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We show that the addition of pairwise repulsive inhibition to excitatory networks of bursting
neurons induces synchrony, in contrast to one’s expectations. Through stability analysis, we reveal
the mechanism underlying this purely synergetistic phenomenon and demonstrate that it originates
from the transition between different types of bursting, caused by excitatory-inhibitory synaptic
coupling. This effect is generic and observed in different models of bursting neurons and fast synaptic
interactions. We also find a universal scaling law for the synchronization stability condition for large
networks in terms of the number of excitatory and inhibitory inputs each neuron receives, regardless
of the network size and topology. This general law is in sharp contrast with linearly coupled networks
with positive (attractive) and negative (repulsive) coupling where the placement and structure of
negative connections heavily affect synchronization.

PACS numbers: 05.45.Xt, 87.19.La

I. INTRODUCTION

Synchrony has been broadly observed in pathological
brain states, especially during epilepsy and Parkinson’s
tremors [1, 2]. Epilepsy is characterized by two behav-
iors, short bursts of synchronized neuronal activity and
long events called seizures [2]. There has been much work
on the emergence of bursting rhythms in isolated and
coupled neurons [3–6]. Coupled bursting neurons can ex-
hibit different forms of synchrony: spike synchronization;
burst synchronization, when only the envelopes of the
spikes synchronize; complete synchrony; and anti-phase
bursting [7–9]. Excitatory and inhibitory connections of-
ten play opposite roles in inducing synchronization or
anti-phase bursting [7–22].

Fast non-delayed inhibition is known to promote pair-
wise anti-phase synchronization in purely inhibitory net-
works [13]; whereas fast excitation induces synchrony as
long as the coupling exceeds a threshold value [7–10].
Slow or time-delayed inhibitory and excitatory synapses
reverse their roles such that slow or delayed inhibitory
connections favor neural synchrony [14–17]. At the same
time, synchronization in a pair of reciprocally coupled
neurons with fast non-delayed inhibitory neurons is typ-
ically unstable. More specifically, it has been shown that
fast non-delayed inhibition is always repulsive in the two-
coupled network of spiking (non-bursting) cells [16], un-
less each cell has at least two slow intrinsic variables
[17]. Recently, it was shown that fast non-delayed recip-
rocal inhibition can promote synchrony in some burst-
ing cells such as the leech heart interneuron model and
Purkinje neuron model, provided that the inhibitory con-
nections are weak and the initial conditions are chosen
close enough, within the spiking phase of bursting [18].
However, this synchronous rhythm has a small basin of
attraction and is fragile and largely dominated by a much
stronger co-existing anti-phase bursting.

The network architecture also plays an important role
in synchronization of an inhibitory network. For exam-
ple, it was shown that even weak common inhibition of

a bursting network with strong repulsive inhibitory con-
nections by an external pacemaker neuron can induce
synchronization within the network. This common inhi-
bition can win out over the much (e.g., a hundred times)
stronger repulsive connections, provided that the pace-
maker’s duty cycle, the fraction of the period during
which the neuron bursts, is sufficiently long [19]. In-
hibitory connections also play various roles in the emer-
gence of synchronous and asynchronous rhythms in neu-
ronal motifs [20–24]. For example, the presence of a
single reciprocally connected pair provides dynamical re-
laying in neuronal motifs that yields zero-lag synchrony
despite long conduction delays [23, 24].

In this paper we report a counterintuitive find that
fast non-delayed repulsive inhibitory connections can ro-
bustly promote synchronization, when added to an ex-
citatory network of square-wave bursting neurons. This
synergistic effect is caused by the ability of inhibition
to effectively switch the type of network behavior from
square-wave [4] to plateau (“tapered”) bursting [5, 25].
Square-wave bursting [3] was named after its shape dur-
ing a burst which resembles a square wave. Plateau
(tapered) bursting is characterized by spikes of decreas-
ing size that turn into a plateau towards the end of the
active phase of bursting [5]. Square-wave bursters are
difficult to synchronize [7] and their spike synchroniza-
tion requires strong excitatory coupling, whereas plateau
bursters with smaller spikes are more prone to synchrony.
The added inhibition causes plateau bursting so that
weaker excitatory coupling is sufficient to induce syn-
chrony in the excitatory-inhibitory network. This effect
is generic and observed in different models of bursting
neurons. In this study, we choose the Hindmarsh-Rose
neuron model as an individual unit of the network. It
is important to emphasize that pairwise fast non-delayed
inhibition is always repulsive in networks of Hindmarsh-
Rose neurons, regardless of coupling strength and ini-
tial conditions. Yet, its addition lowers the synchroniza-
tion threshold much more significantly than strengthen-
ing the present excitatory connections due to the com-
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bined action of excitatory-inhibitory synaptic coupling
and switching to plateau bursting.

While many studies use reduced neuronal models such
as phase or relaxation oscillators where the spikes are
ignored, our results promote the use of the detailed bio-
physical models, taking into account neuronal spikes and
bursts. The discovered synergistic effect is due to nonlin-
ear interactions of spikes; as a result, it is not observed
in networks of the reduced models. Yet, there is exper-
imental evidence that the onset and self-termination of
seizures is accompanied by the transition between differ-
ent types of network bursting activities [6, 26] where the
spikes play an important role. Remarkably, the transi-
tion to abnormal synchrony corresponds to switching to
plateau-like bursting [6].

We use the stability analysis to reveal the general
mechanism of the induced synchronization and demon-
strate that there is an optimal balance between the exci-
tatory and inhibitory couplings that trigger synchronized
bursting. These results are applicable to synchronization
in a pair of connected neurons as well as to large net-
works with mixed excitatory-inhibitory connections. We
discover universal scaling laws for the onset and loss of
stable synchronization where the synchronization condi-
tions are fully controlled by the number of excitatory and
inhibitory inputs each neuron receives, regardless of the
network size and topology. The independence of the syn-
chronization conditions in purely excitatory networks of
bursting neurons from the details of network architecture,
except for the in-degree of each neuron, was reported in
[9]. In this work, we show that the inhibition-induced
synchrony is also controlled by the number of inhibition
inputs to each neuron; however, the scaling law for the
synchrony loss is different and involves a ratio of excita-
tory and inhibitory inputs. These general laws are dras-
tically different from those in linearly coupled networks
with positive (attractive) and negative (repulsive) cou-
pling where the synchronization conditions are controlled
by the structure of negative connections via the eigenval-
ues of the corresponding Laplacian matrix [27–29].

The layout of this paper is as follows. First, in Sec.
II, we present and discuss the network model. In Sec.
III, we report the main effect observed in a two-cell net-
work with excitatory and inhibitory connections. We also
discuss the details of the transition from square-wave to
plateau bursting which is caused by the disappearance
of a homoclinic bifurcation that governs the type of syn-
chronized bursting. In Sec. IV, we derive the variational
equations for the stability of the synchronous solution
and explain the main synchronization mechanism. We
also suggest the universal scaling laws for the stability of
synchronization in large networks. In Sec. V, a brief dis-
cussion of the obtained results is given. Finally, Sec. VI
contains an appendix which gives additional support to
the scaling law, controlling the loss of synchrony caused
by overly strong inhibition.

II. THE MODEL AND PROBLEM STATEMENT

We consider a network of n bursting Hindmarsh-Rose
neuron models with excitatory and inhibitory connec-
tions:

ẋi = ax2
i − x3

i − yi − zi + gexc(Vexc − xi)
n∑

j=1

cijΓ(xj)+

+ginh(Vinh − xi)
n∑

j=1

dijΓ(xj),

ẏi = (a+ α)x2
i − yi, żi = µ(bxi + c− zi), i, j = 1, ..., n.

(1)
Here, x represents the membrane potential, and variables
y and z take into account the transport of ions across
the membrane through fast and slow ion channels, re-
spectively. The fast synaptic coupling is modeled by the
sigmoidal function Γ(xj) = 1/[1+exp{−λ(xj−Θs)}] [11]
with the synaptic threshold Θs = −0.25 [9]. The rever-
sal potentials Vexc = 2 > xi(t) and Vinh = −2 < xi(t)
for any xi and any t, i.e. the synapses are excitatory
and inhibitory, respectively. Hereafter, the parameters
are chosen and fixed as follows: a = 2.8, α = 1.6, λ = 10,
c = 5, b = 9, µ = 0.001 [9, 10]. The connectivity ma-
trices C = (cij) and D = (dij) define the structure of
excitatory and inhibitory connections, respectively; both
mutual and unidirectional coupling are allowed. gexc and
ginh are the corresponding synaptic strengths. It is re-
quired that all row-sums of C andD are equal to kexc and
kinh, the property that implies a network where each cell
has kexc inputs from excitatory neurons and kinh from in-
hibitory ones. This constraint is chosen to ensure the ex-
istence of complete synchrony and to allow the use of the
stability conditions to reveal the synchronization mech-
anism. Note that the dynamics of completely synchro-
nized neurons differs from that of an isolated cell and is
governed by the self-connected system:

ẋ = ax2 − x3 − y − z + kexc gexc(Vexc − x)Γ(x)+
+kinh ginh(Vinh − x)Γ(x),

ẏ = (a+ α)x2 − y, ż = µ(bx+ c− z).
(2)

This property is a key ingredient of the synergistic effect
reported in this paper.

III. TWO-CELL NETWORK:
INHIBITION-INDUCED SYNCHRONIZATION

We start off with the simplest network where two cells
(1) are symmetrically coupled through both excitatory
and inhibitory connections with kexc = 1 and kinh = 1.
From a neuroscientist’s perspective, such a network can
be viewed as the interaction between two excitatory neu-
rons with direct excitatory and tertiary synapses [30]
where the latter excites the presynaptic terminal of an in-
hibitory interneuron, allowing inhibition of the other ex-
citatory cell (see Fig. 1) [31]. For delayed synapses, how-
ever, the dynamics might look different. From a physi-
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cist’s perspective, this is a network of two pulse-coupled
oscillators with attractive and repulsive connections.

FIG. 1: (color online). (Left). Possible interactions between
two excitatory neurons 1 and 2 with direct excitatory and
tertiary synapses. The tertiary synapses mediate inhibition
by exciting the presynaptic terminals of inhibitory interneu-
rons at their somas. This network can be viewed as a pair
of neurons effectively coupled through both excitatory and
inhibitory connections (right). Excitatory (inhibitory) con-
nections are depicted by arrows (circles). The dynamics of
the two-cell network is studied in Fig. 2.

We use this two-cell network to demonstrate the syn-
ergistic effect and clearly describe its stability mecha-
nism. We will then show that the same results carry
over to larger networks whose architecture always sup-
ports Dale’s law [32] such that synaptic (outgoing) con-
nections from a neuron to other cells are either all ex-
citatory or inhibitory. Figure 2 reveals that there is
a broad interval of inhibitory strengths over which the
repulsive inhibition compliments attractive excitation in
promoting neural synchrony. Notice that the onset of
spike (complete) synchronization through boundary E1
is accompanied by or close to the transition from square-
wave to plateau bursting, indicated by the curve HB.
The two curves practically coincide up to the values of
gexc ≈ 0.8 such that a significant reduction of the syn-
chronization threshold for gexc as much as ten times, ob-
served at the lower values of gexc is governed by this tran-
sition between the two types of bursting. This transition
occurs in both the purely excitatory (Fig. 2b) and mixed
excitatory-inhibitory connections (Fig. 2c). The addition
of inhibition to the purely excitatory network, whose syn-
chrony requires a much stronger coupling, makes the cells
switch to plateau bursting with smaller spikes which can
be synchronized by the weaker excitatory coupling. The
blue (dark) synchronization region, bounded by curves
E1 and E2, corresponds to synchronized bursting and in-
dicates a synergistic balance between the excitation and
inhibition. Overly strong inhibition destroys synchrony
(through boundary E2) and leads to anti-phase bursting,
as expected (Fig. 2d).

The key component of the synergistic mechanism is
the ability of inhibition to induce plateau bursting via
the disappearance of a homoclinic bifurcation (HB) in
the 2-D fast subsystem (µ = 0) of system (2) that gov-
erns the type of synchronized bursting. Figure 3 illus-
trates the bifurcation mechanism of this transition from
square-wave to plateau bursting. According to the Izhike-

FIG. 2: (color online). Synchronization in the two-cell net-
work (1) as a function of excitation (gexc) and inhibiton (ginh).
(Top panel). The color bar indicates the voltage difference
|x1 − x2|, averaged over the last three bursting periods. The
blue (dark) zone (c) corresponds to the zero voltage difference
(complete synchronization), appearing from random initial
conditions. Observe the effect when a small increase of inhi-
bition from 0 dramatically lowers the synchronization thresh-
old from 1.28 to 0.11. Note that the inhibition desynchronizes
the cells in the absence of excitation (gexc = 0), indepedent
from the coupling strength and initial conditions. Bifurcation
curve HB (white dotted line) corresponds to the transition
to synchronized plateau bursting. (Bottom panel). Burst
synchronization. The color bar indicates the phase difference
between the bursts, ∆φ = φ1 − φ2, averaged over the last
three bursting periods. The normalized phase 0 ≤ φi ≤ 1
of the ith bursting cell (i = 1, 2) is initiated and reset every
cycle at the beginning of the burst. The normalized phase
difference ∆φ ranges from 0 (burst synchrony, blue (dark)
color) to 0.5 (anti-phase bursting, red (lighter) color). Notice
a similar effect of burst synchronization, induced by repulsive
inhibition.
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FIG. 3: (color online). Transition from square-wave to
plateau bursting in the self-coupled system (2), controlling the
type of synchronous bursting. (Top). Square-wave burster in
the uncoupled network (1). The right branch of the fast null-
cline z = h(x) contains two points AH1 and AH2 correspond-
ing to supercritical Andronov-Hopf bifurcations. A limit cycle
of the fast system (µ = 0) is born from the Andronov-Hopf
bifurcation AH2 and grows in size as z increases. This family
of limit cycles constitutes the spiking manifold which termi-
nates at the homoclininc bifurcation HB of the saddle point
of the fast system, located on the middle branch of z = h(x).
The red (dotted) curve schematically indicates the route for
bursting trajectories. The plane x = Θs displays the synaptic
threshold. (Bottom) Plateau bursting induced by the combi-
nation of excitatory and inhibitory coupling (gexc = 0.6 and
ginh = 0.25), corresponding to point (c) in Fig. 2. The added
inhibition leads to the disapperance of the homoclinic bifur-
cation such that the spiking manifold extends further up and
disappears as the limit cycle shrinks to zero amplitude and
disappers via the reverse Andronov-Hopf bifurcation AH1.

vich classification [5], square-wave bursting corresponds
to fold/homoclinic bursting where the burst termina-
tion is determined by a homoclinic loop to a saddle in
the fast subsystem. Increasing synaptic coupling in the
self-coupled system (2), whether excitatory or inhibitory,
eventually leads to the disappearance of this homoclinic
bifurcation and induces plateau bursting (fold/fold burst-

ing in the Izhikevich classification). This can be achieved
by strong excitation (see Fig. 2b) or by weaker inhi-
bition (see Fig. 2c). The fast (x, y)-subsystem of the
self-coupled system (2) has the nullcline z = h(x) ≡
−αx2 − x3 + gexc(Vexc − x)Γ(x) + ginh(Vinh − x)Γ(x).
The excitatory (inhibitory) coupling moves the nullcline
z = h(x) to the right (left) (see Fig. 3). Remarkably, a
small shift of the right branch of z = h(x) towards the
synaptic threshold x = Θs (to the left) caused by weaker
inhibition effectively decreases the divergence inside the
limit cycle of the fast system, forming the spiking man-
ifold. This causes the limit cycle to shrink in size and
makes the homoclinic orbit disappear. At the same time,
a much larger amount of excitation is necessary to shift
the right branch of z = h(x) to a far right region where
the divergence is small enough for a similar switch from
square-wave to plateau bursting via the disappearance of
the homoclinic orbit (see the HB curve in Fig. 2(top); the
curve is calculated using the bifurcation analysis software
CONTENT [33].

Switching to synchronized plateau bursting also shifts
the plateau part of the burst to the right from the synap-
tic threshold (see Fig. 3). Due to the choice of the synap-
tic sigmoidal function Γ(xj) in (1), the coupling between
the cells remains continuous during this part of the burst
while being pulsatile in the first half of the burst where
the spikes cross the synaptic threshold Θs. This might not
be the case in cortical networks where the coupling is al-
ways pulsatile. Figure 2e indicates the region between
the stability boundary E1, corresponding to the onset
of induced synchrony, and the HB curve, indicating the
transition to synchronized plateau bursting. This region
corresponds to synchronized square-wave bursting where
all the spikes cross the synaptic threshold Θs, making the
coupling pulsatile for all times. We have also performed
numerical simulations of the network (1) with the sig-
moidal function Γ(xj), replaced by the Heaviside function
H(xj), representing realistic fast pulse-coupling. The ob-
tained stability diagrams are similar to the ones of Fig. 2
with a slight expansion of the left stability zone bounded
by E1 along the x and y axes, up to the synchronization
coupling threshold gexc = 1.35 in the purely excitatory
network (cf. the synchronization threshold gexc = 1.28
in the network with the sigmoidal function Γ(xj)). This
increase in the coupling comes from the fact that the
Heaviside-type pulse-coupling has a weaker impact, com-
pared to the sigmoidal-type coupling. As a result, larger
values of gexc and ginh are required to achieve the same
effect.

IV. STABILITY MECHANISM

A. Two-cell network

To explain the synchronization mechanism, we use the
stability equations for the infinitesimal transverse pertur-
bations ξ12 = x1 − x2, η12 = y1 − y2, ζ12 = z1 − z2 [9]:
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FIG. 4: (color online). Stability function Ω(x) for synchro-
nized bursting. Panels (a), (b), (c), and (d) correspond to the
points (a), (b), (c), and (d) in Fig. 2. (a). gexc = 0.6, ginh = 0:
Unstable square-wave synchronous bursting (brown (gray))
and the fast nullcline h(x) of the self-coupled system, together
with Ω(x) superimposed on its own scale. The impact of
Ω(x) is not sufficient to stabilize the subtreshold part of the
spikes where the coupling is insignficant (to the left from the
threshold Θs). (b). gexc = 1.28, ginh = 0: The increased exci-
tation makes the impact of Ω(x) stronger; more importantly
it changes the type of synchronous bursting. Notice that the
spikes have shifted to the right and moved to the region where
the strong coupling is present. (c) gexc = 0.6, ginh = 0.25:
The red (upper) curve represents the contribution of the ex-
citatory coupling Ωexc = gexcΓ(x) + gexc(Vexc − x)Γ′x(x), the
green (light gray) curve corresponds to that of the inhibitory
coupling Ωinh = ginhΓ(x) + ginh(Vinh− x)Γ′x(x), and the thick
black line indicates the combined curve Ω(x) = Ωexc + Ωinh.
Adding the inhibition decreases the impact of Ω(x) (cf. with
(a) where Ω(x) equals Ωexc in (c)). At the same time, it
induces plateau bursting, with the spikes in the region above
the threshold, where the coupling is sufficiently strong to syn-
chronize them. (d). gexc = 0.6, ginh = 0.9: Strong inhibition
destabilizes synchronous plateau bursting. Ω(x) has a drop
in the region, covering the upper knee of the nullcline. As a
result, the cells diverge when slowly crawling up this part of
the nullcline. Note that synchronous plateau bursting of the
self-coupled system is unstable and does not represent the dy-
namics observed in the network; the cells become locked into
anti-phase square-wave bursting (cf. Fig. 2d).

ξ̇12 = (2ax− 3x2)ξ12 − η12 − ζ12 − Ω(x) ξ12,
η̇12 = 2(a+ α)xξ12 − η12,

ζ̇12 = µ(bξ12 − ζ12),

(3)

where Ω(x) = S1 + S2, S1 = (gexc + ginh) Γ(x) and
S2 = (gexc(Vexc − x) + ginh(Vinh − x)) Γ′x(x). Here, x(t)

is the synchronous solution defined via the self-coupled
system (2) and Γ′x(x) is the partial derivative of Γ(x)
with respect to x. The stability of the zero equilibrium
{ξ12 = 0, η12 = 0, ζ12 = 0} of the linearized system (3)
corresponds to the stability of the synchronous solution
in the original network. The function Ω(x) represents the
contribution of the excitatory and inhibitory coupling; it
favors the stability of synchronization when it becomes
positive and has a destabilizing impact when it is negative
[9]. More specifically, the coupling term −Ω(x) ξ12 aims
at stabilizing the zero equilibrium of system (3) when it
is positive and tends to distabilize the zero equilibrium
when it is negative.

The two terms S1 and S2, composing Ω(x), heavily
depend on whether the voltage x(t) exceeds the synaptic
threshold Θs. The first term S1 contains the sigmoidal
synaptic function Γ(x) and becomes significant for x(t) ≥
Θs. Once turned on, the term S1 > 0 makes Ω(x) > 0 for
x(t) ≥ Θs (see Fig. 4) and favors the stability for both
excitatory and inhibitory coupling as gexc + ginh > 0.

The second term, S2, can change sign; the term
due to the excitatory coupling gexc(Vexc − x) is posi-
tive and therefore attractive, whereas the inhibitory one
ginh(Vinh − x) is negative and repulsive. It contains
the derivative Γ′x(x) which has a peak around Θs and
rapidly decaying tails (in the case of the Heaviside func-
tion H(xi), Γ′x(x) turns into the delta function). There-
fore, the term S2 switches and remains on for the values
of x, close to the threshold Θs when the spikes cross the
threshold. It becomes decisive for the overall sign of Ω(x)
in a region around the threshold Θs, giving a distinct bell
shape to Ω(x) (see Fig. 4).

When x(t) drops below the threshold Θs, the cells
are practically uncoupled. Our Lyapunov function based
analysis of synchronization in excitatory networks [9, 10]
suggests that the spikes are the most unstable part of the
synchronous solution such that their stabilization via the
synaptic coupling yields complete synchronization. The
above-threshold part of the synchronous solution lies in
the stability zone as the coupling function Ω(x) > 0, for
any combination of gexc and ginh. Therefore, this part
of the solution can be stabilized by making the coupling
stronger. At the same time, the subthreshold part of the
synchronous spikes is difficult to stabilize as the contri-
bution of the term S2 rapidly decays to zero below from
the threshold. Moreover, only excitatory coupling can
stabilize the synchronous trajectory in the subthreshold
region as it yields the positive peak of the bell-shaped
curve Ω(x) (see Fig. 4a). The addition of inhibition low-
ers this peak and can make it negative (see Fig. 4d),
making the region around the threshold less stable. Fig-
ures 4a and 4b show that increasing Ω(x) (via increas-
ing gexc) induces synchrony in the purely excitatory net-
work. However, it requires fairly strong excitation to sta-
bilize the synchronous solution, especially its subthresh-
old part. Figure 4c demonstrates that adding the inhibi-
tion has a two-fold effect. It lowers the stabilizing impact
of Ω(x) around and below the synaptic threshold; how-
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FIG. 5: (color online). Stability diagrams for network synchronization, similar to that of Fig. 2. The color bar indicates the

mean voltage difference
n−1∑
i=1

n∑
j>i

2
n(n−1)

(xi−xj), calculated and averaged over the last three bursting periods. Notice the nearly

identical diagrams for pairs of ten-cell irregular and five-cell regular networks with kexc = 4 and kinh = 4 (left pair) and kexc = 2
and kinh = 4 (right pair). Excitatory (inhibitory) connections are depicted by arrows (circles). Excitatory (inhibitory) neurons
in the ten-cell irregular networks [with only outgoing excitatory (inhibitory) connections] are denoted by light (dark) circles.
The height and width of the left instability zone, adjacent to the gexc-axis and corresponding to desynchronized square-wave
bursting are inversely proportional to kexc and kinh, respectively (also compare with Fig. 2).

ever, it helps switching the type of synchronous bursting
via (2), making the spikes shorter and moving them to-
wards the stability region, controlled by the synchroniz-
ing term S1. Increasing inhibition typically switches syn-
chronous square-wave bursting to plateau bursting which
places the spikes of synchronous bursting into the sta-
bility (above-threshold) region that can be in turn effec-
tively stabilized by the excitatory coupling via S1. There-
fore, the combination of gexc+ginh synergistically induces
synchronized bursting within a wide region of parameters
gexc and ginh. Its right stability boundary E2 (cf. Fig. 2)
corresponds to synchrony loss and is defined by the mu-
tual arrangements between the graphs of Ω(x) and the
nullcline h(x) (Fig. 4d). This happens when the upper
knee of h(x) falls inside the instability zone where Ω(x)
is negative (cf. Fig. 4d). The appendix contains an ad-
ditional argument for predicting the slope of boundary
E2. This estimate gexc = 0.78 ginh (see Appendix) co-
incides remarkably well with the numerically calculated
boundary E2 in Fig. 2.

It is important to re-state that the dynamics and type
of synchronous bursting x(t) are controlled by the self-
coupled system (2) and depend on both gexc and ginh.
This property allows the inhibition to induce plateau
bursting in the self-coupled system (2). The synchronous
bursting observed in the self-coupled system (2) does
not necessarily represent the emergent network dynam-
ics. This synchronous solution can be unstable, especially
when ginh is overly strong as in Fig. 4d. Therefore, the
network generates a different stable rhythm; this is typ-
ically anti-phase square-wave bursting as in Fig. 2d (cf.
the two insets for the consistency).

While the onset of inhibition-induced synchronization
is typically governed by the transition from square-wave
to plateau bursting, the addition of inhibition can also

induce synchronized square-wave bursting in a smaller
region of parameters (Fig. 2e). However, the synchro-
nization mechanism is essentially the same; the inhibi-
tion decreases the subthreshold part of the spikes, with-
out changing the type of bursting, and thus facilitates
synchronization. Although, fairly strong excitation is re-
quired, making the synergistic effect less pronounced.

B. Larger networks: the scaling laws

The discovered inhibition-induced synchronization
phenomenon is also present in larger networks of square-
wave bursters (1). We demonstrate that the structure of
the added inhibitory connections is not important and
only the number of inhibitory inputs controls the onset
of synchronization, independent from all other details of
their network topology. In the context of complex dy-
namical networks, this unexpected result indicates the
drastically different roles of network topology in synchro-
nization of linearly [28, 29] and synaptically coupled net-
works with attractive and repulsive connections. Figure 5
shows that the size of the left desynchronization zone,
bounded by the gexc axis and boundary E1 (cf. Fig. 2),
scales down vertically and horizontally by kexc and kinh

times, respectively. As a result, the stability boundaries
E1 for the onset of synchrony are nearly identical for
networks of different sizes and topologies, provided that
kexc and kinh are uniform for each cell. In support of this
claim, we have analyzed a series of different regular and
random networks (1) with uniform numbers of excitatory
(kexc) and inhibitory (kinh) synapses per neuron. For
all simulated networks, numerical results are consistent
with the scaling law above. Figure 5 demonstrates two
representative pairs of networks yielding the largest and
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smallest regions of inhibition-induced synchronization for
all possible network topologies (1) with the given num-
ber of excitatory and inhibitory inputs. Figure 6 sum-
marizes the numerical simulations of different networks
with different topologies and shows how the synchroniza-
tion effect of added inhibition scales with the size of the
network.

FIG. 6: (color online). Ratio of the synchronization threshold
in an excitatory network without inhibition and the minimum
synchronization threshold achieved by adding inhibition, as a
function of the network size n, for different values of kexc and
kinh. The ratio of the synchronization threshold reduction,
induced by added inhibition is as large as 12 for the two-cell
network (compare with Fig. 2.) The four curves represent
four types of network topology: rings of cells with local ex-
citatory and inhibitory connections (kexc = 2 and kinh = 2);
all-to-all networks with both global exciatory and inhibitory
connections (kexc = n − 1 and kinh = n − 1); networks with
global exciatory and local inhibitory connections (kexc = n−1
and kinh = 2); and rings of cells with local excitatory and all-
to-all inhibitory connections (kexc = 2 and kinh = n − 1).
Notice that the addition of global inhibition to a locally cou-
pled excitatory network (local excitation/global inhibition)
yields the smallest reduction in the synchronization threshold
for n > 3 (lowest line), and therefore has the worst synchro-
nization properties. At the same time, the addition of lo-
cal inhibition to the same locally coupled excitatory network
yields the highest reduction ratio for n > 3 (top line) and
indicates a non-trivial synergistic effect of the combined in-
hibitory and excitatory topologies. Also observe that global
inhibition promotes synchronization more significantly than
local inhibition when added to a globally coupled excitatory
network, as the global excitation/global inhibition configura-
tion has a higher synchronization threshold reduction ratio
(second line from the top), compared to that of the global
excitation/local inhibition configuration (third line from the
top).

To show that the scaling laws carry over to larger net-
works with random coupling matrices, we have simulated
a 100-cell random network where each cell receives four
excitatory kexc = 4 and four inhibitory kinh = 4 connec-
tions (Fig. 7). The network consists of 80 excitatory and

FIG. 7: (color online). (Top). Induced synchronization in a
100-cell randomly generated network with uniform kexc = 4
and kinh = 4. (Bottom). The network has 80 excitatory
(red/light) and 20 inhibitory (blue/dark) cells. The exci-
tatory connections are marked by red (light) arrowed lines;
the inhibitory coupling is indicated by blue (dark) arrows.
Both excitatory and inhibitory coupling strengths are het-
erogeneous, with randomly distributed mismatch up to 10%.
The color bar indicates the mean voltage difference as in Fig.
5. The stability diagram is similar to those of the two left
diagrams in Fig. 5, corresponding to the five- and ten-cell
networks with kexc = 4 and kinh = 4. Complete spike syn-
chronization is impossible in this mismatched network; how-
ever, an approximate synchronization with small voltage dif-
ferences (offsets between the spikes) is robustly present. Var-
ious shades of blue (black) and the non-homogeneous struc-
ture of the synchronization stability zone correspond to slight
voltage offsets due to the parameter mismatch.

20 inhibitory cells such that the excitatory (inhibitory)
cells only have excitatory (inhibitory) outgoing connec-
tions, thereby abiding by Dale’s law. Both excitatory and
inhibitory coupling strengths are mismatched by adding
∆gij ·q to gexc and ginh for each existing connection (i, j).
The mismatch parameter ∆gij is expressed as a percent-
age of gexc and ginh and kept equal to 5%; the values
of the parameter q are chosen randomly from the inter-
val (−1, 1) for each excitatory and inhibitory connection
(i, j), yielding a 10% maximum mismatch. The stability
diagram supports the scaling law and has a structure sim-
ilar to the two left diagrams in Fig. 5, all corresponding
to different network topologies with the uniform number
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of connections kexc = 4 and kinh = 4.

To target realistic biological networks with non-
uniform numbers of excitatory and inhibitory inputs per
neuron, we have simulated a 100-cell network, similar to
that of Fig. 7, but with an average number of inputs
kexc = 4 and kinh = 4. This heterogeneous network has
been generated from the network topology of Fig. 7 with
kexc = 4, kinh = 4, and non-mismatched gexc and ginh

by randomly choosing a pair of cells and changing their
in-degrees of the excitatory and inhibitory inputs by sub-
tracting one incoming connection of each type from one
cell and adding these connections to the other cell. As a
result, one half of the cells have kexc = 3 and kinh = 3,
while the other half have kexc = 5 and kinh = 5, yield-
ing the average kexc = 4 and kinh = 4. This effective
mismatch between the overall strength of the incoming
connections to each neuron is larger than the 10% max-
imum mismatch used in the previous example (Fig. 7);
however, the stability diagram for approximate synchro-
nization is quite similar to Fig. 7, except for the appear-
ance of a more irregular structure of the synchronization
stability zone due to the increased coupling mismatch.
Increasing the heterogeneity mismatch between the con-
nections even further shall eventually make approximate
spike synchronization impossible; however, we expect in-
duced burst synchronization to persist.

To explain the scaling law, we shall return to the
transversal variational equations (3) written for n − 1
difference variables ξij = xj − xi, ηij = yj − yi, ζij =
zj − zi, i, j = 1, ..., n. The equations for the purely
excitatory networks were given in [9] where an ana-
log of the Master Stability Function [27] for synapti-
cally coupled networks (1) was used to analyze the sta-
bility of the most unstable transverse mode. Unfor-
tunately, the Master Stability Function cannot be ap-
plied to mixed excitatory-inhibitory networks in general
as it requires simultaneous diagonalization of both the
excitatory (C) and inhibitory (D) connectivity matri-
ces. This is impossible in general unless the two ma-
trices commute [36]. In the latter case, the stability
equation for the most unstable transverse synchronous
mode is the equation (3) with a new stability func-
tion Ωnew(x) = (kexcgexc + kinhginh) Γ(x) − gexc(Vexc −
x)Γ′x(x)(kexc + γexc

2 ) − ginh(Vinh − x)Γ′x(x)(kinh + γinh
2 ),

where γexc
2 and γinh

2 are the second largest eigenvalues of
the (commuting) Laplacian connectivity matrices for the
excitatory and inhibitory networks, CL = C − kexcI and
DL = D − kinhI, respectively. The first term in Ωnew(x)
accounts for the number and strength of excitatory and
inhibitory inputs. The last two terms, containing the
partial derivative Γ′x and the networks structure via γexc

2

and γinh
2 , only matter for the stability/instability of syn-

chronization in the region of x(t), close to the synaptic
threshold Θs, similar to the two-cell network case. The
shift of the nullcline h(x) and switching from square-
wave to synchronous plateau bursting are governed by
kexcgexc and kinhginh via the self-coupled system (2). As
a result, the spikes of the synchronous bursting solution

leave the bell-shaped zone (similar to Fig. 4c) such that
the contribution of the last two terms in Ωnew(x) be-
comes insignificant for synchronization. This yields the
scaling law when the minimum strength of added inhibi-
tion g∗inh, sufficient to induce plateau bursting synchrony
is inversely proportional to kinh, regardless of the network
size and structure (compare, for example, g∗inh ≈ 0.14 in
the two-cell network of Fig. 2 and g∗inh ≈ 0.035 = 0.14/4
in the networks of Fig. 5 with kinh = 4, all calculated at
the level gexc = 0.2). Notice that the five-cell networks
of Fig. 5 correspond to the commuting excitatory and in-
hibitory connectivity matrices: global excitation/global
inhibition and local excitation/global inhibition. In the
case where the connectivity matrices do not commute
(the ten-cell networks of Fig. 5 and the 100-cell network
of Fig. 7), the eigenvalues of the connectivity matrices
cannot be used and the stability function Ωnew(x) can-
not be derived. A modification of the Connection Graph
method [37] that uses graph theoretical reasoning instead
of the spectrum of the connectivity matrices can be used
to write down a set of similar stability functions. How-
ever, the stability argument is essentially the same, the
induced synchronization is governed by the transition to
plateau bursting that is in turn controlled by the self-
coupled system. Consequently, the same scaling law for
the inverse dependence of the induced synchronization
threshold on gexc and kinh also holds for realistic non-
commuting coupling configurations. Our results also in-
dicate that the loss of stable synchrony via the right (in-
clined) boundary (similar to boundary E2 in Fig. 2) is
governed by a simple condition gexc = α kinh

kexc
ginh, where

α is a scaling factor, uniform for different topologies with
the same ratio kinh/kexc. As in the two-cell network yield-
ing the slope gexc = 0.78 ginh, this condition is determined
by the shift of the nullcline h(x) such that the upper knee
of h(x) moves close to the synaptic threshold Θs and falls
into the instability zone (as in Fig. 4c).

V. CONCLUSIONS

We have discovered the synergistic effect of combined
attractive excitation and repulsive inhibition in promot-
ing bursting synchrony. Remarkably, the addition of the
inhibitory coupling lowers the synchronization threshold
much more significantly than strengthening the present
excitatory connections. The effect is generic and ob-
served in other Hodgkin-Huxley-type models of square-
wave bursting cells [35], including Sherman models [34]
with Vexc = 10 mV, Vinh = −75 mV, Θs = −40 mV
[35]. The effect is also independent from the choice of
the synaptic interaction model, ranging from the instan-
taneous pulsatile coupling to a fast dynamical synapse
[15]. While fast non-delayed inhibition can lead to the
co-existence of synchronous and anti-phase bursting in
some bursting models [18] when the coupling is weak,
typically comparable to the small intrinsic parameter of
the individual neuron, a significant synergistic effect is
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only observed in a range of coupling where the inhibi-
tion is purely repulsive and strong to change the type of
bursting. Our preliminary results show that inhibition
also promotes burst synchrony in realistic networks with
a highly heterogenous structure of connections, where
spike or approximate synchrony is impossible. Our study
has potential implications for understanding the emer-
gence of abnormal synchrony in epileptic brain networks.
An epileptic patient is normally (i.e., except for during
a seizure) in a desynchronized state which might corre-
spond to the instability region to the left of the E1-border
in Fig. 2. Our results suggest that promoting presumably
desynchronizing inhibition in an attempt to prevent the
patient’s seizures can have a counterproductive effect and
induce abnormal synchronous firing in the excitatory-
inhibitory brain network. Brain networks have been also
shown to evolve their functional topology during epilep-
tic seizures [2]. In light of this, our results on the role
of network connectivity, identifying network topologies
with the highest and lowest resilience of abnormal syn-
chronized bursting can give insights into how seizures
self-terminate and into how to control epileptic networks.
Outside of Neuroscience, negative pairwise repulsive in-
teractions were previously shown to have a positive effect
on synchronization in linearly coupled networks, where
negative interactions by themselves tend to destabilize
synchronous states, but can compensate for other insta-
bilities [29]. However, this intriguing phenomenon, where
the structure of negative connections heavily affects the
synchronization, is conceptually different from the one
reported in this study. Apart from synchronization, a
counterintuitive role of inhibition was reported in [38],
demonstrating that the addition of inhibitory nodes to an
excitatory network of 1-D discrete-time oscillators causes
self-sustaining dynamics.
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VII. APPENDIX: SLOPE OF SYNCHRONY
LOSS BOUNDARY E2

This appendix provides additional support for explain-
ing synchrony loss, caused by overly strong inhibition via
the stability boundary E2 (see Fig. 2). In addition to
the stability argument based on the variational equations
(see Sec. IV), we use a more straightforward approach to

predict the slope of the boundary E2 in the two-cell net-
work.

The network equations (1) can be written for the two-
cell network as follows:

ẋi = ax2
i − x3

i − yi − zi + gexc(Vexc − xi)Γ(xj)+
+ginh(Vinh − xi)Γ(xj),

ẏi = (a+ α)x2
i − yi,

żi = µ(bxi + c− zi), i, j = 1, 2.

(4)

Note that the combined action of two excitatory and
inhibitory synapses essentially amounts to that of one
synaptic connection with strength gsyn and synaptic re-
versal potential Esyn. The corresponding system reads:

ẋi = ax2
i − x3

i − yi − zi + gsyn(Esyn − xi)Γ(xj),
ẏi = (a+ α)x2

i − yi,
żi = µ(bxi + c− zi), i, j = 1, 2.

(5)

The synaptic reversal potential Esyn changes in the range
[−2, 2], allowing us to vary the type of the connection
from purely inhibitory when Esyn = −2 < xi for all xi(t),
to purely excitatory when Esyn = 2 > xi(t). In this set-
ting, changing the coupling strengths gexc and ginh in
the network (4) with fixed Vexc = 2 and Vinh = −2 is
equivalent to changing the values of gsyn and Esyn in the
network (5). Figure 8 shows robust synchronization in an
interval of gsyn and Esyn. Here, the left stability bound-
ary, indicating the drop of the synchronization threshold
from 1.28 with decreasing Esyn from 2, corresponds to
the boundary E1 in Fig. 2. The vertical stability bound-
ary for synchrony loss at Esyn = −0.25 corresponds to
the boundary E2 in Fig. 2. The origin of this almost ver-
tically rising boundary, starting roughly at Esyn = −0.25
is of no mystery if one realizes that this is also the synap-
tic threshold Θs = −0.25. It is not a coincidence that
these two values appear equal. Note that the synap-
tic connection becomes purely inhibitory when xi(t) ex-
ceeds the reversal potential Esyn. Therefore, the part of
the synchronous solution lying above Esyn (mainly, the
above-threshold part of the spikes) cannot be robustly
stabilized. At the same time, when xi(t) is below Esyn,
the synapse is excitatory. As Fig. 2 suggests, when Esyn is
chosen as low as Θs, the excitatory action of the synapse
is non-existent as the synapse is practically off below the
synaptic threshold Θs.

This is the key observation for predicting the slope of
the stability boundary E2 in the original network (1).
We return to the network (1) and notice that for the
overall impact of the excitatory and inhibitory connec-
tions to be robustly synchronizing, the overall input to
the i-th cell, gexc(Vexc − xi)Γ(xj) − ginh(Vinh − xi)Γ(xj)
must remain positive. Rewriting this condition yields
gexcVexc+ginhVinh

gexc+ginh
− xj > 0, as Γ(xj) ≥ 0. Notice that

the first term plays a role of the reversal potential Esyn

in the network (5). Therefore, according to Fig. 8,
gexcVexc+ginhVinh

gexc+ginh
cannot exceed Esyn ≈ Θs = −0.25

for synchronization to remain stable. This yields the
following condition on the stability boundary gexc =
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FIG. 8: (color online). Role of Esyn in synchronization of the
two-cell network (4.) The stability diagram and color coding
are similar to those of Fig. 2. Decreasing the reversal poten-
tial Esyn from 2 first dramatically lowers the synchronization
threshold. Dropping Esyn below −0.25 makes the connec-
tion essentially inhibitory such that synchronization cannot
be achieved for any value of gsyn: note the vertically rising
stability boundary around Esyn = −0.25.

Θs−Vinh

Vexc−Θs
ginh, written in terms of the parameters of the

original network (1). Plugging in the values of the pa-
rameters Vinh = −2, Vexc = 2, and Θs = −0.25, one gets
gexc = 0.78ginh. This condition predicts the slope of the
boundary line E2 remarkably well. This argument also
carries over to larger networks and supports the scaling
law for synchrony loss: gexc = α kinh

kexc
ginh.
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