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Long-range ordering of turbulent stresses in two-dimensional flow

Yang Liao and Nicholas T. Ouellette∗

Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA

Using filter-space techniques, we study the spatial structure of the turbulent stress that couples
motion on different length scales in a quasi-two-dimensional laboratory flow. As the length scale
increases, we observe the appearance of long-range, system-spanning spatial order of this stress,
even though the flow field remains disordered. Suggestively, this ordering occurs only in the range
of scales over which we find net inverse energy transfer to larger scales. However, we find that a field
built from wavevectors with random phases also displays ordering, suggesting that at least some of
the ordering we observe is purely kinematic. Our results help to clarify the role played by geometric
alignment in the turbulent energy cascade, and highlight the importance of the scale-dependent rate
of strain in the energy transfer process.

PACS numbers: 47.27.-i, 05.65.+b, 89.75.Fb

I. INTRODUCTION

Turbulent flows are highly unsteady, chaotic, and char-
acterized by dynamics occurring on a vast range of length
and time scales, but they are not random. In many cases,
including the generation of large-scale circulation in tur-
bulent convection [1] or a net magnetic field in a turbulent
dynamo [2], the violent fluctuations [3, 4] that make tur-
bulence difficult to model can produce surprising order.
Intense turbulence also tends to self -organize: the clas-
sical Richardson–Kolmogorov energy cascade [5, 6], for
example, requires a delicate internal balance of the in-
teractions between different scales of motion. However,
determining the precise mechanisms by which turbulence
produces such order, both of transported quantities and
of its internal dynamics, remains a challenge.
Fundamentally, it is the nonlinear term in the Navier–

Stokes equations that couples dynamics on different
length scales via wavevector triad interactions, allowing
the transfer of energy and momentum between scales. In
principle, all scales are coupled; but in practice, the net
effect of these nonlinear effects in three-dimensional tur-
bulence is to drive a scale-to-scale cascade of energy from
large length scales where it is injected into the flow to
small scales where it is dissipated into heat by the action
of molecular viscosity [5, 6]. This directed energy flow im-
poses restrictions on the nonlinear interactions allowed in
turbulence, since not all types of triads drive energy to
small scales [7]. Understanding why some scale couplings
are promoted while others are suppressed would make it
easier to devise accurate but simplified turbulence models
for practical engineering applications.
The net action of these triads can be expressed via a

scale-dependent turbulent stress tensor; the inner prod-
uct of this stress and the scale-resolved rate of strain
determines the local energy flux between scales of mo-
tion. Due to this inner product, the relative alignment
of the eigenframes of the stress and the rate of strain de-

∗ nicholas.ouellette@yale.edu

termines the direction of the energy flux (that is, from
large to small scales or vice versa); additionally, the local
energy flux can be suppressed entirely due to misalign-
ment of these eigenframes. Thus, the spatial organiza-
tion of the turbulent stress and the scale-resolved rate of
strain contains information about the directionality and
strength of the energy cascade [8].

Here, we study the alignment of these turbulent stress
and strain rates in a quasi-two-dimensional laboratory
flow using filter-space techniques. We show that for scales
in the regime where we observe net transfer of energy to
large scales (consistent with the celebrated inverse en-
ergy cascade of two-dimensional turbulence), the turbu-
lent stress displays long-range spatial order: its eigen-
frame aligns across the entire system, which we quantify
with an appropriate order parameter. However, we also
show that a synthetic velocity field built from Fourier
modes with random phases shows very similar behavior,
implying that at least some of what we observe is purely
kinematic. Our results add to the current understanding
of the role of geometric alignment in the physics of the
energy cascade, and raise several intriguing possibilities
and questions for future study.

We begin below by briefly describing our experimental
and analysis methods in Sec. II. Our results are described
in Sec. III, beginning with a discussion of the mean-field
behavior we observe in our experiment, followed by a
demonstration of the alignment transition we see in the
turbulent stress. We then describe our tests using ran-
dom Fourier modes. Finally, in Sec. IV, we discuss some
of the implications of our results and outline some direc-
tions for future study.

II. METHODS

A. Experiment

To study the properties of the scale-to-scale energy
transfer and the turbulent stresses that drive it, we used a
quasi-two-dimensional laboratory flow that can be driven
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into (weak) turbulence. Our experimental apparatus is
described in detail elsewhere [9–11]; briefly, we gener-
ated quasi-two-dimensional flow by placing a thin layer
(5 mm deep) of NaCl dissolved in water (16% by mass)
above a grid of neodymium-iron-boron permanent mag-
nets arranged in stripes of alternating polarity. When
a dc electric current (here, 1.25 A) is driven laterally
through the fluid layer, Lorentz forces set the fluid into
motion [9, 10, 12–15]. The total size of the driven area
is 86 cm × 86 cm (= 34Lm × 34Lm, where Lm is the
center-to-center magnet spacing), of which we measure
the central 32 cm × 23 cm region (= 12Lm × 9Lm). For
the data here, the Reynolds number based on the root-
mean-square velocity and Lm is Re = 270. Note that,
when defined in this way, the Reynolds number is es-
sentially a non-dimensionalization of the electric current
[16], rather than encoding the scale separation as a true
turbulent Reynolds number would.

To measure the flow, we use particle tracking velocime-
try. Polystyrene tracer particles of diameter 51µm are
suspended at the interface between the salt-water layer
and a second, less dense layer of pure water (also 5 mm
deep). We image the particles with a 4 megapixel camera
at 60 frames per second, and follow their motion with
a predictive tracking algorithm [17]. Instantaneous ve-
locities are computed from the particle trajectories by
convolving them with a Gaussian smoothing and differ-
entiating kernel [18]. We image ∼30,000 particles per
frame with an average separation of 0.8 mm, allowing us
to measure time-resolved velocity fields [9]. To construct
velocity fields from the particle data, we use the parti-
cle positions in each frame to create a triangulated mesh
to which we can apply finite-element tools to calculate
spatial gradients. We project the velocity fields onto a
basis of streamfunction eigenmodes to remove any three-
dimensional effects [9], resulting in a loss of less than 4%
of the kinetic energy [10].

B. Filter-Space Techniques

The precise details of the energy cascade are difficult
to access directly. Energy transfer between scales can
formally be written as the interaction of triads of modes
in Fourier space [19], but such wavevector interactions
cannot be localized in space. Thus, one can typically
study turbulence as a function of scale or space but not
both. Recently, however, an approach based on low-pass
filtering of the equations of motion has allowed the mea-
surement of the energy flowing between scales at every
point in space and time [20–22]. This powerful new tech-
nique has been particularly useful in providing insight
into the mechanisms that drive two-dimensional turbu-
lence [12, 23–27]. In this filtering formalism, the spectral

energy flux between scales can be written as

Π(L) = −
[

(uiuj)
(L)

− u
(L)
i u

(L)
j

] ∂u
(L)
i

∂xj
= −τ

(L)
ij s

(L)
ij ,

(1)
where ui is the ith component of the velocity and sum-
mation is implied over repeated indices. The superscript
(L) denotes a quantity low-pass filtered at a scale L, so
that variation on spatial scales finer than L is suppressed.

s
(L)
ij is the filtered rate-of-strain tensor (the symmetric

part of the velocity gradient), and is analogous to the
rate of strain of the full velocity field. But the tensor

τ
(L)
ij = (uiuj)

(L)−u
(L)
i u

(L)
j has no analog in the full equa-

tions of motion, and arises as a direct consequence of the
nonlinearities. Note that no assumptions of fully devel-
oped turbulence or self-similar scaling have been made
in this definition, and that extremely fine spatial resolu-

tion is not required to use it on real data [28]. τ
(L)
ij plays

the role of a stress tensor (similar to the Reynolds stress
in the Reynolds-averaged Navier–Stokes equations [19]),
and encodes the momentum coupling between the scales
smaller than L and those that are larger. Equation (1)
can be interpreted as expressing the rate of work done
by the large-scale strain against stresses arising from the
small-scale motion. With our sign convention, Π(L) > 0
means that energy is being transferred to smaller scales,
while Π(L) < 0 means that energy is flowing to larger
scales.
Experimentally, we remove the small-scale component

of our measured velocity fields by convolving them with
a function that acts as a low-pass filter in Fourier space.
Our results are not very sensitive to the precise filter
shape. Here, we used a spatially isotropic finite impulse
response filter designed by convolving a sharp spectral
filter with a frequency cutoff of 2π/L with a Gaussian
window function to reduce ringing.

III. RESULTS

A. Mean-Field Results

Figure 1(a) shows our measurements of Π(L) averaged
over space and time. As has been reported previously
[12, 23, 25], for scales somewhat larger than Lm, Π(L) < 0
and energy flows primarily to larger scales in accordance
with the standard Kraichnan–Leith–Batchelor inverse-
cascade phenomenology [15, 29–31]. We do not observe
a range of constant energy flux, since our Reynolds num-
ber is relatively low and direct dissipation by viscosity
and friction may play a role at all scales [32]. Figure 1(a)
does, however, unambiguously show net inverse energy
transfer. To probe this behavior in more detail, we first
note that eq. (1) is an inner product. Thus, it is sensitive

to the relative alignment between τ
(L)
ij and s

(L)
ij , and mis-

alignment of these two tensors can suppress the energy
transfer.
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FIG. 1. (color online) (a) Spatially averaged spectral en-
ergy flux computed from eq. (4) as a function of filter scale
L/Lm, where Lm is the magnet spacing. Negative values de-
note transfer to larger scales; the shaded region shows the
inverse energy cascade. (b) Spatially averaged eigenvalues of

τ
(L)
ij (〈λ

(L)
τ 〉; solid line; left axis) and s

(L)
ij (〈λ

(L)
s 〉; dashed line;

right axis) as a function of L/Lm. (c) Spatially averaged angle

〈θsτ 〉 between the eigenframes of τ
(L)
ij and s

(L)
ij as a function

of L/Lm. The dashed line shows π/4.

To see this effect more clearly, we first note that τ
(L)
ij

and s
(L)
ij are symmetric, two-dimensional tensors. In-

compressibility requires that the trace of s
(L)
ij vanish, so

that s
(L)
ii = 0; this restriction also implies that it is only

the traceless (deviatoric) part of the stress that gives a
nonzero contribution to Π(L). Denoting the deviatoric

part of the stress as τ̊
(L)
ij , we can write

Π(L) = −

(

τ̊
(L)
ij +

1

2
τkkδij

)

s
(L)
ij = −τ̊

(L)
ij s

(L)
ij , (2)

where δij is the identity tensor. Since this equation is the

trace of the matrix product of τ̊
(L)
ij and s

(L)
ij , it is basis

independent. Working in the eigenbasis of τ̊
(L)
ij , we can

write

Π(L) = −Tr

[(

λ
(L)
τ

−λ
(L)
τ

)(

cos θ
(L)
sτ − sin θ

(L)
sτ

sin θ
(L)
sτ cos θ

(L)
sτ

)

(

λ
(L)
s

−λ
(L)
s

)(

cos θ
(L)
sτ sin θ

(L)
sτ

− sin θ
(L)
sτ cos θ

(L)
sτ

)]

,

(3)

where λ
(L)
τ and λ

(L)
s are the eigenvalues of τ̊

(L)
ij and s

(L)
ij ,

respectively, and θ
(L)
sτ is the angle between the two eigen-

frames. Multiplying these matrices, we arrive at [26]

Π(L) = −2λ(L)
τ λ(L)

s cos 2θ(L)
sτ . (4)

In Fig. 1(b), we plot the spatially averaged eigenvalues,
which both rapidly reach scale-independent values in the
inverse-cascade range. Figure 1(c) shows the average of

θ
(L)
sτ ; as reported previously [25], it is nearly constant and
equal to π/4 throughout the inverse cascade, suggesting
that the mean-field behavior of the inverse cascade can
be captured by a tensor eddy viscosity that imposes a

45◦ rotation between τ
(L)
ij and s

(L)
ij , even though Π(L)

vanishes for θ
(L)
sτ = π/4. But Fig. 1 also makes it clear

that a simple mean-field model cannot capture all of the
relevant physics: the mean spectral energy flux shown in
Fig. 1(a) is not constant over the inverse cascade range,

even though the individual mean values of λ
(L)
τ , λ

(L)
s ,

and θ
(L)
sτ vary little in this range. The structure of 〈Π(L)〉

is not captured by the variation in 〈λ
(L)
τ 〉, 〈λ

(L)
s 〉, and

〈θ
(L)
sτ 〉.

B. Local Structure and Stress Ordering

To move past a mean-field description, we take ad-
vantage of the true power of filter-space techniques and
consider the spatial distribution of the components that
contribute to the spectral energy flux. In particular, we
are interested in the orientation of the eigenframes of

τ
(L)
ij and s

(L)
ij : as is evident from eq. (4), misalignment of

these eigenframes can suppress the spectral energy flux
even if the eigenvalues are large. To illustrate this effect,
in Fig. 2 we show the spatially resolved energy flux along

with the contours where θ
(L)
sτ = π/4 and 3π/4 as well as

spatial maps of λ
(L)
τ and λ

(L)
s for the same instant in time

for a filter scale of L = 3Lm. The eigenvalue fields are
not obviously related to the spectral flux, but the given

contours of θ
(L)
sτ lie perfectly on the contours of vanish-

ing energy flux. We note that in some cases the π/4 and

3π/4 contours of θ
(L)
sτ lie nearly on top of each other; we

do not currently understand the precise meaning of this
behavior.
Nevertheless, it is clear that the alignment of the eigen-

frames of the turbulent stress and the resolved strain rate



4

(a)

Π
(L) (mm2 s-3)

-10 -5 0 5 10

(b)

 

 

λτ
(L) (mm2 s−2)

0 50 100 150

(c)

 

 

λ
s
(L) (s−1)

0.05 0.1 0.15 0.2 0.25

FIG. 2. (color online) (a) Spatial map of the spectral energy flux Π(L) computed for a filter scale of L = 3Lm. The black

contours show the places where θ
(L)
sτ = π/4 (solid black lines) and 3π/4 (dashed black lines). (b,c) The eigenvalues of (b) the

stress λ
(L)
τ and (c) the strain rate λ

(L)
s computed for the same instant of time and the same filter scale.
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FIG. 3. (color online) Spatially resolved orientation of the local (a-d) s
(L)
ij and (e-h) τ

(L)
ij eigenframes at a single time. The

color shows the angle between the largest eigenvector and the horizontal axis, in units of π. Data are shown for four filter scales
L, shown by the scale bars: (a,e) 0.6Lm, (b,f) 1.5Lm, (c,g) 3Lm, and (d,h) 5Lm. As L increases, the patterns for both tensors
coarsen; but the stress aligns over nearly the entire system at large L, while the strain rate does not.

appears to dominate the spatial distribution of the spec-
tral energy flux. To study it in further detail, in Fig. 3(a-
d) we plot the orientation θ (relative to a fixed horizontal

axis) of the largest eigenvector of s
(L)
ij at four different

filter scales L. As L grows and small-scale variation is
removed, the spatial pattern of orientation coarsens, as
it must. The situation, however, is markedly different

for τ
(L)
ij (Fig. 3(e-h)). For small L, the spatial variation

in the orientation of τ
(L)
ij is much more rapid than for

s
(L)
ij (Fig. 3(a,e)). But for larger L, the variation is much

slower : τ
(L)
ij appears to be aligning across nearly the en-

tire system. Suggestively, this slow variation occurs in

the range of scales where we see net inverse energy trans-
fer (Fig. 3(d,h)). Although data are shown here for only
a single Reynolds number, we see similar alignment as a
function of scale for all Reynolds numbers where we ob-
serve net inverse energy transfer. This alignment there-
fore does not appear to be associated with the transition
to turbulence.

We can quantify this alignment with an appropriate or-
der parameter. Noting that eigenvectors are essentially
apolar (since an eigenvector rotated by 180◦ is the same
eigenvector), we compute a scalar order parameter used
to study nematic ordering in two-dimensional liquid crys-
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FIG. 4. (color online) (a) The order parameter φ for τ
(L)
ij

(solid line) and s
(L)
ij (thick dashed line) as a function of L/Lm.

Beginning at an onset length scale Lc = 1.64Lm , τ
(L)
ij rapidly

orders in space, while s
(L)
ij does not. The thin dashed line is

a power-law fit to the data, with an exponent of 0.27 ± 0.02.

(b) Correlation length ξ of the orientation fluctuations for τ
(L)
ij

(solid line) and s
(L)
ij (thick dashed line). The thin dashed line

shows the expected correlation lengths for a field that coarsens
only due to the filtering; the thin dot-dashed line is the largest
ξ can be given our finite experimental domain. The observed

plateau in ξ for τ
(L)
ij at large L/Lm is a finite-domain effect.

tals. We plot this order parameter, defined as [33, 34]

φ = 2

√

(

〈cos2 θ〉 −
1

2

)2

+ 〈cos θ sin θ〉
2
, (5)

where the averages are taken over space, as a function

of L for both τ
(L)
ij and s

(L)
ij in Fig. 4(a). The orienta-

tion patterns for s
(L)
ij coarsen with increasing L, but φ

remains low and s
(L)
ij shows no long-range orientational

order. For small L, the situation is similar for τ
(L)
ij . But

at a particular scale that nearly coincides with the on-
set of net inverse energy transfer (see Fig. 1(a)), φ grows

rapidly for τ
(L)
ij and approaches unity for large L. The

growth of φ with L roughly follows a power law; fitting
a function of the form φ ∼ (L − Lc)

n)to the data, we
obtain an onset scale of Lc = 1.64Lm and an exponent
of n = 0.27± 0.02.
We also measured the correlation length ξ of the orien-

tation fluctuations. We computed the spatial correlation
functions of the orientation fluctuations of the eigenvec-

tors of τ
(L)
ij and s

(L)
ij . Specifically, suppose e(x) is an

eigenvector of one of these tensors. Its spatial fluctua-
tions are given by e(x)′ ≡ e(x)−〈e(x)〉, where the angle
brackets denote an average taken over space at a single
time. We define the correlation function as

C(r) =
〈e(x)′ · e(x+ r)′〉

〈e(x)′ · e(x)′〉
, (6)

where r is the magnitude of r. Since these fluctuations
are measured relative to the mean orientation across the
measurement domain and the orientation field is not uni-
form, C(r) must cross zero at some r. We estimate the
correlation length ξ to be the first zero crossing of C(r).

The results are plotted in Fig. 4(b). For s
(L)
ij , ξ increases

as expected given our filtering (as we remove small-scale
variation, ξ must grow at least as fast as L/2). But at Lc,

ξ computed for τ
(L)
ij begins to increase much more rapidly

before saturating at the largest value allowed by the size
of our measurement domain (equal to half of the diago-
nal distance across our measurement domain). Thus, our
results so far suggest that net inverse energy flux is as-
sociated with long-range ordering of the turbulent stress
that drives the spectral energy transfer. This ordering
is distinct from simple coarsening of the flow field, as it
differs from what we observe for the rate of strain.
However, there are also some indications that the or-

dering behavior we observe may not in fact be causally
related to any turbulent dynamics. For example, even
though we observe the appearance of long-range order as
a function of scale, the flow itself is always in the same
macroscopic state. The control parameter that governs
the dynamical state of the system (the Reynolds number)
does not control the appearance of order. Thus, to gain
more insight into our empirical observations, we turn to
a simple model system.

C. Ordering in a Random Field

As shown above, we observe long-range spatial order-
ing in the turbulent stress, but not in the filtered rate
of strain. It is possible that this transition is due to
the dynamics of turbulent energy transfer. However, the
Reynolds number does not appear to affect the appear-

ance of order; additionally, τ
(L)
ij and s

(L)
ij are quite differ-

ent in that τ
(L)
ij is quadratic in the velocity, while s

(L)
ij is

linear. Thus, there are hints that at least part of what
we observe may in fact be independent of the turbulence.
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FIG. 5. (color online) The order parameter φ computed for

τ
(L)
ij (solid line) and s

(L)
ij for a random field. The parameters

used to construct the field are given in the text. The vertical
dashed lines show the size of the largest and smallest mode.

To explore the ordering in more detail, we used a sim-
ple model to build a random flow field. Taking an ap-
proach conceptually similar to kinematic simulation [35],
although without any dynamics, we constructed an in-
compressible “velocity” field by summing over Fourier
modes with random phases. Specifically, following Fung
and Vassilicos [35], the velocity field was defined to be

u =

Nk
∑

n=1

[An coskn · x+Bn sinkn · x] , (7)

where the coefficients

An = An (cosϕn, − sinϕn) (8)

and

Bn = Bn (− cosϕn, sinϕn) (9)

and the wavevector

kn = kn (sinϕn, cosϕn) (10)

guarantee incompressibility. The phases ϕn ∈ [0, 2π]
are random variables drawn from a uniform distribu-
tion and are uniform in space but uncorrelated from
scale to scale. The magnitudes of each mode are re-
lated to an assumed form of the energy spectrum E(k)
as A2

n = B2
n = E(kn)∆kn, where ∆kn is the mode spac-

ing. Typically, one assumes a power-law form for the
spectrum, so that E(k) ∼ k−p.
In Fig. 5, we show the order parameter φ computed for

the turbulent stress and the filtered strain rate for a sin-
gle example of a random field. The overall behavior of φ
is clearly very similar to what we observed in the experi-
ment (Fig. 4(a)): the strain rate does not order, while the

stress orders rapidly above some critical scale. In fact,
when compared to the experimental case, the behavior
of φ is sharper, in that φ is closer to zero for the strain
rate and closer to unity for the stress. For this example,
the random field was constructed from 100 modes on a
grid of 1000×1000 spatial locations. The length scale
of the largest and smallest modes were ℓmax = 500 and
ℓmin = 50, respectively. We assumed a Kolmogorov spec-
trum between ℓmax and ℓmin, so that E(k) ∼ k−5/3 in
this range; outside this range, E(k) = 0. However, we
have found that our results are insensitive to all of these
parameters: we see the same qualitative behavior for dif-
ferent choices of the number of modes and the size of the
spatial domain.
What does change the order-parameter curve, however,

is the choice of ℓmax and ℓmin. We indicate these scales by
vertical dashed lines in Fig. 5. We find that the ordering
of the stress begins at ℓmin, and that φ nearly saturates to
unity at ℓmax. To study the systematic effect of changing
the scale separation, we first fixed ℓmin and varied ℓmax,
and then fixed ℓmax and varied ℓmin, all while holding the
number of modes and the spatial resolution of the random
field constant. The results are shown in Fig. 6. From the
curves plotted here, it is clear that our observations are
largely confirmed, particularly when there is a reasonable
separation of scales. The ordering transition for the stress
occurs in the range of scales from ℓmin to ℓmax; below
ℓmin, the stress does not display long-range order, and
above ℓmax, it is perfectly ordered.
In addition to changing ℓmax and ℓmin, we also fixed

these two scales and varied the shape of the energy spec-
trum. Somewhat surprisingly, our results are relatively
insensitive to the spectral shape. In addition to the
k−5/3 spectrum shown here, we also tried a spectrum
that scaled as k−5/3 for small wavenumbers and k−3

for large wavenumbers, as would be expected in classi-
cal two-dimensional turbulence. Changing the spectrum
in this way, however, had a negligible effect on the order-
parameter curve. Using a spectrum that scaled as k+5/3,
so that the small scales were much more energetic than
the large scales, resulted in a more rapid ordering with L,
although the qualitative behavior was similar. For very
steep spectra that scaled as k−p with p & 5, however,
the behavior of the order-parameter curve was similar to
that seen in Fig. 6(b) for large ℓmin, where the order-
parameter curve displayed an inflection point between
the onset and saturation of ordering. But regardless of
the spectral shape, we always observed ordering that be-
gan at L ≈ ℓmin and saturated as L → ℓmax.

D. Fluctuations in Ordering

The previous section establishes that the turbulent
stress computed for a random velocity field with no net
energy flux also displays ordering; thus, at least part of
the ordering must be a purely kinematic effect. How-
ever, there are differences between the order parameter
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FIG. 6. (color online) The order parameter φ for the stress

τ
(L)
ij computed for random velocity fields with varying ℓmax

and ℓmin. The fields were computed on a 1000×1000 grid with
100 modes, as in Fig. 5, and the mode amplitudes followed
a k−5/3 energy spectrum. (a) ℓmin was fixed at 50, and for
the different solid curves ℓmax was varied in steps of 50 from
100 to 500. The different values of ℓmax are shown by the
vertical dashed lines, and the color of these lines matches the
corresponding order-parameter curves. (b) ℓmax was fixed at
500, and for the different solid curves ℓmin was varied in steps
of 50 from 50 to 450. The vertical dashed lines show the
values of ℓmin.

curves for the experiment (Fig. 4(a)) and the random
field (Fig. 5). In particular, φ always saturates to unity
for the random field, while we never observe it reaching
this asymptotic limit in the experiment. To probe this
behavior, we consider a second distinction between the
experiment and the random field: while the random field
is a single snapshot, the experimental flow has rich time
dynamics.

We focus on a fixed, large value of the filter scale L
where we expect strong ordering; here, we choose L =
5Lm. In Fig. 7, we plot the time series of φ(L = 5Lm)
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FIG. 7. (color online) The order parameter φ calculated from
the experimental data for L = 5Lm as a function of time (in

units of TL, the correlation time of the velocity field) for τ
(L)
ij

(solid line) and s
(L)
ij (lower dashed line). The fluctuations in

the degree of order for the stress can be large, although the
stress is nearly always more ordered than the strain rate.

for the experimental data. Strikingly, the degree of or-
dering of the turbulent stress we observe is not at all fixed
in time, but rather fluctuates significantly, occasionally
even falling below the degree of ordering for the filtered
strain rate. This behavior is very different from what
we see for an ensemble of random velocity fields, which
exhibit only a small statistical scatter from instance to
instance. This kind of large fluctuation mirrors what oc-
curs in other turbulence-driven ordering phenomena: for
example, the large-scale circulation in Rayleigh–Bénard
convection undergoes reorientations and cessations [36],
the magnetic field in a turbulent dynamo spontaneously
flips [2], and the rotation sense of spectrally condensed
flow in two-dimensional turbulence can reverse [37].

IV. DISCUSSION AND CONCLUSIONS

To summarize our results, we have shown that the tur-

bulent stress τ
(L)
ij becomes more and more spatially or-

dered as the length scale L at which it is defined increases.
Suggestively, this ordering takes place in the range of
scales in our experimental flow over which we observe
net inverse energy transfer. However, we see qualita-
tively similar ordering for a random synthetic velocity
field with no coherent spectral dynamics. Thus, at least
part of what we observe is kinematic, and likely arises
from the quadratic dependence of the stress on the veloc-
ity field. This result is not necessarily negative; indeed,
if one were to build a turbulence model incorporating the
ordering we observe, its kinematic nature may be seen as
a plus, as it is likely to hold in a wide range of flow condi-
tions. But we also argue that part of the ordering is not
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purely kinematic but depends on the turbulence, given
that the alignment of the stress and the strain rate solely
determines the directionality of the energy cascade (see
eq. 4) and that the degree of order fluctuates strongly in
time for the experimental flow.
Although fully teasing out the exact contributions of

turbulence to the stress ordering is difficult, we can draw
some conclusions from our results and make several con-
jectures that should be explored in further research. Re-
gardless of the mechanism by which it does so, the stress
certainly orders in space, meaning that the stress eigen-
vectors all point in the same direction. Since misalign-
ment of the stress and strain rate can suppress the scale-
to-scale energy flux (see Fig. 2) and the angle between the
two controls the direction of the energy transfer, the net
ordering of the stress suggests that what controls the en-
ergy cascade is in fact the orientation of the eigenframe
of the strain rate. This result seems somewhat coun-
terintuitive: the spectral energy transfer in turbulence
arises from the mode coupling in the nonlinear term of
the Navier–Stokes equations, and the turbulent stress,
and not the strain rate, is a manifestation of this nonlin-
earity. However, it is what is suggested by the data.
Potentially more interesting is the observation from the

random-field data that the ordering begins at the small-
est length scale in the system and saturates at the largest
scale. This result raises the possibility that characteriz-
ing the onset of ordering and the rate of the transition
may be used as an instantaneous measure of the range
of scales active in the turbulence. The idea of an in-
ertial range delineated by a largest and smallest length
scale is fundamental in our understanding of turbulence,
but we typically only estimate these scales via mean-field
arguments without being able to measure them instan-
taneously, particularly in experiments. Measuring the
stress ordering may give us a way to access this infor-
mation. We note that this conjecture suggests that the

shape of the ordering transition should be a monotonic
function of a turbulent Reynolds number that is based on
the scale separation, a hypothesis that is directly testable
in numerical simulation.

And finally, let us again note that we never observe
perfect ordering of the stress in the experiment, and that
the fluctuations of the degree of order in time are the fea-
ture that is the most different between the experimental
results and the random field. It is possible that we do
not observe perfect order because our measurement area
is not large enough; but it is also possible that it is in
fact the lack of perfect order that encodes the turbulence
dynamics.

We hope that these results and conjectures will spur
further work on the geometric structure of the energy
cascade in turbulence. It also remains to be seen
whether our results are peculiar to two-dimensional flows
(where turbulent kinetic energy tends to Bose–Einstein
condense into the lowest mode allowed in the system
[14, 15, 29, 37]), or whether they can be extended to
the three-dimensional case, where one would need to de-
fine a somewhat more complicated tensor order param-
eter. It will also be interesting to study the geometric
dynamics of other manifestations of the nonlinearity in
the Navier–Stokes equations, such as the analogous “vor-
ticity stress” that drives the direct enstrophy cascade in
two-dimensional turbulence.
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