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We present results for the equilibrium statistics and dynamic evolution of moderately large (n =
O(102−103)) numbers of interacting point vortices on the sphere under the constraint of zero mean
angular momentum. For systems with equal numbers of positive and negative identical circulations,
the density of re-scaled energies, p(E), converges rapidly with n to a function with a single maximum
with maximum entropy. Ensemble-averaged wavenumber spectra of the nonsingular velocity field
induced by the vortices exhibit the expected k−1 behavior at small scales for all energies. Spectra
at the largest scales vary continuously with the inverse temperature of the system. For positive
temperatures, spectra peak at finite intermediate wavenumbers; for negative temperatures, spectra
decrease everywhere. Comparisons of time and ensemble averages, over a large range of energies,
strongly support ergodicity in the dynamics even for highly atypical initial vortex configurations.
Crucially, rapid relaxation of spectra towards the microcanonical average implies that the direction
of any spectral cascade process depends only on the relative difference between the initial spectrum
and the ensemble mean spectrum at that energy; not on the energy, or temperature, of the system.

PACS numbers: 05.20.Jj; 47.27.eb; 47.27.ed; 45.20.Jj; 05.45.-a; 47.10.Df

I. INTRODUCTION

The point vortex model, originally developed by Kir-
choff [1] as a limiting form of Euler’s equations in two-
dimensions, continues to provide a conceptual and com-
putational tool for understanding inviscid, nonlinear vor-
tex dynamics in both traditional and superfluid turbu-
lence ([2–4]). The multi-body Hamiltonian describing the
dynamics of idealized point vortices serves as a paradigm
for developing kinetic theories in systems dominated by
long-range interactions [5, 6].

The statistical mechanics of point vortex systems was
first addressed in the seminal work of Onsager [7] who
observed that in a finite domain, the Hamiltonian struc-
ture of a system of sufficiently large numbers of positive
and negative vortices implies the existence of ‘negative
temperature’ equilibrium states which naturally exhibit
clustering of like-signed vortices [8]. Onsager’s statisti-
cal approach has inspired a wealth of subsequent work
on vortex-based, mean-field turbulence closures [9] and
the existence of negative temperature states has been in-
terpreted (e.g. [3, 4, 10, 11]) as an energy-conserving
analog of self-organization via ‘vortex merger’ commonly
observed in two-dimensional turbulence [12, 13]. To date,
however, direct connections between Onsager’s equilib-
rium prediction for the inviscid point-vortex system and
the up-scaling, inverse-energy cascade in two-dimensional
Navier-Stokes turbulence have proved elusive.

Underpinning the equilibrium statistical mechanics ap-
proach are the assumptions that the system is both
energy isolated (inviscid) and ergodic, namely that as
t → ∞, the system samples all possible configurations
on a fixed energy surface. While the inviscid assump-
tion is clearly violated by Navier-Stokes vortices, two-
dimensional turbulence cascades energy to the largest
scales where viscous effects are less pronounced. In ad-

dition, as long as the relaxation to equilibrium of the
inviscid system takes place on time-scales much shorter
than those imposed by viscosity, the equilibrium statis-
tics of the inviscid model should approximate those of
the full system on these timescales [14]. Ergodicity of
point-vortex systems remains an open issue. The as-
sumption was questioned by Onsager [7] and repeatedly
since [15, 16].

In the present work, we directly examine both ergod-
icity and the connection between equilibrium statisti-
cal properties and dynamic kinetic energy cascades for
two-dimensional point-vortex systems on the unit sphere
[17]. The sphere has the distinct advantage of pro-
viding a bounded domain without the complications of
imposing explicit boundary conditions via image parti-
cles (infinitely many for doubly-periodic domains). De-
spite its apparent attraction, there has been relatively
little work addressing the statistical mechanics of point
vortices on the sphere. Recently, for spherical systems
with skewed distributions of vortex strengths, Kiessling
& Wang (2012) [18] proved convergence to continuous
solutions of Euler’s equations. The scaling limits consid-
ered, however, assume the existence of large-scale mean
flows and thus have singular structure in the zero mean,
zero angular momentum limit.

In closer analogy with turbulence studies, we study
fluctuations in zero angular momentum states of binary
populations of vortices with zero mean circulation (see,
for example, [10, 11, 15]). We find that the kinetic en-
ergy spectrum of flows induced by such systems scales as
k−1, for sufficiently large degree (or wavenumber) k, in-
dependent of the system energy. As Onsager conjectured,
increasing the energy of the system necessarily increases
the kinetic energy content at the largest allowable scales.
However, comparisons of microcanonical and time aver-
aged two-point statistics show clear evidence of ergodicity
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in the vortex dynamics implying that the direction of any
dynamic spectral evolution depends solely on the shape
of the initial spectrum relative to the ensemble mean.
Therefore, for the spherical system, there is no a priori
association between negative temperature states and the
inverse energy cascade.

II. EQUILIBRIUM STATISTICS

Point vortices on a unit sphere evolve according to
Hamilton’s equations, with conserved Hamiltonian

H = −
n∑

i=1

∑
j 6=i

κiκj ln [(1− ri · rj) /2] . (1)

Here κi is the ‘strength’ (circulation/4π) of vortex i and
ri its position (|ri| = 1). The evolution equations are

dri
dt

= 2
∑
j 6=i

κj
ri × rj

1− ri · rj
. (2)

In addition to H, the vector angular impulse, I =∑n
i=1 κiri, is also conserved although only the angular

momentum, |I|, affects the statistical properties.
We consider systems with κi = ±1, and zero net cir-

culation. The pairwise interaction energies are

qij = ± ln [(1− ri · rj) /2] . (3)

For randomly placed vortices, the argument of the log-
arithm is uniformly-distributed over (0, 1). Thus, qij is
exponentially-distributed over (0,∞) where 〈qij〉 = 1 and
over (−∞, 0) where 〈qij〉 = −1. In particular,

〈H〉 =

n∑
i=1

∑
j 6=i

〈qij〉 = 2
(n

2
(
n

2
− 1)− (

n

2
)2
)

= −n.

For any distribution of vortex strengths with identical
numbers of opposite-signed circulations, similar cancel-
lations occur and 〈H〉 = O(n) [10, 11, 19] rather than
〈H〉 = O(n2) [18]. Given exponential q statistics, the
standard deviation of H is also O(n). In this case, the

joint density of states, WH(Ẽ, J̃) =∫
S2n

δ(Ẽ−H(r1, . . . , rn)) δ(J̃−|I(r1, . . . , rn)|)dr1 . . . drn

has a limiting function p(E, J) = limn→∞ nWH/n(Ẽ, J̃)

for the specific energy E = Ẽ/n and re-scaled angular

momentum J = J̃/
√
n.

The re-scaled density has been computed numeri-
cally by sampling 109 uniformly-distributed placements
of n = 200 vortices. In this case, 〈E〉 = −1.0000, as
expected, with 〈J〉 = 0.9215. The observed distribu-
tion is asymmetric with a single maximum at (E, J) =
(−1.684, 0.824), significantly different from the mean.
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FIG. 1. (a) Distribution function p(E) computed from 107

samples for different numbers of vortices n. Vertical lines
correspond to the 9 energy levels for n = 200 considered in
the text. (b) Corresponding inverse temperatures β(E).

Direct extraction of p(E) := p(E, J = 0) from the
joint density is computationally expensive; estimates can
be obtained more efficiently by adjusting random states
towards J = 0. From a single realization of n randomly-
generated vortex positions, we compute I and then dis-
place each vortex by −κiI/n. This sets J = 0, but the
vortices no longer reside on the spherical surface. Re-
scaling each ri by |ri| produces a new I, and the process
is iterated until convergence. For n = 200, p(E) com-
puted this way was found to be identical within sampling
errors to p(E, J < 0.2) estimated from the joint density.

For fixed n, p(E) was estimated by binning 107 sam-
ples of n uniformly distributed vortex positions iterated
to J < 10−14. The resulting density and inverse tem-
perature, β = d ln p(E)/dE, are shown for varying n in
Fig. 1. While nearly symmetric for small n, the scaled
density converges rapidly to a skewed distribution as n in-
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creases. The scaled inverse temperature asymptotes to a
fixed, negative value at large positive energies [11, 19, 20].
There is little difference in either the density of states or
the temperature when n increases beyond 200.

III. KINETIC ENERGY SPECTRA

Much has been intimated about Onsager’s statistical
theory of self-organization and the widely-observed scale
cascade of kinetic energy in direct simulations of two-
dimensional turbulence [8, 10, 11]. The scale cascade
results in the accumulation of energy at the domain scale,
i.e. a global-scale flow [21].

To compare the dynamic evolution of point vortices
to microcanonical ensemble predictions, we consider two
statistical measures of the vortex population. Both quan-
tify any scale cascade or statistical change in the vortex
population, though neither have been examined before
in this context. First, as in nearly all studies of two-
dimensional turbulence, we examine the kinetic energy
spectrum K(k) where k is the wavenumber magnitude
(spherical harmonic degree). K(k) is calculated by eval-
uating the streamfunction

ψ(r) =

n∑
i=1

κi ln [(1− ri · r) /2] (4)

induced by the vortices at every point r on a regu-
lar latitude-longitude grid (1024 × 2048 points). The
Fourier-Legendre transform of ψ and its (power) spec-
trum P (k) are then computed and we obtain K(k) from
k(k + 1)P (k). While the total kinetic energy is singular
as a result of the k−1 spectral tail, the spectrum K(k) is
well behaved for finite k.

A complementary Lagrangian measure of the vortex
population is given by the probability distribution pint(q)
of the pair-wise energy (3). To explicitly highlight
anomalous distributions of dipoles or like-signed clusters,
we consider the residual probability p′int ≡ pint − e−|q|/2
by subtracting the exponential distribution produced by
uniform, random placement.

For n = 200, these two statistics are computed by
sampling 104 states within each of nine energy ranges
centered around the vertical lines shown in Fig. 1a. The
energy ranges include both positive and negative temper-
ature states, and are narrow – the probability of finding
a state in a given range never exceeds 3.7× 10−5.

All nine individual kinetic energy spectra shown in
Fig. 2 converge to the expected k−1 form at small scales.
Consistent with Onsager’s predictions, positive temper-
ature (strongly negative E) states have the least kinetic
energy at largest scales. The kinetic energy content at the
largest scales increases continuously as E increases and
the system transitions to negative temperature states.
Notably, the spectral slope at small k changes from val-
ues above −1 to below −1 near β = 0.

The low energy (β > 0) spectra are consistent with
dipole spectra produced by randomly placing pairs of
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FIG. 2. Microcanonical kinetic energy spectra, K(k) for the
nine energies considered. K at low wavenumbers increases
monotonically with energy E from A to B. β > 0 states shown
in solid, β < 0 states dashed and β ∼ 0 in bold. Solid circles
indicate time averages of dynamical evolution.

opposite-signed vortices. Such spectra are depleted at
low k and, as E decreases, approach k1 at the large
scales. The surplus of dipoles for positive β states is seen
in p′int(q) shown in Fig. 3. Like the kinetic energy spec-
trum, p′int exhibits a monotonic dependence on E with a
surplus of closely-spaced dipoles having q � −1 at low
E, while at high E (β < 0) there is a surplus of closely-
spaced like-signed pairs (binaries) having q � 1 together
with a deficit of closely-spaced dipoles. Importantly, both
complementary statistics, 〈K〉(k) and 〈p′int〉(q), vary con-
tinuously with the inverse system temperature β. There
is no abrupt change in either at the transition from pos-
itive to negative temperatures.

IV. ERGODICITY AND SPECTRAL CASCADE

We now turn our attention to the question of ergodic-
ity by quantifying the connection between time-averaged
statistics of dynamically evolved states and microcanon-
ical ensemble measures. The evolution equation (2) is
solved in parallel using a 4th order Runge-Kutta scheme
with an adaptive time step to ensure exact conservation
of momentum and energy preservation to 10−7. As such,
numerical variations in the dynamically evolved energy
are always smaller than the width of the energy bins used
to construct microcanonical statistics. With n = 200, a
single state in each of the 9 energy ranges was evolved
for 400 time units. Redefining the vortex strengths as
κi = ±1/

√
n, gives E = H directly from (1). A char-

acteristic timescale, based on the average separation dis-
tance, d̄ =

√
4π/n, is then τ = πd̄2/|κi| = 4π2/

√
n,

approximately 2.79 for n = 200.
The kinetic energy spectra and 〈p′int〉(q), time-averaged

over the entire evolution were found to be almost iden-
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FIG. 3. The residual probability p′int versus normalized vortex
interaction energy, q for (a) lower range of energies considered
and (b) higher range of energies (note change of scales).

tical to the microcanonical ensemble results. The re-
sulting time averaged kinetic energy spectra, K(k), for
the two extreme energies E = −4.42 and 1.66 indicated
by solid symbols in Fig. 2 are virtually indistinguishable
from the microcanonical estimates. The same is found for
〈p′int〉(q). In contrast to previous results for n = 6 vor-
tices in a doubly-periodic domain [15], here for n = 200
vortices on the sphere there is strong evidence of ergod-
icity, independent of the energy or temperature of the
system.

As a yet stronger test of ergodicity, we consider the evo-
lution of states with atypical initial spectra for a given
energy. First, an ensemble of 111 states was generated
in the strongly positive temperature (E ∼ −4.42) system
by randomly placing vortex dipoles (opposite signed pairs

separated by d̄/
√

2) instead of single vortices. For such
dipole states, the kinetic energy spectrum 〈K〉(k) (aver-
aged over the 111 states), shown by the + symbols in
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FIG. 4. Top panels: Evolution of the kinetic energy spectra,
K(k) for (a) low-energy, positive temperature (E = −4.42)
and (b) high-energy, negative temperature (E = 1.66) marked
by (A) and (B) on Fig. 2. The initial spectra are shown by +,
the long time spectra by ◦ and the microcanonical estimate
(from Fig. 2) is bold. Dashed lines indicate results for short
times. Bottom panel: Evolution of residual probability p′int

for case A. Symbols are the same as above.

Fig. 4b, differs significantly (beyond several microcanon-
ical standard deviations) from the microcanonical mean
(thick solid line). However, upon evolution the dipole
initial states rapidly relax towards the microcanonical
mean. The dipole spectrum time averaged over 2 ≤ t ≤ 4
is shown by the dashed line, and the late time-averaged
spectrum (392 ≤ t ≤ 400, open circles) is statistically
indistinguishable from the microcanonical estimate. In
addition, the standard deviation in the spectrum also
converges to that of the microcanonical ensemble (not
shown).

Vortex interactions immediately destroy the initial
equal vortex-pair separation, and the distribution of pair
separations continues to spread until the state resembles
a randomly chosen collection of vortices for this energy.
As shown in the lower panel of Fig. 4, the initial residual
probability p′int(q) spikes at the q value of the dipole sep-
aration, but then relaxes to the microcanonical estimate
(open circles show the late time average). This relaxation
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can be seen directly in the streamfunction of any dipole
initial condition. The left panels of fig. 5 shows the evolu-
tion of ψ(θ, φ) from an initial dipole state (a1) to t = 400
(a2) along with the streamfunction of a randomly chosen
member of the microcanonical ensemble (a3). For this
positive temperature state, there is an inverse cascade of
kinetic energy to large scales.

(a1) (b1)

(a2) (b2)

(a3) (b3)

FIG. 5. (Color online) Left panels: Evolution of the dipole
streamfunction at E = −4.42. (a1) Initial dipole stream-
function. (a2) dipole streamfunction at t = 400. (a3) Initial
streamfunction for a representative ensemble member at the
same energy. Right panels: Same as left but for forward cas-
cade case, E = 1.66. The projection shows the entire sphere
and the color scale is constant for each energy.

Similar results have been found starting from atypical
states in the highest energy range, E ∼ 1.66 where the
temperature is negative. By randomly placing vortices
with an increased probability to project on the k = 2
spherical harmonic, a surplus of kinetic energy is created
at the largest permissible scale for J = 0. As seen in
Fig. 4b, the initial 〈K〉(k) (+ symbols) again rapidly re-
laxes back to the microcanonical estimate (bold line) with
the dashed line showing the spectrum at times 2 ≤ t ≤ 4
and the open circles the late time spectrum. Correspond-
ing behavior in real space for an individual initial con-
dition is shown in the right column of Fig. 5, with an
initial atypical state in (b1) (the pattern closely matches
a spherical harmonic), the same state at t = 400 (b2),
and a randomly selected member of the microcanoni-
cal ensemble (b3). The images in (b2) and (b3) exhibit
more smaller-scale features than the image in (b1) and,
as shown in the spectral evolution, there is a forward cas-
cade of kinetic energy despite the negative system tem-

perature.
For n = 200, relaxation of atypical states to the micro-

canonical average occurs on a short timescale, O(τ), com-
parable to the mean collision time for dipole pairs. That
is, any special order in the initial conditions is rapidly
destroyed by the ensuing dynamical evolution. This is
a strong indication of ergodic dynamics in this geome-
try, and appears to contrast with the results of [15] in
a doubly-periodic domain. On the other hand, [15] con-
sidered just 6 vortices. It might be that so few vortices
have insufficient freedom to fully randomize and resemble
typical, microcanonical states.

To test this, we repeated the analysis above for n = 8
vortices on the sphere. Accounting for the additional
constraints imposed by the conservation of angular im-
pulse I, the n = 8 spherical system and the n = 6 vortex
system on the torus have a similar number of degrees
of freedom. We focus on the evolution of atypical low
energy states with E ≈ −4.42. These states were gen-
erated by placing 4 pairs of dipoles at random, with the
halves of each pair separated by d = 2eE/2 ≈ 0.22. At
this distance, the individual energies of the dipoles sum
to E. The additional energy contributed by inter-pair
interactions is O(d2/d̄2) � 1 and is easily canceled by
appropriate placement of the pairs.

The upper panels of Fig. 6 contrast the ensemble-
averaged spectral evolution of atypical states for (a)
n = 200 (seen before) left with that for n = 8 in (b).
For n = 8, the ensemble consists of 1000 states (an in-
crease on the 111 states used for n = 200 to reduce the
variance in K(k)). Both systems clearly show spectral
relaxation to the microcanonical mean. The relaxation
rate, however, is much slower in the dilute, n = 8 case.

An additional measure of relaxation is obtained by an-
alyzing the probability distribution pint(q) of the normal-
ized pairwise interaction energies in (3). Denote p̄int(q) as
the microcanonical ensemble mean, and δ̄int as the mean
integrated standard deviation of individual members of
the ensemble from p̄int(q), i.e.

δ̄int =
1

NMC

NMC∑
m=1

∫ ∞
−∞

(pmint − p̄int)2dq (5)

where NMC is the size of the microcanonical ensemble
and a superscript m denotes a particular member of the
ensemble. We measure the relaxation of the dynamical
ensemble to the microcanonical one by

Q(t) =
1

δ̄int

∫ ∞
−∞

(p̄dynint − p̄int)
2dq (6)

where

p̄dynint (q, t) ≡ 1

Ndyn

Ndyn∑
m=1

pmint(q, t) (7)

is the dynamical ensemble mean value of pint(q, t), and
Ndyn is the size of the dynamical ensemble. This measure
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FIG. 6. Evolution of the kinetic energy spectrum for dipole
initial conditions at E = −4.42 for n = 200 (a) and n = 8
(b). Lower panel (c) shows the temporal evolution of the Q
measure for the two cases.

is shown in the bottom panel of Fig. 6 (note logarith-
mic scales). Consistent with the spectral evolution, Q(t)

for n = 200 decreases rapidly to a low, fluctuating level
(the logarithmic scaling accentuates the size of the rela-
tive fluctuation level). By contrast, the decay of Q(t) is
much slower for n = 8, though nonetheless it approaches
a roughly constant level at late times. The higher equili-
brated level for n = 8 is predominantly due to differences
in the statistical sample size. The calculation of pint(q)
involves n(n− 1)/2 separate vortex interactions. This is
substantially larger for n = 200 than for n = 8, and while
9 times more cases were considered for n = 8, the sample
size is still approximately 80 times larger for n = 200
than for n = 8.

The results show that atypical dynamical states in-
evitably relax to the equilibrium microcanonical distribu-
tion, independent of the system size (at least for n ≥ 8).
Equilibration is observed in both the kinetic energy spec-
tra K(k) and in the complementary measure Q using
pint(q).

Although relaxation is observed both for n = 8 and
n = 200, there is a striking difference in the rate of re-
laxation in the two cases. For n = 200, relaxation oc-
curs on the characteristic timescale τ , comparable here
to the mean collision time of dipole pairs. For n = 8,
however, relaxation is considerably slower. Given that
the circulations are scaled by

√
n, the characteristic col-

lision timescale is independent of the system size and the
observed difference in relaxation timescales cannot be ex-
plained simply by differences in the dipole collision rates
in the two systems.

Movies of the vortex motion in the dilute dipole case
indicate that a majority of dipole interactions involve
only simple particle exchange, producing no discernible
change in the dipole separation distance after collision.
Such interactions preserve the structure of the initial con-
ditions — rapid statistical evolution requires higher-order
collisions involving interactions between three or more
dipole pairs. Evidence that such interactions occur far
less frequently in the n = 8 case is provided in Fig. 7.
Here we show the early time evolution of the pairwise
energy, qij , of 4 initial dipoles — the complete set when
n = 8, and 4 randomly selected from the 100 available
when n = 200. Particle exchange collisions are clearly
evident in the dilute case (n = 8, upper panel) where
individual pair energies spike to zero before consistently
returning to the negative energy level associated with
their initial separations. Two dipoles pairs repeat this
process more than 5 times in the first 10 time units. The
time distribution of pairwise energies is bimodal, highly
concentrated at −|q0| and 0. By contrast, initial pairs in
the n = 200 case are rapidly scattered and information
about the interaction energy of the initial configuration
is quickly lost. This is true not only for the 4 selected
dipole pairs shown here, but for all pairs in the n = 200
case.



7

0 2 4 6 8 10

−8

−6

−4

−2

0

(a)

q i
j
(t
)

0 2 4 6 8 10

−8

−6

−4

−2

0

(b)

t

q i
j
(t
)

FIG. 7. (Color online) Evolution of the pairwise energy for
the 4 initial dipoles for n = 8 (a), and 4 initial dipoles in the
n = 200 case (b).

V. CONCLUSIONS

Due to the universal k−1 behavior of point-vortex ki-
netic energy spectra at small scales, increasing the system
energy preferentially increases the kinetic energy content
at the largest allowable scales. While this is entirely
consistent with Onsager’s conjecture concerning the in-
creased likelihood of observing large-scale structure at
sufficiently high energies, notably it is also independent
of the thermodynamic temperature of the system. In ad-
dition, the results indicate that point-vortex dynamics,
at least on the isotropic sphere, are ergodic and therefore
statistical measures derived from the dynamics of almost
all initial states simply relax to those given by the micro-
canonical ensemble. This phenomena is observed even in
the case of a very dilute dipole gas.

The rescaled macrocannonicnal distribution of states,
WH(Ẽ, J̃), is found to converge rapidly with system size
with little differences observed once n > 200. For such
moderately large systems, relaxation of the kinetic en-
ergy spectra (equivalently pint(q) distributions) to mi-
crocannonical mean estimates takes place on timescales
comparable to a characteristic vortex collision timescale.
Relaxation is independent of both the system tempera-
ture and the initial vortex distribution. As such, for the
simplest bounded domain, there is no a priori relation-
ship between the sign of the statistical temperature and
the direction of any dynamic cascade process in the ve-
locity field induced by a finite number of point vortices.

ACP supported under DOD (MURI) grant
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ported by the CUNY HPCC under NSF Grants
CNS-0855217 and CNS-0958379. The authors thank C.
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