the circle with reduced
radius r, hc = π/r as

hB ≈ hc
[
1 + 2

(
q2 − 1

)
∆r
]
. (54)
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It is now manifest that at lowest order the energy of the deformed loop is given by the energy of the circular loop,
hB ≈ hc. The second order correction to the energy of the loop vanishes for elliptic perturbations with q = 1, whereas
it increases (decreases) if q > 1 (q < 1).

To second order, the magnitude of the normal force λ̄ given by Eq. (34) reads

λ̄ ≈ q2 − 1 +
1

p

[
q2

(
11 cos 2qϕ− 5

2

)
+ 7− 2 cos 2qϕ

]
∆r . (55)

For the elliptical confined states with q = 1, only the second order correction is non-zero, λ̄ ≈ 18
(
cos2 ϕ− 1

4

)
∆r. It

vanishes in the limit ∆r → 0. Note that λ̄ is not positive everywhere, assuming negative values in the two intervals
ϕ ∈ (π/3, 2/3π) and ϕ ∈ (−2/3π,−π/3), describing the neighborhood of the turning points where the height is a
maximum and a minimum. On account of this, if the loop is bound inside the cylinder and free to detach, one expects
that it will tend to rotate into the vertical plane, touching the cylinder tangentially at two points. Such states are
described exactly by two segments of a planar Euler elastic curve as described in Appendix C. A loop bound to the
outer side of the cylinder, free to detach, will tend to detach on the equator first before reforming as a circular loop.

Note that a constant normal force λ̄0 = q2 − 1 persists in the limit ∆r → 0 in all other states. This behavior
is analogous to the Euler instability associated with n-folds confined by a sphere [27].7 In general, λ̄0 is positive
(negative) if q > 1 (q < 1), so initially the loop will push (constrict) everywhere on the cylinder. In particular,
an interior bound curve with p = 1 and n-fold dihedral symmetry will push on the cylinder whereas its exterior
counterpart will peel off.

Whereas the second order correction to the transmitted force can have either sign (correlating with the sign of the
cosine of the double angle) one has to proceed beyond perturbation theory to determine if the sign of the force in
non-elliptical states changes in longer loops, as we will see in Sec. IVB, it does).

An interior bound figure of eight (n = 1, p = 2) would be expected to unwind into the planar Euler elastic vertical
confined state; an exterior one, on the other hand will constrict the cylinder. Note that this configuration possesses
a lower energy than a free twice-covered circular loop. There is no inclination to detach from the cylinder. With
increased length, as we will see in our non-perturbative treatment of the problem, we would not expect this state
to remain completely attached; intuitively we would nonetheless expect it to continue to constrict the cylinder. The
topological obstruction provided by the cylinder prevents the doubly wound elastic loop from unraveling into its singly
wound ground state. This will be confirmed when we venture beyond perturbation theory. An exterior bound loop
wound more than once around a cylinder will always constrict the cylinder.

2. Stability of perturbed loops

Modulo the EL equation, the second variation of the energy is given by

δ2HB =

∫
dsΦLΦ , (56)

where L is a self-adjoint fourth order differential operator, defined at lowest order and about a p-fold covering of the
equator by

L =
∂2

∂s2

(
∂2

∂s2
+ q2

)
, (57)

and Φ is the normal deformation along l, Φ = δY · l. On account of the fixed length condition, the permissible normal
deformations ought to be orthogonal to the geodesic curvature, so Φ must satisfy the global constraint [42]∮

ds κg Φ = 0 . (58)

7 Its relation to the non-vanishing axial torque (m0) associated with the confined loop in this limit is somewhat mysterious.
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The eigenmodes of L are 1, ϕ, cosQϕ, sinQϕ.8. Since the periodic eigenmodes ought to have the same number of
windings as the original loop, the wave number is given by Q = k/p where k is another integer. Their corresponding
eigenvalues are

Ck =
k2

p4

(
k2 − n2

)
. (59)

There are four zero modes with Ck = 0, the constant and linear modes 1 and ϕ and two (cosine and sine) eigenmodes
with the same number periods as the original loop, k = n (Q = q). However, the eigenmode ϕ is not periodic
and the eigenmode cos qϕ ∝ κg does not satisfy the global isometry condition (58), so both of these modes will
not be considered. The allowed zero modes correspond to a translation along (ΦT = 1) and a rotation about
(ΦR = sin qϕ ∝ κ′g) the axis of the cylinder.

In Fig. 2 the eigenvalues Ck are plotted for the first n-fold perturbations of a single covering of the equator (q = 1).
These eigenvalues are all positive for the elliptic state with n = 1. All states with n ≥ 2, however, exhibit negative
eigenvalues, which signal the possibility of decay to states with lower energy, if they are accessible. Therefore, in this
approximation only the elliptical state n = 1 is stable, whereas the higher n-folds with n ≥ 2 are unstable. Of course,
to access the stability of the elliptic ground state one need to also treat perturbations lifting the loop off the surface.
In the absence of an adhesive force one would expect this state to be unstable with respect to such perturbations.

● ●
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■ ■ ■

■
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n=1
n=2
n=3

1 2 3
k

-20

20

40
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FIG. 2: Eigenvalues Ck corresponding to deformations of a parallel circle. For all n > 1, the spectrum posesses a negative
eigenvalue.

B. Non-linear regime

We now examine loops in their full non-linear glory. Their analysis is again facilitated by exploiting the analogy
with a particle in a periodic potential.

First, the constant c can be cast in terms of the turning points of U and m: let α′ = 0 at α = ±αM in the quadrature
Eq. (25) then

c = −1

2
cos4 αM −m cosαM . (60)

For a circular loop this reproduces Equation (37), relating c and m to lowest order in perturbations. c vanishes if the
curve is vertical on the equator (αM = π/2) or when m = −1/2 cos3 αM (αM 6= π/2). The relationship (60) permits
us to recast the quadrature in terms of αM and m: α′2 = V (α)2, where

V (α)2 ≡ 2 (c− U(α)) = (cosα− cosαM )
[
(cosα+ cosαM )

(
cos2 α+ cos2 αM

)
+ 2m

]
. (61)

8 Recall that to lowest order s is given by ϕ.
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Since π ≥ αM ≥ α ≥ 0, one has cosα ≥ cosαM ≥ 0, so V 2 ≥ 0 implies the lower bound on the axial torque, m ≥
−2 cos3 αM ; thus there are no closed curves with m < −2. Eq. (60) now implies the bounds on c, c ≤ 3/2 cos4 αM for
0 < αM < π/2 (c > 3/2 cos4 αM for π/2 < αM < π). These bounds together imply the inequality c ≤ 3/2(|m|/2)4/3.

For a given p-fold covering and n-fold dihedral symmetry, Eq. (36b) establishes the relationship between m and αM .
Curiously, this is independent of the length of the loop. Modulo this condition, αM or m is determined as a function
of ∆r using Eq. (36a). To trace the trajectory of the loop one integrates the quadrature for a given ∆r to obtain α
as a function of `; the relations (29) permit one to position the loop on the cylinder.

The functional relationship between m and αM is presented in Fig. 3 for each of the three sequences, L2,1 (blue curve),
L1,1 (black) and L1,2 (red). While this may be the first relationship to be established, the information it conveys is
not immediately transparent.9 It is somewhat easier to understand the behavior of m and αM as functions of ∆r.
In Fig. 4(a), 4(b) and 4(c) αM , m and c are plotted as functions of loop length for each of the three sequences. We
see that m increases towards a maximum in each sequence. The corresponding loops with maximum values of m are
illustrated in Figs. 5(c), 6(b) and 7(d), respectively. Beyond this single maximum m decreases monotonically to zero.
The axial torque vanishes in all long loops. In each of the L2,1 and L1,1 sequences, m changes sign from negative to
positive at some finite ∆r. In particular, there is a finite value of ∆r at which the axial torque vanishes. This does
not, of course, mean that the total torque vanishes.10 These states are tractable analytically and will be discussed in
detail in Appendix D. Surprisingly, one finds that αM does not increase monotonically with loop length. It increases
from its value αM = 0 reaching a maximum value (> π/2) before returning asymptotically to π/2 in long loops. At
some critical length on the way up, αM = π/2, indicating that the loop develops vertical tangents on the equator.
In these states the constant c vanishes, which indicates that they are also special with respect to length. Loops with
values of αM > π/2 develop overhangs on each side of the equator.

L1,2

L1,1

L2,1

0 π/8 π/4 3 π/8 π/2

-1

0

1

2

αM

m 9 π/16π/2
0.00

0.01

0.02

0.03

0.04

0.05

FIG. 3: (Color online) Behavior of the vertical torque m as a function of αM for the sequences L2,1 (blue curve), L1,1 (black
curve) and L1,2 (red curve). The complicated relationship between m and αM upon the development of vertical tangents with
αMπ/2 (detailed in the inset) is clarified by examining separately the functional dependencies of m and αM on ∆r.

9 Note, however, that it is consistent with the perturbative behavior presented in Sect. IVA for small αM . Recall that for a p-fold
covering of the equator, with α = αM = 0, one has m = (n/p)2 − 2. (See Eqs. (42).) The leading correction is quadratic in αM ,
m2 = 3

4

(
3− 1

2
(n/p)2

)
α2
M .

10 Likewise M does not vanish in long loops. For while they are stretched along the cylinder, as we will see, the asymptotic geometry is
non trivial.
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FIG. 4: (Color online) (a) Behavior of (a) αM and (b) Axial torque m and (c) Parameter c as function of excess radius ∆r for
each of L2,1 (blue curve), L1,1 (black curve) and L1,2 (red curve) sequences. In all three cases αM initially increases with ∆r
from a value αM = 0 when ∆r = 0. The corresponding states are loops covering the equator described by perturbation theory.
αM reaches a maximum (> π/2) at a finite value of ∆r. There is a critical intermediate loop length at which αM = π/2 where
the loop develops vertical tangents. As the length is increased αM falls asymptotically to π/2 corresponding to a loop stretched
along the cylinder. The axial torque initially increases with ∆r (m = (n/p)2 − 2 when ∆r = 0), reaching a maximum, tending
to zero as ∆r becomes large. c0 = 3/2− (n/p)2 when ∆r = 0 and c→ 0 when ∆r is large. Its vanish correlates with αm = π/2.

1. L1,1 ground state

Equilibrium loops completing one period in one trip around the equator are represented in Fig. 5 focusing on the
behavior as the length of the loop is increased. If ∆r is small, the loop is a tilted ellipse described accurately by
perturbation theory about the equator. See Fig. 5(a). As the length increases, the eccentricity of this loop increases
obliging it to tilt away from the equatorial plane (Fig. 5(b)); it also begins to bend out of the plane of the ellipse
(Fig. 5(c)) as inflections develop at the equatorial crossings (Fig. 5(d)). This out of plane bending can be viewed
as a consequence of the mismatch between the curvature within the two hairpins which follow the parallel circles on
the cylinder and the increasing linearity of the sections interpolating between them. At some point the tangents on
the equator become vertical with αM = π/2. With increased length, overhangs appear and the loop develops lobes
on either side of the equator. With increased ∆r, the lobes, however, continue to grow (Fig. 5(e).11 At some critical

11 The angle αM , on the other hand, reaches a maximum, returning asymptotically to π/2.
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length the two lobes make self-contact at the back of the cylinder (Fig. 5(f)). Meanwhile the two section interpolating
between the hairpins becomes increasingly vertical. The loop will eventually self-intersect. Very long loops consist of
two hairpins connected by two very long self-intersecting almost vertical sections. Both the length of these sections
and a number of self-intersections along them is approximately proportional to the length of the loop.

(a) (b) (c) (d) (e) (f)

FIG. 5: (Color online) L1,1 loop sequence. (a) ∆r = 0.01 (αM ≈ π/16), (b) ∆r = 0.192 (αM ≈ π/4 and hB min), (c) ∆r = 0.78
(αM ≈ 2π/5 and mmax), (d) ∆r = 1.8 (αM = π/2 and hB max), (e) ∆r = 5.544 (αM max ≈ 0.548π) and (f) ∆r = 27.819
(αM ≈ 0.522π, first self-contact occurs). In (f) only the upper half of the loop is displayed. The normalized magnitude of the
normal force λ is color coded along the loop in these figures.

2. L1,2 excited states

Significant features of loops undergoing two periods while they wrap the cylinder once are represented in Fig. 6.
If the loop is short, it consists of a small oscillation about the equator, (Fig. 6(a)), the amplitude of the oscillation
increasing with length (Fig. 6(b) and (c)). When ∆r = 1.313 the loop becomes vertical at the equator, (Fig. 6(d)).
Lobes develop in longer loops with αM reaches its maximum when ∆r = 5.48 (Fig. 6(e)). The first self-contact occurs
when ∆r = 8.59 (Fig. 6(f)). Self-intersections will occur in longer loops. Asymptotically, states consist of four hairpin
bends interpolated by increasingly vertical mutually intersecting sections. One can also think of this state as a folded
n = 1 state, with the folds themselves forming hairpins. In general, states with n > p will behave in a manner similar
to those in this sequence.

3. L2,1 states

Non-trivial loops which wind about the cylinder more than once (p > 1) are also possible whenever r ≥ p. The
L2,1 loop sequence is represented in Fig. 7. If the excess length is small the loop approximates a double covering of
the equator, adopting as the length is increased the shape of a folded figure of eight wrapping the cylinder, with its
self-intersection lying on the equator. See Fig. 7(a). (If p = 3, the two intersections migrate off the equator.) The
crossing angle increases as the figure is stretched. See Figs. 7(b)-(d). This angle becomes vertical when ∆r = 11.06,
see Fig. 7(e). αM reaches a maximum value 0.51π, at ∆r = 27.548. See Fig. 7(f). In longer loops, additional
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(a) (b) (c)

(d) (e) (f)

FIG. 6: (Color online) L1,2 loops sequence. (a) ∆r = 0.01 (αM ≈ π/16), (b) ∆r = 0.13 (αM ≈ 0.216π and mmax), (c)
∆r = 0.365 (αM = π/3), (d) ∆r = 1.313 (αM = π/2 and hB max), (e) ∆r = 5.48 (αM max ≈ 0.595π) and (f) ∆r = 8.59 ( first
self-contact occurs, αM ≈ 0.588π). The normalized magnitude of the normal force λ is color coded in these figures.

self-intersections appears above and below the equator. In contrast to the asymptotic behavior of the L1,1 sequence,
the two hairpins lie on the same meridian.

The appearance of the self-intersections in these three sequences of loops can be understood more easily by unfolding
them as described in detail in Appendix E.

4. Trajectories in the c-m parameter space

For completeness, we also represent the three sequences as trajectories in the c − m parameter space. These
trajectories are bounded by two curves,

1. The line m = −1/2− c, denoted by Π, representing loops covering the equator p times, is indicated by the gray
dashed line in Fig. 8.

2. The curve c = 3/2(|m|/2)4/3, denoted Υ representing loops saturating the inequality between c and m, is
indicated by the gray dotted curve in Fig. 8.
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(a) (b) (c) (d) (e) (f)

FIG. 7: (Color online) Loops of sequence L2,1. (a) ∆r = 0.02 (αM ≈ π/16), (b) ∆r = 0.25 (αM ≈ 0.194π), (c) ∆r = 1.149
(αM = π/3), (d) ∆r = 6.916 (αM ≈ 0.48π and mmax), (e) ∆r = 11.06 (αM = π/2 and hB max) and (f) ∆r = 27.548
(αM max ≈ 0.51π). In (f) only the upper half is displayed. The normalized magnitude of the normal force λ is color coded in
these figures.

The point (3/2,−2) at the intersection of Π and Υ, is a limit point, corresponding to loops winding the equator an
ever increasing number of times (p→∞), with a finite number of periods, so that c0 → 3/2 and m0 → −2.

All three trajectories originate on Π and terminate at the origin. Infinitely long loops have vanishing m and c. In
this limit the fixed length constraint gets relaxed as c becomes vanishingly small.

The trajectory for L1,1 (L2,1) indicated by the black (blue) curve in Fig. 8 begins at the point (1/2,−1) ((5/4,−7/4))
spiraling towards the origin. Both trajectories cross the line c = 0 three times; twice with a finite value of m, one
with an acute angle and another with vertical tangents at the equator, and again at the origin.

Likewise the trajectory for L1,2 begins on Π at (−5/2, 2) but it forms an arc, crossing the line c = 0 twice, once where
the loop has vertical tangents and again at the origin.

In general, any sequence with n > p begins on Π to the left of L1,1, whereas sequences with n < p begin on the right,
all sequences tend asymptotically to the origin. Sequences with c > 0 (c < 0) or n/p <

√
3/2 (n/p >

√
3/2) will cross

the line c = 0 three times (twice) and thus will have spiral-like (arc-like) trajectories as in sequence L2,1 (L1,2).

5. Total energy

Loops in the Lp,n sequence originate in p-fold coverings of the equator. Thus their initial energy is hB = π p,
independent of n. See Fig. 9. If the excess radius ∆r is small, loop states in the L1,1 sequence are approximately
elliptic; their energy is thus close to that of their planar vertical counterparts presented in Appendix C, as revealed by
the initial coincidence of the solid black and gray curves respectively in Fig. 9. However, in this sequence the energy
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FIG. 8: (Color online) Trajectories in the parameter space c −m of sequences L2,1 (blue curve), L1,1 (black curve) and L1,2

(red curve). Dashed line Π represent the bound m = −1/2− c, corresponding to a single or multiple covering of the equator,
whereas dotted line Υ represent the bound c = 3/2(|m|/2)4/3 and correspond to loops covering the equator a very large number
of times. The intersection of Π and Υ occurs at the point (3/2,−2). The inset shows the trajectories in the neighborhood of
the origin, corresponding to loops with very large excess radius.

reaches a global minimum when ∆r = 0.192, corresponding to the state illustrated in Fig. 5(b), increasing towards a
global maximum value hB = 1.042π when ∆r = 1.80 (the state with αM = π/2 and c = 0), after which it decreases
asymptotically towards hB = π. Long loops and short ones have the same energy! By contrast, the energy of planar
vertical loops decreases monotonically to a minimum value of 0.914π when ∆r = 0.393 which is when the curvature
in the free loop vanishes where it makes contact with the wall. Thereafter it remains constant because any additional
length gets directed into the straight line segments. See the inset in Fig. 9. We see that vertical loops always have
lower energy than any bound counterpart: the former thus provides the ground state of interior bound loops allowed
to unbind.

The energy of excited states in the L1,2 sequence is indicated by the red line in Fig. 9. While it is initially degenerate
with the L1,1 sequence, with energy hB = π, unlike the latter it increases with the excess radius from the beginning,
reaching a maximum at ∆r = 1.313 (also when αM = π/2), thereafter decreasing asymptotically to the value hB = 2π.
The energy of the double winded L2,1 sequence is indicated by the blue curve in Fig. 9. It starts at hB = 2π; unlike
the energy of the L1,1 sequence which only decreases initially, the energy decreases monotonically to hB = π, the
same asymptotic energy as a loop in the L1,1 sequence.

In general, for Lp,n sequences with n > p, the maximum of hB occurs in states with vertical tangents on the equator
and finite vertical torque, i.e. αM = π/2 and m 6= 0. The corresponding states in the L1,1 and L1,2 sequences are
displayed in Figs. 5(d) and 7(e). For n < p the initial states possess the maximum energy within the sequence. Since
loops with very large excess radius are essentially straight almost everywhere, the principal contributions to the total
energy will be from the 2n curved hairpins, each with approximately the same energy as a semicircle, hB = π/2. This
explains the coincidental simplicity of the asymptotic energy in the three sequences: for all Lp,n, the energy hB → π n
(from above) as ∆r →∞. It is independent of the topology of the loop.

6. Transmitted normal force

The magnitude of the normal force λ̄, scaled to lie between −1 and 1, is represented in color along the loops in
Figs. 5, 6 and 7, indicating clearly the regions where they are pushing or pulling the cylinder: red (purple) represent
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FIG. 9: (Color online) Total energy of loops belonging to the three sequences L2,1 (blue), L1,1 (black) and L1,2 (red), as well
as the energy of the vertical loop touching the cylinder along its sides (gray). The initial value of the total energy of the Lp,n

sequence is hB = πp corresponding to a p-fold covering of the equator, whereas the energy of loops with very large excess radius
tend asymptotically to the value hB = πn, indicated with dashed lines.

regions where the push (pull) is maximum,12 whereas green represent regions in which the transmitted force is low. In
general, it is observed that the maximum push occurs at the equatorial crossings, whereas the minimum (maximum
pull if negative) occurs at the hairpins. The maximum (solid curves) and minimum (dashed curves) values of λ̄ are
plotted as function of the excess radius ∆r in Fig. 10(a) for each of the three L1,1 (black curve), L1,2 (red curve) and
L2,1 (blue curve) sequences.

The perturbative result, Eq. 55, indicates that the initial state of a sequence Lp,n exerts a normal force of magnitude

λ̄0 = (n/p)2 − 1 . (62)

Regardless of n and p, the maximum and minimum values of λ̄ tend to λ̄max → 1 approximately and λ̄min → −2
exactly as ∆r → ∞. In fact, in this limit Eq. (34) reads λ̄ ≈ 2 cos4 α

(
5− 6 cos2 α

)
, with minimum at α = 0 and a

maximum when cos2 α = 5/9, so that λ̄max = 250/243, which is one for all practical purposes.

For completeness, we present the total transmitted force Λ =
∮

ds λ̄ which indicates whether on average the loop
is pushing or pulling on the cylinder. It is plotted in Fig. 10(b) in each of the three sequences. Since the p-fold
coverings of the equator exert a constant normal force, the initial total force is simply Λ0 = 2π p λ̄0. It if found that
Λ tends asymptotically to Λ∞ → π n from below as ∆r → ∞. Whereas enclosed bound loops both push or pull on
the cylinder, depending on the sign of λ̄0, ultimately all such loops end up pushing the cylinder.

In the L1,1 sequence, the single covering of the equator does not initially exert any force, λ̄0 = 0. As ∆r increases,
however, second order corrections kick in with λ̄ alternating from positive to negative along the loop. This behavior
persists with increasing ∆r, see Fig. 5 and the black curves in Fig. 10(a). The negative pulling force on an inner
bound loop is increasingly localized in the neighborhood of the tips. We saw earlier that the energy of this state is
always higher than that of the planar vertical loop of equal length spanning the interior. Importantly, however, the
averaged force is always positive. While the energy would suggest that the L1,1 ground state is always unstable, the
sign of the contact force suggests otherwise. What appears to occur is that the loop unbinds from the cylinder in
the neighborhoods of the tips. If it is short it will rotate into the vertical. As the length increases, however, the
lobes pushing on the cylinder snag the loop providing a potential barrier obstructing the passage towards the planar
vertical loop. A detailed perturbative study, beyond the scope of this paper, is required to settle the issue.

Along loops in the L1,n sequences, initially λ̄ is uniformly positive (see Fig. 6(a)) indicating that an Euler type
instability is associated with their formation as interior bound states. However this push on the cylinder persists only

12 Recall that this convention is adapted to the viewpoint of an interior loop; if the loops is outside, push and pull are reversed.
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FIG. 10: (Color online) (a) Maximum (solid curves) and minimum (dashed curves) of the magnitude of the normal force λ for
sequences L2,1 (blue curve), L1,1 (black curve) and L1,2 (red curve). (b) Total normal force of the same sequences.

for short loops; once ∆r > 7.65x10−2 for n = 1 (see the red dashed line in Fig. 10(a)), the minimum of λ̄ turns
negative within the regions near the tips, indicated in Fig. 6(b). In the case of an interior bound state, one would
expect the loop to unbind in the neighborhood of its tips so as avoids these regions.

An exterior bound loop with p = 1, free to unbind will completely unbind, reforming as a circular loop. As we have
already glimpsed, loops in the L2,1 sequence behave very differently: now λ̄ is initially uniformly negative. While an
inner bound loop is in this state is manifestly unstable initially, its exterior bound counterpart is stable. However when
∆r > 0.317, the maximum of λ̄ becomes positive (c.f. the blue solid line in Fig. 10(a)) in the regions surrounding the
center of the hairpins, see Fig. 7. Beyond some higher value of ∆r the average force becomes positive. This suggests
that a sufficiently long interior loop may be stable modulo shortcuts.

As discussed in the perturbative context, doubly-wound exterior loops are more interesting because such loops will
always constrict the cylinder. If the loop is short, it will constrict the cylinder everywhere, albeit not in an axially
symmetric way. If longer, the contact force will favor the unbinding of the exterior bound loop in the neighborhood of
the crossings. However, such loops will remain attached to the cylinder at its hairpins applying a force on the cylinder
at the points of contact. In any case the cylinder provides a topological obstruction preventing the doubly wound
elastic loop from unraveling into a singly-wound circular loop. This happy conspiracy permitted by the topology has
no analogue on a sphere.

V. DISCUSSION AND CONCLUSIONS

We have examined the equilibrium shapes adopted by an elastic loop either confined by a cylinder or constricting
it. Our initial motivation was to contrast the behavior of loops confined within a sphere with those confined within
a sphere, and specifically to explore how these loops respond to the changed topology. Loops may wind a cylinder
any integer number of times. They may oscillate one or more times as they do this. Whereas the winding has no
topological significance for a loop that is free to unbind within the cylinder, it very much does if it is bound to the
outer surface.

On a sphere, the ground state of a confined loop with a radius exceeding the spherical radius is attached to the sphere.
No additional adhesive forces are necessary. The loop pushes against the sphere and it will remain bound everywhere
even if free to detach. Instabilities of excited states occur through rearrangements on the sphere itself. When there
are topological obstructions, they may be bypassed by stepping into the interior. Elastic loops, however, simply do
not bind to the exterior surface of a sphere. What occurs on a cylinder is a lot more interesting.

On a cylinder, one needs to distinguish between stability on the cylinder and off it. We have considered, in detail, the
behavior of states bound to the cylinder. If the loop is short there is a single bound ground state for each winding p,
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the state with n = 1. All states with n ≥ 2 will be unstable if the loop is short. However, as loops grows in length
the sections connecting the troughs and crests straighten out along the axis; if the loop oscillates more than once, the
oscillations morph into folded hairpins. All loops grow by extending indefinitely in the axial direction, which permits
them to relax their axial torque. One can show that for each n ≥ 2 there will be a critical length above which the
bound folded loop is stabilized. There will be a crossover from instability to stability associated with the exploration
of the long (or non-compact) direction. This behavior has no analog on spheres.

If states are free to unbind, the behavior inside and out are very different; both are interesting. Unlike loops binding
to spheres, the contact forces are not positive everywhere. Indeed, they are always negative in the neighborhood of
the crests and troughs of the oscillations. Interior bound states would be expected to unbind within these regions,
lowering the loop curvature and, as a consequence, lowering the loop energy. The ground state itself with p = 1,
n = 1 will also unbind, and if sufficiently short, will be unstable with respect to deformations rotating it off the
surface into the confined ground state: a planar loop compressed along its sides. Experimenting with a loop in a
cylindrical wastepaper basket or pipe confirms this prediction. Longer partially bound states may become stable
beyond some critical length. Folded hairpins will certainly be stable modulo minor adjustments. A stability analysis
accommodating normal perturbations is necessary to settle these issues, but it is not going to be simple.

We saw that states with p > 1, and n = 1 would tend to unbind if below some critical length. This is because the
contact forces are inward everywhere. As these states get longer the force turns to push except at the tips so that
the state would be expected to stabilize modulo the same sort of corner-cutting we have described. These states are,
however, far more interesting placed outside the cylinder.

An exterior loop wrapping a cylinder once will always unbind in the absence of an adhesive force holding it there,
reconfiguring itself as a simple circular loop. However, one that wraps the cylinder more than once is constrained
by the topology to remain in contact with the cylinder, completely initially and partially–in the neighborhood of
its tips–beyond some critical length. In either case it will always apply a compressive force on the cylinder in these
neighborhoods. This force generally is not axially symmetric. This behavior can also be confirmed in a broom
cupboard experiment by coiling an elastic loop into a figure-of-eight and wrapping a broom handle: whereas a short
loop will hug the handle completely, a long one will detach everywhere except at four points. This experiment also
reveals that the detached state does not possess the symmetry of its bound counterpart. Indeed, if the loop is coiled
three or more times it is clear that the sequence of crossing (over or bellow) is not unique and the detached state
will depend on the particular sequence. This mechanism may be relevant to an understanding of the constriction of
membrane necks in dynamin mediated membrane vesiculation. It should be remarked that we never anticipated the
possibility that loops wrapping a cylinder could bind without any additional agency, never mind, finding that they
provide a possible mechanism for neck constriction.

A membrane neck is, of course, better modeled as a catenoid. Modeling the constriction of a catenoid is technically
more challenging because along with the surrender of the translational symmetry along the cylinder along its axis one
also cedes the quadrature.

An obvious direction for future work is to study open elastic spirals on cylinders, catenoids and other axially symmetric
geometries with free boundaries. Spiral geometries represent the behavior of chains of assembled proteins such
as dynamin. However, unless physically unrealistic boundary conditions are introduced, the simple elastic energy
considered here will not constrict the geometry. A constricting spiral will require an environmental bias, such as a
spontaneous normal curvature if it is to apply a force. And if it is to spiral it will require a constraint or bias on the
twist which translates into a constraint or bias on the geodesic torsion. This still leaves us with a long way to go
before we are in a position to treat a spiral binding to a fluid membrane taking their mutual interaction into account.
The consolation is that there is interesting physics to be picked up along the way.
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Appendix A: Axisymmetric Surfaces

To describe an axisymmetric surface, it is convenient to introduce cylindrical coordinates (R,ϕ,Z). adapted to the
symmetry with tangent vectors

ρ̂ = (cosϕ, sinϕ, 0) , ϕ̂ = (− sinϕ, cosϕ, 0) , ẑ = (0, 0, 1) . (A1)

The surface is now parametrized by arc-length ` along a meridian and the azimuthal angle ϕ along the parallel:

X(`, ϕ) = R(`)ρ̂+ Z(`)ẑ , (A2)

where Ṙ(`)2 + Ż(`)2 = 1 and the dot represents derivation with respect to `. The two tangent vectors adapted to this
parametrization are

e` = Ṙρ̂+ Żẑ , eϕ = Rϕ̂ . (A3)

Thus the line element on the surface is given by ds2 = d`2 +R(`)2 dϕ2, and the metric tensor assumes the form

gab =

(
1 0
0 R2

)
. (A4)

The outward unit normal vector, n = g−1/2 eϕ × e` is

n = Żρ̂− Ṙẑ ; (A5)

the extrinsic curvature tensor is diagonal

Kab =

(
−R̈/Ż 0

0 RŻ

)
. (A6)

The eigenvectors of the shape operator Ka
b = gacKcb (its principal directions) lie along meridians and parallels, with

corresponding eigenvalues given by

κ⊥ = −R̈/Ż , κ‖ = Ż/R . (A7)

These are the curvatures of these curves. The two symmetric invariants of the shape operator are the mean and
Gaussian curvatures K = κ⊥ + κ‖ and KG = κ⊥ κ‖.

Appendix B: Hamiltonian approach to cylindrical confinement

Here we provide a direct derivation of the “second” integral of the Euler-Lagrange equation describing the con-
finement of a semi-flexible polymer within a cylinder. The “Lagrangian” density L is constructed in terms of the
three coordinates (ϕ, z, α)13 characterizing the curve Γ. These variables are not independent; they are related by Eqs.
(12). It will be necessary to implement these constraints using two local Lagrange multipliers λϕ and λz. One thus
constructs the following effective energy

L [α,ϕ, z, α′, ϕ′, z′, λϕ, λz] =

∫
ds

(
(α′)2

2
+

cos4 α

2
+ λϕ(ϕ′ − cosα) + λz(z

′ − sinα)

)
. (B1)

The momentum densities conjugate to the coordinates (ϕ, z, α), are given by

Pϕ = λϕ , Pz = λz , Pα = α′ . (B2)

Since ϕ and z are cyclic coordinates (because of the rotational and translational symmetries) Pϕ and Pz are conserved.
Also, L does not depend explicitly on arc-length. Thus its Legendre transformation H = ϕ′Pϕ + z′Pz + α′Pα − L is
constant. Evaluating it, one obtains

H =
1

2
P 2
α −

cos4 α

2
+ Pz sinα+ Pϕ cosα . (B3)

13 As before, here we scale lengths with the cylinder radius
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This reproduces the “second” integral Eq. (24) with the identifications, H = c, f = −Pz and m = −Pϕ.

Hamilton’s equations for α are

α′ =
∂H
∂Pα

= Pα , P ′α = −∂H
∂α

= −2 cos3 α sinα+ Pϕ sinα− Pz cosα . (B4)

To reconstruct the curve one solves these equations with initial conditions α(0) = α0, Pα(0) = Pα 0 and fixed Pϕ and
Pz. The azimuthal and height functions are obtained from integration of the two Hamilton equations

ϕ′ =
∂H
∂Pϕ

= cosα , z′ =
∂H
∂Pz

= sinα . (B5)

Without loss of generality one can use the initial conditions ϕ(0) = 0 and z(0) = 0. The three constants Pz, Pϕ and
H are determined from boundary or periodicity conditions.

Appendix C: Confined planar curve

Let us consider the confinement of a closed curve of radius R, lying vertically inside a cylinder of radius R0, touching
the cylinder tangentially on its two sides. We have claimed that this state has lower energy than its bound counterpart.
In the absence of additional adhesive forces, the bound interior ground state–if sufficiently short–would be expected
to be unstable with respect to deformation into the cylinder rotating it into this state. Since the curve is planar, it is
described by the EL equation [18, 20]

εN = κ′′ + κ

(
κ2

2
− c
)

= 0 . (C1)

The translational invariance of the bending energy permits one to identify a quadrature

(κ′)2 +

(
κ2

2
− c
)2

= F 2 , (C2)

where F is the magnitude of the force vector F along the planar curve, given by

F =

(
κ2

2
− c
)
T + κ′N . (C3)

F is conserved along the curve, i.e. F′ = 0. The quadrature (C2) is integrable in terms of elliptic functions [43, 44].
The specific function will depend on the relative values of F and c [18, 20]:

If F 2 < c2 the FS curvature is given by

κ(s) = 2 q dn[qs, u] , F = u q2 , c = q2 (2− u) . (C4)

where the Jacobi delta function with argument φ and parameter u is defined by dn2[φ, u] = 1 − u sn2[φ, u] [43]. In
one period the curvature will oscillate asymmetrically about the value

√
2c between two positive (or negative) values,

so one has 0 < κmin < κ < κmax, where κmin = 2 q
√

1− u and κmax = 2 q (0 ≤ u ≤ 1, so F > 0 and c > 0). Thus the
curve has an orbitlike shape.

If F 2 = c2 the curvature is given by

κ(s) = 2 q sech qs , F = c = q2 . (C5)

The curve is not periodic, the curvature is positive everywhere but it takes an infinite length for the curve to become
planar, that is κ→ 0 as s→ ±∞. This curve is termed borderline corresponding as it does to the separatrix separating
orbital and wavelike behavior.

If F 2 > c2 the curvature is given by

κ(s) = 2
√
u q cn[qs, u] , F = q2 , c = q2(2u− 1) , (C6)
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where cn[φ, u] is the Jacobi cosine elliptic function [43]. The curvature oscillates symmetrically about 0 between ±κM ,
i.e. −κM < κ < κM , where κM = 2

√
u q (0 ≤ u ≤ 1), so the curve adopts a wavelike shape.

The parameters q and u are determined by specifying boundary conditions, which requires knowledge of the embedding
functions of the curve.

The cartesian coordinates of the curve Y = (x(s), y(s)) and its tangent vector T = (x′(s), y′(s)) can be expressed in
terms of the curvature. Since F is a constant vector, it is more convenient to work in cartesian coordinates and align
it along direction x̂, so F = F x̂, with F constant. Projecting F onto the cartesian basis (x̂, ŷ), yields

x′
(
κ2

2
− c
)
− y′κ′ = F , y′

(
κ2

2
− c
)

+ x′κ′ = 0 . (C7)

Taking linear combinations of these equations we get the components of the tangent vector in terms of the curvature
and its derivative

F x′ =
κ2

2
− c , F y′ = −κ′ . (C8)

This can be regarded as a factorization of the quadrature (C2). Introducing the angle ψ that the curve makes with the
direction of x̂, the components of the tangent vector can be written as x′ = cosψ and y′ = sinψ. Also, the curvature
is given by the derivative of this angle, κ = ψ′. Eqs. (C8) can now be mapped into the statement of conservation of
energy E and the equation of motion of a pendulum: arclength is identified with time and ψ is identified with the
angle that the pendulum makes with the vertical (see, for example, [45]).

Let arclength be measured from the midpoint of the curve, so x(0) = 0. Let the contact points occur at an arclength
s = ±sb. The normalized loop length is l = 4sb = 2πr, where r = R/R0. Confinement places two constraints on the
curve. First, since the curve must align with the container at points of contact, the tangent vector must be vertical
at liftoff, therefore x′(±sb) = 0 and y′(±sb) = ∓1, thus from Eq. (C8) one has that the constants c and F are given
by the curvature and its derivative at the contact points

κ(±sb) =
√

2 c (c > 0) , κ′(±sb) = ±F . (C9)

The first condition permits one to obtain the angular wavenumber q in terms of the modulus m. Using expressions
(C4), (C5) and (C6) of κ and c in terms of q and u, this condition read for each case

qsb = F
[π

4
, u
]
, F 2 < c2 , (C10a)

qsb = arcsinh 1 , F 2 = c2 , (C10b)

qsb = F

[
arcsin

1√
2u
, u

]
F 2 > c2 . (C10c)

This condition is of an intrinsic character, for it determines the distance of the contact points along the curve. The
second condition due to the confinement on the curve is of extrinsic character, for it fixes the spatial distance between
the contact points: the coordinates x of the contact points are constrained to be equal to the cylinder radius,

x(±sb) = ±R0 . (C11)

To implement this constraint one needs to integrate Eqs. (C8). The second equation in (C8) can be integrated
readily, which is a consequence of the rotational invariance about the direction orthogonal to the plane of the curve.
Indeed, the integration constant is identified as the conserved torque along direction ẑ, that is Fy = −κ−M , where
M = M · ẑ. By setting the contact points at y = 0, it follows that the magnitude of the torque is given by the negative
of the curvature at the contact points, M = −κb. Therefore, the coordinates of the curve are given by

x(s) =
1

F

s∫
0

dt

(
κ(t)2

2
− c
)
, y(s) =

1

F
(κb − κ(s)) . (C12)
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In full, the cartesian coordinates for each case read

x =
2

u q
E[am[qs, u], u] +

(
1− 2

u

)
s , y =

2

u q

(√
1− u

2
− dn[qs, u]

)
, F 2 < c2 ; (C13a)

x =
2

q
tanh qs− s , y =

2

q

(
1√
2
− sech qs

)
, F 2 = c2 ; (C13b)

x =
2

q
E [am[qs, u], u]− s , y =

2

q

(√
u− 1

2
−
√
u cn[qs, u]

)
, F 2 > c2 . (C13c)

This segment forms the bottom half of the free loop; the upper half is obtained by an appropriate up-down reflection.

Imposing condition (C11) in Eqs. (C13a) - (C13c) provides another expressions of the wavenumber q in terms of the
parameter m, obtaining for each case

R0 u q = 2 E
[π

4
, u
]
− (2− u) F

[π
4
, u
]
, F 2 < c2 , (C14a)

R0 q =
√

2− arcsinh 1 , F 2 = c2 , (C14b)

R0 q = 2 E

[
arcsin

1√
2u
, u

]
− F

[
arcsin

1√
2u
, u

]
F 2 > c2 . (C14c)

By combining Eqs. (C10) and (C14), and using the relation sb = π r/2 one determines the excess radius ∆r = r − 1
as a function of u

∆r =
uF[π4 , u]

π
(
E
[
π
4 , u
]
−
(
1− u

2

)
F
[
π
4 , u
]) − 1 , F 2 < c2 , (C15a)

∆r =
2 arcsinh 1

π
(√

2− arcsinh 1
) − 1 , F 2 = c2 , (C15b)

∆r =
F
[
arcsin 1√

2u
, u
]

π
(

E
[
arcsin 1√

2u
, u
]
− 1

2F
[
arcsin 1√

2u
, u
]) − 1 , F 2 > c2 . (C15c)

This makes it possible to parametrize the loop by u. Alternatively one can solve Eqs. (C15) numerically in each case
to determine u for a given excess radius ∆r.

The total energy of the loop is easily obtained by noticing from Eq. (C8) that the energy density is proportional to
x′. Thus, the energy of one quarter of the loop is given by

HB

4
=

1

2

sb∫
0

ds κ2 =

sb∫
0

ds (F x′ + c) = F R0 + c sb , (C16)

which establishes the role of the constants F and c as the conjugate variables to the extrinsic and intrinsic lengths
of the curve respectively (cf. Eq. (32) for the confined case). Using Eqs. (C10) and (C14), one gets that the total
energy of the loop in each of the three cases by

HB = 8 qE
[π

4
, u
]
, F 2 < c2 , (C17a)

HB = 4
√

2 q , F 2 = c2 , (C17b)

HB = 8 q

(
E

[
arcsin

1√
2u
, u

]
− (1− u) F

[
arcsin

1√
2u
, u

])
, F 2 > c2 . (C17c)

One quarter of the confined loops are plotted for increasing radius in Fig. 11(a). If u = 0 one has a circle. In the range
0 < ∆r < 0.053 (0 < u < 1) the curve is consists of orbitlike elastica segments, whereas for γ > 0.053 (1/2 < u < 1, u
decreases as the length increases) it consists of wavelike elastica segments (at ∆r = 0.053 (u = 1) consists of borderline
elastica segments). In this wavelike regime, when ∆r = 0.393 (u = 1/2) the curve adopts the limit shape shown in
Fig. 11(a) and by further increasing the length, the middle region of the loop–where the curve makes contact with
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the cylinder–will elongate, so the two limit arcs will be separated by straight lines. The energy of the loops is plotted
in Fig. 11(b) as a function of their radius. The bending energy HB of the confined loops begins at HB/π = 1/R0

(circle with u = 0) and decreases monotonically as the radius of the loop increases, saturating when the limit shape
with straight segments is reached for such lines do not contribute to the bending energy.14 The normal force acting

Δr
0.393
0.182
0.072
0.053
0.022
0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

x

y

hB/π

hc/π

0.0 0.1 0.2 0.3 0.4

0.75

0.80

0.85

0.90

0.95

1.00

Δr

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Δr

λ

(a) (b) (c)

FIG. 11: (a) One quarter of vertical elastic loops of different radii R confined inside a cylinder of R0 (∆r = R/R0 − 1). The
loops have vertical tangent at two points where they touch the cylinder. The shortest curve is the circle with radius equal to
the cylinder (∆r = 0). In the interval 0 < ∆r < 0.053 the loop is composed by arcs of orbitlike elasticas (light gray curve),
when ∆r = 0.053 of a segment of the borderline elastica (dashed curve) and after which is formed by wavelike elastica segments
(dark gray curves), reaching a limit shape at ∆r = 0.393 (black curve), such that beyond this point the excess length will
located at the contact regions, so the vertical intermediate region will increase. (b) Bending energy of the confined loops as a
function of their reduced radius. The black dot represent the energy of the loop formed by borderline elastica segments, curves
with smaller (greater) radius consist of orbitlike (wavelike) elasticas. HB starts at value of π/R0 and decreases monotonically
(black curve)–but much slower than the bending energy of a free loop (gray line)– as the loop radius increases, reaching a limit
value of 0.914π for the curve with ∆r = 0.393, after which it remains constant, regardless of the loop length. (c) Magnitude
of the normal force transmitted to the cylinder at the points where contact is made.

on the point where contact with the cylinder occurs is given by λ = 2F (each arc contributes with an amount F ).
This can be seen by considering a stress source of magnitude λ acting on the point of contact at s = sb, in the EL
equation (C1)

εN = κ′′ + κ

(
κ2

2
− c
)

= λ δ(s− sb) . (C18)

Integrating this equation in the neighborhood of the contact point and taking into account that the curvature is
continuous across the contact region,15 one has∫ sb+δs

sb−δs
ds εN = κ′+ − κ′− = λ . (C19)

where κ′+ and κ′− are the limits of the arclength derivative of the curvature, on the top and bottom sides of the
contact point. Thus the force exerted on the loop is reflected by the discontinuity in the derivative of its curvature.
This is analogous to the force exerted on a fluid vesicle by a ring, presented in Ref. [28]. From the BCs. (C9), one has
κ′± = ±F , so λ = 2F .16 Moreover, from Eqs. (C4)-(C6) follows that λ is proportional to the squared wavenumber,

14 This decay is slower than that of the energy in a free loop HB0 = π/R, and achieves a limit value rather than tending to zero for very
long loops.

15 If an adhesion energy is considered, the curvature would have a discontinuity [46, 47]
16 The change of sign between the up and down regions stems from the fact that it is obtained by a reflection of the top arc, rather than

a periodic continuation of the corresponding elastica.
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which is plotted in Fig. 11(c). As the loop radius increases, λ increases from 0 (circle) to a constant value 1.435 (limit
arc). When the straight lines appear, they do not exert a force on the cylinder and the corresponding normal force
for each arc λ = F is non vanishing only at the points of detachment.

Appendix D: Closed curves with zero axial force and torque

Loops of special interest are those in which not only the axial force vanishes but, in addition, the axial torque
vanishes, i.e. m = 0.17 While this condition is met in infinitely long loops, rather surprisingly it is also met non-
trivially for loops of specific length and precise values of n and p. Now the constant c given in Eq. (60) simplifies to
c = − cos4

M /2 = κ̄2
nM/2, so the quadrature (24) reduces to α′2 = cos4 α − cos4 αM , which can be recast in terms of

the scaled normal curvature as

κ̄′n = 2
√
κ̄n (1− κ̄n) (κ̄2

n − κ̄2
nM ) . (D1)

Solutions exist in the range 0 ≤ κ̄nM ≤ κ̄n ≤ 1, so that the normal curvature will oscillate between a mimimum
κ̄nM ∈ (0, 1) at points where the loop crosses the equator (α = αM ) and 1 at points with minimum and maximum
height (α = 0). One finds an exact analytic solution upon integrating Eq. (D1)

s =
1√

2 κ̄nM
F

[
arcsin

√
1− κ̄n

1− κ̄nM
2κ̄nM

κ̄n + κ̄nM
,

1− κ̄nM
2

]
, (D2)

where F[u,m] is the elliptic function of the first kind. Here arc-length s is measured from the tips where κn = 1. The
arc-length measured from tip to crossing point is given by sM = K[(1− κ̄nM )/2]/

√
2 κ̄nM , so that the total length of

the loop is l = 4nsM and the excess radius is ∆r = 2nsM/π − p.

The normal curvature as a function of arc-length is identified by inverting (D2)

κ̄n(s) =
κ̄nM dn2

[√
2 κ̄nM s, (1− κ̄nM )/2

]
1 + κ̄nM − dn2

[√
2 κ̄nM s, (1− κ̄nM )/2

] , (D3)

where dn[u,m] is the Jacobi delta function. Both the height and azimuthal functions can be determined by combining
the quadrature (D1) with the relations ϕ′ = cosα =

√
κ̄n and z′ = sinα =

√
1− κ̄n and integrating:

ϕ(s) =
1√

1 + κ̄nM
F

arcsin

√
1− κ̄n(s)

1− κ̄nM
,

1− κ̄nM
1 + κ̄nM

 , (D4a)

z(s) =
1√

2 κ̄nM

(
K

[
1

2

]
− F

[
arcsin

√
2 κ̄nM

κ̄n(s) + κ̄nM
,

1

2

])
. (D4b)

The maximum height zmax occurs at the tips where κ̄n = 1. The total azimuthal extension of the loops is

∆ϕ =
4n√

1 + κ̄nM
K

[
1− κ̄nM
1 + κ̄nM

]
. (D5)

Closure ∆ϕ = 2πp implies that the corresponding wave number is given by

q =
n

p
=
π

2

√
1 + κ̄nM

/
K

[
1− κ̄nM
1 + κ̄nM

]
. (D6)

In Fig. 12 q is plotted as a function of κ̄nM . We see that the wavenumber is bounded in the interval 0 < q <
√

2.
Excited states with vanishing torque do not exist in any sequence with p = 1; the only such state is an elliptic ground
state with n = 1 and m = 0 (cf Fig. 3). For a given q one has to solve numerically Eq. (D6) to determine κ̄nM .

17 Note, of course, that the total non-conserved, torque does not vanish in these states.
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FIG. 12: Allowed wavenumbers for loops with zero axial torque and force. The loops are defined for wavenumbers given by
rational numbers in the range 0 < n/p <

√
2.
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FIG. 13: (Color online) Curves with zero axial force and torque with (a) p = 3, n = 4 and ∆r = 0.122 (αM = 0.125π); (b)
p = 1, n = 1 and ∆r = 0.297 (αM = 0.296π); (c) p = 2, n = 1 and ∆r = 4.8 (αM = 0.461π). The normalized magnitude of the
normal force λ is color-coded in these figures.

Loops with q = 4/3, 1 and 1/2 are illustrated in Fig. 13. Their corresponding scaled normal curvatures at the crossing
points are κ̄nM = 0.853, 0.359 and 0.015 respectively.

Loops with κ̄nM ≈ 1 will be close to p-coverings of the equator. As κ̄nM decreases towards zero the loops elevate,
getting more and more vertical as κ̄nM tends to zero. In the limit case κ̄nM = 0, the reduced normal curvature and
the coordinate functions assume a simple form. For c = 0, the quadrature reduces to α′ = cos2 α, so tanα = s and
κ̄n = 1/(s2 + 1), whereas the azimuthal and height coordinates for this case can be represented by ϕ = arcsinh s

and z =
√
s2
M + 1−

√
s2 + 1, which together permits one to express the normal curvature and the height in terms of

azimuthal angle as κ̄n = sech 2ϕ and z = coshϕM − coshϕ. Thus it takes an infinite number of windings and infinite
height to go from the tips with κ̄n = 1 (ϕ = 0) to the points crossing the equator with κ̄n = 0 (ϕ → ∞), where
the loops have vertical tangents. Therefore the loop has infinite excess radius and winds infinitely many times while
completing one period, so n = 1 and p→∞, and consequently q = 0.
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The energy of a curve with length l = 2 sb is given by

hB = 4n

sM∫
0

ds κ̄2
n − κ̄2

nM l/2 . (D7)

There is no analytic expression in terms of elliptic functions, so it has to be integrated numerically. The energy of the
limit loop with κ̄nM = 0 is hb = π, (n = 1).

The magnitude of the normal force is given by

λ̄(s) = 2 κ̄2
n(s) (5− 6 κ̄n(s)) + 3 κ̄2

nM (2 κ̄n(s)− 1) . (D8)

For the limit loop with κ̄nM = 0, the magnitude of the normal force can be parametrized by the azimuthal angle as
λ̄ = 2 sech 4 ϕ

(
5− 6 sech 2 ϕ

)
. It vanishes as ϕ→∞, which corresponds to the points crossing the equator.

Appendix E: Comparison of cylindrical and planar elastic curves

To visualize the development of overhangs and the subsequent self-intersection of the loops as the length is increased,
it is useful exploit the isometry between the cylinder and the plane. This is achieved by cutting the cylinder along
the meridian passing through the lower turning point along the loop and “unrolling” it, as indicated in Fig. 14. If
αM ≤ π/2, the azimuthal extension of the loop on either side of the equator is bounded by π (∆ϕmax ≤ π). See Figs.
14 (a)-(d).18 Overhangs (with ϕ′ = 0), signaling the appearance of lobes, first appear on the equator. If αM > π/2,
then ∆ϕmax > π, and the loop necessarily develops overhangs. See Fig. 14(e). The azimuthal extension grows
monotonically with length: at some point ∆ϕmax = 2π and the loop makes self contact for the first time. See Fig.
14(f). As the length is increased further, the overhangs grow indefinitely; overlapping repeatedly as they wrap the
cylinder.

It is also useful to compare loops on the cylinder with the corresponding planar Euler-elastic curves (dashed gray
curves) of the same length passing through the same two points on the unrolled equator. These are superimposed on
the unrolled loops in Fig. 14. Initially the cylindrical loop behaves like a planar elastic curve (Figs. 14(a)-(b)). As
the length is increased, however, the term in the potential quadratic in the normal curvature begins to play a role
and the behavior of the two diverges, as indicated in Figs. 14(c)-(d). In a long loop, this term dominates: its effect is
to elongate the cylindrical loop along the axial direction. This contrasts with its rounded planar counterpart which
distributes its curvature equally in azimuthal and vertical directions. See 14(e)-(f). The corresponding evolutions
of the L12 and L21 are presented in Figs. 15 and 16. For the latter sequence, the cut is made at the point of self-
intersection on the equator. In Fig. 16(f) one can see that loops with obtuse angles extend over a azimuthal range
> 2π (the vertical dotted gray lines).

18 The intersections of the loop with the equator are always separated by π.
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FIG. 14: Unfolding loops in the L1,1 sequence illustrated in Fig. 5 are represented by black solid curves, whereas their planar
Euler-elastic counterparts (equal length and same midpoints) are represented by gray dashed curves. For small excess radius
the two coincide, but they differ increasingly as the excess radius grows.
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FIG. 15: Unfolding loops in the L1,2 sequence illustrated in Fig. 6 are indicated by solid black curves. Their planar counterparts
(equal length and same midpoints) are indicated by gray dashed curves. In contrast to the L1,1 sequence, the two agree pretty
well even when the length is significant.
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FIG. 16: Unfolded version of loops of sequence L2,1 illustrated in Fig. 7 are represented by black solid curves, whereas the
planar Euler-elasticas with the same length and same midpoints are represented by gray dashed curves.
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