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Abstract

Kadomtsev-Petviashvili (KP)-type equation appears in fluid mechanics, plasma physics and gas dy-
namics. In this paper, we propose an integrable semi-discrete analogue of the coupled (2+1)-dimensional
system which is related to KP equation and Zakharov equation. N-soliton solutions of the discrete
equation are presented. Some interesting examples of soliton resonance related to the two-soliton and
three-soliton solutions are investigated. Numerical computations using the integrable semi-discrete equa-
tion are performed. It is shown that the integrable semi-discrete equation gives very accurate numerical
results in the cases of one soliton evolution and soliton interactions.

PACS numbers: 05.45.Yv, 02.30.Jr
Keywords: Zakharov equation, integrable discretization, resonant interaction, pfaffian

1 Introduction

Nonlinear evolution equations (NEEs) appear in almost all the physics branches, such as fluid mechanics,
plasma physics, optical fibers and solid state physics. Nonlinear wave phenomena of dispersion, dissipation,
diffusion, reaction and convection are very important in nonlinear wave equations. Since the concept of
the solitons for the Korteweg-de Vries (KdV) equation was introduced, there has been considerable interest
in this kind of special NEEs, such as Burgers equation, nonlinear Schrödinger (NLS) equation, Boussinesq
equation.

Compared with the one-dimensional NEEs, the (2+1)-dimensional coupled systems are more attractive in
describing the nonlinear phenomena in the real physical situations. Some (2 + 1)-dimensional NEEs exhibit
not only localized coherent structures as the curved-line solitons, half-straight-line solitons and dromions
[1, 2], but also the inelastic interactions, e.g., the resonance [3], reconnection [4], and annihilation [5].

Zakharov formulated the system of equations

iEt +
1

2
Exx − nE = 0, (1)

ntt − nxx − 2(|E|2)xx = 0, (2)

for the ion sound wave under the action of the ponderomotive force due to high-frequency field and for
the Langmuir wave [6]. Here Ee−iωpt is the normalized electric field of the Langmuir oscillation, n is the
normalized density perturbation, x is the normalized spatial variable, t the time variable and the subscripts
denote the partial derivatives. For the ion sound wave propagating in only one-direction, for example, in the
positive x-direction, one can suppose that

nt ∼= −nx. (3)
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Under this assumption Eq. (2) can be simplified as follows

nt + nx + (|E|2)x = 0. (4)

Interaction of solitons of the system (1) and (4) were studied by the inverse scattering technique in [7].
In the present work, we consider the following (2 + 1)-dimensional soliton equation

iut + uxx + uv = 0, (5a)

vt + vy + (|u|2)x = 0, (5b)

where i =
√
−1, u is a complex function of two scaled space coordinates x, y and time t, v is a real

function. Eqs.(5) are similar to the integrable Zakharov equation (1) and (4) when x = y in Eq. (5b).
Maccari [8] obtained Eqs.(5) by an asymptotically exact reduction method based on Fourier expansion and
spatiotemporal rescaling from the KP equation. He also constructed the Lax pair for the system. Painlevé
property of the system (5) was investigated in [9] and its doubly-periodic solutions were given by using the
extended Jacobian elliptic function expansion method [10]. Traveling wave solutions of the system were
obtained in [11, 12]. The interaction dynamics between the two solitons, especially the soliton resonant
interactions, was studied in [13]. However, to the best of our knowledge, N−soliton solutions of the system
(5) have not been given by use of the Hirota method.

Over the decades, integrable discretizations of soliton equations have received considerable attention
[14–17]. Ablowitz and Ladik proposed how to construct integrable discrete analogues of soliton equations
based on Lax pairs [18, 19]. Hirota proposed bilinear method to construct integrable discrete analogues of
soliton equations based on bilinear equations [20–22]. Applications of integrable discretizations of soliton
equations were considered in various fields [23–27]. In our recent works, we proposed an integrable semi-
discrete analogue of the coupled integrable dispersionless equations [28, 29]. The key step there is the
discretization of bilinear differential operators under gauge invariance. Considering the physical background
and potential application of the (2 + 1)-dimensional system (5), we aim to study its semi-discrete analogue
and the dynamics of soliton solutions of the semi-discrete system.

The remainder of this paper is organized as follows. In section 2, we derive N−soliton solutions of the
system (5) by using the Hirota method. In section 3, we present a semi-discrete analogue of the system in
the spatial direction. In section 4, the numerical computations of the semi-discrete system are performed.
Interactions of multi-soliton solutions, especially the resonance of two solitons, are investigated by means of
asymptotic behaviors in section 5. Conclusions are given in section 6. Finally we present N -soliton solution
of the semi-discrete system by pfaffian technique in the appendix.

2 Bilinear form and soliton solutions

Through the dependent variable transformations

u =
g

f
, v = 2(ln f)xx, (6)

where g and f are the complex and real functions of x, y and t, respectively, the bilinear forms of system (5)
is expressed as

(iDt +D2
x)g •f = 0, (7)

(DxDt +DxDy)f •f + gg∗ = 0. (8)

Here the bilinear differential operator is defined by [30]

Dn1
x1
Dn2

x2
a • b ≡

(

∂

∂x1
− ∂

∂x′
1

)n1
(

∂

∂x2
− ∂

∂x′
2

)n2

a(x1, x2) • b(x
′
1, x

′
2)|x′

1=x1,x
′

2=x2
. (9)

In [13], one-soliton and two-soliton solution of (7)-(8) were found. We get that one-soliton solution can be
expressed in the form

g = exp(η1), (10)

f = 1 + a(1, 1∗) exp(η1 + η∗1), (11)
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with η1 = k1x+ p1y + ik21t and a(1, 1∗) = − 1
2(k1+k∗

1)(ik
2
1−ik∗2

1 +p1+p∗

1)
. Here k1, p1 are complex constants and

η∗ denotes complex conjugate of η.
Two-soliton solution is in the following form

g =exp(η1) + exp(η2) + a(1, 2, 1∗) exp(η1 + η2 + η∗1)

+ a(1, 2, 2∗) exp(η1 + η2 + η∗2), (12)

f =1 + a(1, 1∗) exp(η1 + η∗1) + a(1, 2∗) exp(η1 + η∗2)

+ a(2, 1∗) exp(η2 + η∗1) + a(2, 2∗) exp(η2 + η∗2)

+ a(1, 2, 1∗, 2∗) exp(η1 + η2 + η∗1 + η∗2), (13)

with ηj = kjx+ pjy + ik2j t, (j = 1, 2). Here the coefficients are defined by formulas

a(j, l∗) = − 1

2(kj + k∗l )(ik
2
j − ik∗2l + pj + p∗l )

, (14)

a(i, j) = 2(ki − kj)(−ik2i + ik2j − pi + pj), (15)

a(i∗, j∗) = 2(k∗i − k∗j )(ik
∗2
i − ik∗2j − p∗i + p∗j ), (16)

a(i, j, k∗) = a(i, j)a(i, k∗)a(j, k∗), (17)

a(i, j∗, k∗) = a(i, j∗)a(i, k∗)a(j∗, k∗), (18)

a(i, j, k∗, l∗) = a(i, j)a(i, k∗)a(i, l∗)a(j, k∗)a(j, l∗)a(k∗, l∗), (19)

where kj and pj are complex constants. In the same way, we can construct the three-soliton solution,

g = exp(η1) + exp(η2) + exp(η3)

+ a(1, 2, 1∗) exp(η1 + η2 + η∗1) + a(1, 3, 1∗) exp(η1 + η3 + η∗1) + a(2, 3, 2∗) exp(η2 + η3 + η∗2)

+ a(1, 2, 2∗) exp(η1 + η2 + η∗2) + a(1, 3, 3∗) exp(η1 + η3 + η∗3) + a(2, 3, 3∗) exp(η2 + η3 + η∗3)

+ a(1, 2, 3∗) exp(η1 + η2 + η∗3) + a(1, 3, 2∗) exp(η1 + η3 + η∗2) + a(2, 3, 1∗) exp(η2 + η3 + η∗1)

+ a(1, 2, 3, 1∗, 2∗) exp(η1 + η2 + η3 + η∗1 + η∗2) + a(1, 2, 3, 1∗, 3∗) exp(η1 + η2 + η3 + η∗1 + η∗3)

+ a(1, 2, 3, 2∗, 3∗) exp(η1 + η2 + η3 + η∗2 + η∗3), (20)

f = 1 + a(1, 1∗) exp(η1 + η∗1) + a(2, 2∗) exp(η2 + η∗2) + a(3, 3∗) exp(η3 + η∗3)

+ a(1, 2∗) exp(η1 + η∗2) + a(2, 1∗) exp(η2 + η∗1) + a(2, 3∗) exp(η2 + η∗3) + a(3, 2∗) exp(η3 + η∗2)

+ a(1, 3∗) exp(η1 + η∗3) + a(3, 1∗) exp(η3 + η∗1)

+ a(1, 2, 1∗, 2∗) exp(η1 + η2 + η∗1 + η∗2) + a(1, 3, 1∗, 3∗) exp(η1 + η3 + η∗1 + η∗3)

+ a(1, 2, 1∗, 3∗) exp(η1 + η2 + η∗1 + η∗3) + a(1, 3, 1∗, 2∗) exp(η1 + η3 + η∗1 + η∗2)

+ a(1, 2, 2∗, 3∗) exp(η1 + η2 + η∗2 + η∗3) + a(2, 3, 1∗, 2∗) exp(η2 + η3 + η∗1 + η∗2)

+ a(1, 3, 2∗, 3∗) exp(η1 + η3 + η∗2 + η∗3) + (2, 3, 1∗, 3∗) exp(η2 + η3 + η∗1 + η∗3)

+ a(2, 3, 2∗, 3∗) exp(η2 + η3 + η∗2 + η∗3) + a(1, 2, 3, 1∗, 2∗, 3∗) exp(η1 + η2 + η3 + η∗1 + η∗2 + η∗3), (21)

where the coefficients are defined as (14)-(19) and in general

a(i1, i2, · · · , in, j∗1 , · · · , j∗m) =
∏

1≤k<l≤n

a(ik, il)
∏

1≤k≤n,1≤l≤m

a(ik, j
∗
l )

∏

1≤k<l≤m

a(j∗k , j
∗
l ). (22)

From the above expressions of the one-, two- and three- soliton solutions, we know that the exact N -
soliton solution of Eqs. (5) is in the following form

f =

(e)
∑

µ=0,1

exp





N
∑

j=1

µjηj +
2N
∑

j=N+1

µjη
∗
j−N +

2N
∑

1≤i<j

µiµjAij



 , (23)

g =

(o)
∑

ν=0,1

exp





N
∑

j=1

νjηj +
2N
∑

j=N+1

νjη
∗
j−N +

2N
∑

1≤i<j

νiνjAij



 , (24)
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where

ηj = kjx+ pjy + ik2j t, j = 1, 2, · · · , N, (25)

η∗j = conjugate of ηj , j = 1, 2, · · · , N, (26)

exp(Ai,j) = a(i, j), i < j = 2, 3, · · · , N, (27)

exp(Ai,N+j) = a(i, j∗) i, j = 1, 2, · · · , N, (28)

exp(AN+i,N+j) = a(i∗, j∗), i < j = 2, 3, · · · , N. (29)

Here αj , γj are both real parameters relating respectively to the amplitude and phase of the i−th soliton.

The sum
∑(e)

µ=0,1 indicates the summation over all possible combinations of µi = 0, 1 under the condition

N
∑

j=1

µj =

N
∑

j=1

µN+j , (30)

and
∑(o)

ν=0,1 indicates the summation over all possible combinations of νi = 0, 1 under the condition

N
∑

j=1

νj =

N
∑

j=1

νN+j + 1. (31)

The form of the N -soliton solution (23)-(24) is the same as that of the combined Schrödinger-mKdV equation
in [31]. The proof of the N -soliton solution here can be completed by induction and is similar to the one in
[31]. The reader can find the details there.

It is known that soliton solutions of many integrable systems (e.g. Schrödinger type, BKP type) can
be expressed in pfaffian form. In the appendix part, we construct N−soliton solution to the semi-discrete
system (32) by using the pfaffian technique.

3 Integrable discrete analogue of the (2+1)-dimensional system

We consider the discrete system

[

iDt +
4

ǫ2
sinh2

(Dn

2

)]

gn •fn = 0, (32a)

4

ǫ
(Dt +Dy)fn+1 •fn + gn+1g

∗
n + gng

∗
n+1 = 0, (32b)

where the bilinear difference operator exp(δDn) in sinh function is defined by

exp(δDn)a • b ≡ a(n+ δ)b(n− δ), (33)

and the parameter ǫ can be regarded as spatial discrete step. With the variable transformation

un =
gn
fn

, wn = ln
fn+1

fn
, (34)

bilinear equations (32) can be cast into

iun,tǫ
2 + (un+1 + un−1)e

wn−wn−1 − 2un = 0, (35a)

4(wn,t + wn,y) + ǫ(u∗
nun+1 + unu

∗
n+1) = 0. (35b)

Setting

vn =
1

ǫ2
2(fn+1fn−1 − f2

n)

f2
n

=
2

ǫ2
(ewn−wn−1 − 1) (36)
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and substituting it into (35a) result

iutǫ
2 + (2u+ ǫ2uxx)(1 +

ǫ2

2
v)− 2u+O(ǫ2) = 0. (37)

The coefficient of the term ǫ2 is

iut + uxx + uv = 0. (38)

By shifting n to n− 1 in (35b) and subtracting each other, we get

4(∂t + ∂y)e
wn−wn−1 + ewn−wn−1ǫ(E− 1)(un−1u

∗
n + u∗

n−1un) = 0, (39)

or equivalently,

4(∂t + ∂y)(1 +
ǫ2

2
vn) + ǫ(1 +

ǫ2

2
vn)(E− 1)(un−1u

∗
n + u∗

n−1un) = 0. (40)

Here E is the shift operator Ean = an+1. The continuum limit of (40) as ǫ → 0 is

vt + vy + (|u|2)x = 0. (41)

Thus (35) gives a semi-discrete analogue of the system (5). From the derivation above, by eliminating w in
(35), we obtain the following semi-discrete system for u and v,

iun,t +
un+1 + un−1 − 2un

ǫ2
+

(un+1 + un−1)vn
2

= 0, (42a)

vn,t + vn,y + (1 +
ǫ2

2
vn)

un(u
∗
n+1 − u∗

n−1) + u∗
n(un+1 − un−1)

2ǫ
= 0. (42b)

Remark 3.1. By multiplying u∗
n in the both sides of the equation (42a), employing the conjugate and then

subtracting two equations each other, we have

i(|un|2)t+
1

ǫ2

(

(un+1 + un−1)u
∗
n − (u∗

n+1 + u∗
n−1)un

)

+
1

2

(

u∗
nvn(un+1 + un−1)− unvn(u

∗
n+1 + u∗

n−1)
)

= 0.

By summation of n, we get

d

dt

+∞
∑

n=−∞

|un|2 = 0,

which proves that the total energy
∑∞

n=−∞ |un|2 is conserved. Numerical computation is given in the next
section.

Remark 3.2. One can check that the first bilinear equation of (5), i.e. Eq. (7), is the same as the one of
nonlinear Schrödinger (NLS) equation. It is well-known that Davey-Stewartson equation, a two-dimensional
NLS equation that appeared as a shallow-water limit of the Benney-Roskes equation, arises from the two-
component KP hierarchy [32]. It was pointed out in [33] that the discretization of NLS equation can be
obtained from the reduction of two-component KP hierarchy. Hence we believe that the semi-discrete system
(42) must have relation with the two-component KP hierarchy. Meanwhile, since the (2 + 1)-dimensional
system (5) is derived from the KP equation via an asymptotically exact reduction method, the relation
between the semi-discrete system (42) and the differential-difference KP equation [34, 35],

∆(ut + 2uy − 2uuy) = (2 + ∆)uyy, (43)

deserves further consideration. Here u = u(y, t, n) and ∆ denotes the forward difference operator defined by
∆fn = fn+1 − fn.
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One-soliton solution for (32) has the form

fn = 1+ b(1, 1∗) exp (η1 + η∗1), gn = exp (η1), (44)

with

η1 = k1n+ p1y + q1t, q1 =
i

ǫ2
(

ek1 + e−k1 − 2
)

, (45)

b(1, 1∗) = − ǫ(ek1 + ek
∗

1 )

4(ek1+k∗

1 − 1)(p1 + p∗1 + q1 + q∗1)
, (46)

and p1, k1 are complex constants and η∗1 is the complex conjugate of η1. If we set x = nǫ and k1 = ǫk̃1, we
get the following asymptotic relation,

η1 = k̃1x+ p1y + q1t, (47)

q1 =
i

ǫ2
(ek̃1ǫ + e−k̃1ǫ − 2) = ik̃21 +O(ǫ), (48)

b(1, 1∗) =
−1

2(k̃1 + k̃∗1)(p1 + p∗1 + q1 + q∗1)
+O(ǫ). (49)

This shows that the one-soliton solution of the semi-discrete equation yields the one of the continuous
equation through the continuum limit ǫ → 0.

The one-soliton solutions for un and vn are expressed as

un =
gn
fn

=
eη1

1 + b11eη1+η∗

1
=

1

2
√
b11

eiIm(η1)sech(Re(η) +
ln b11
2

), (50)

vn =
2

ǫ2

(fn+1fn−1

f2
n

− 1
)

=
2

ǫ2

[ (1 + b11e
2Re(η1+k1))(1 + b11e

2Re(η1−k1))

(1 + b11e2Re(η1))2
− 1

]

, (51)

with b11 = b(1, 1∗). Two-soliton solution of the semi-discrete system has the form

fn =1 + b(1, 1∗) exp (η1 + η∗1) + b(1, 2∗) exp (η1 + η∗2)

+ b(2, 1∗) exp (η2 + η∗1) + b(2, 2∗) exp (η2 + η∗2)

+ b(1, 2, 1∗, 2∗) exp (η1 + η2 + η∗1 + η∗2), (52)

gn =exp(η1) + exp(η2) + b(1, 2, 1∗) exp(η1 + η2 + η∗1)

+ b(1, 2, 2∗) exp(η1 + η2 + η∗2), (53)

with the coefficients

b(i, j∗) = − ǫ(eki + ek
∗

j )

4(eki+k∗

j − 1)
(

pi + p∗j + qi + q∗j
) , (54)

b(i, j) = −4(eki − ekj )(pi − pj + qi − qj)

ǫ(eki+kj + 1)
, (55)

b(i∗, j∗) = −
4(ek

∗

i − ek
∗

j )(p∗i − p∗j + q∗i − q∗j )

ǫ(ek
∗

i
+k∗

j + 1)
, (56)

where ηj = kjn+ pjy+ qjt, 1 ≤ i, j ≤ 2 with complex constants k1, k2, p1 and p2 and the dispersion relation

qj = i e
kj+e

−kj−2
ǫ2

. Setting x = nǫ, kj = ǫk̃j, in the continuum limit ǫ → 0, we obtain

ηj = k̃jx+ pjy + qjt, qj → ik̃2j , (57)

b(i, j∗) → − 1

2(k̃i + k̃∗j )
(

pi + p∗j + qi + q∗j
) = a(i, j∗), (58)

b(i, j) → −2(k̃i − k̃j)(pi − pj + qi − qj) = a(i, j), (59)

b(i∗, j∗) → −2(k̃∗i − k̃∗j )(p
∗
i − p∗j + q∗i − q∗j ) = a(i∗, j∗). (60)
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Thus we conclude that the two-soliton solutions of the semi-discrete system reduce to the ones of the
continuous system through the continuum limit ǫ → 0. Substituting (52)-(53) into (34) and (36), we obtain
the two-soliton solutions un and vn respectively.

The exact N−soliton solutions to Eqs.(32) have the form

fn =

(e)
∑

µ=0,1

exp





N
∑

j=1

µjηj +

2N
∑

j=N+1

µjη
∗
j−N +

2N
∑

1≤i<j

µiµjBij



 , (61)

gn =

(o)
∑

ν=0,1

exp





N
∑

j=1

νjηj +

2N
∑

j=N+1

νjη
∗
j−N +

2N
∑

1≤i<j

νiνjBij



 , (62)

where

ηj = kjn+ pjy + qjt, qj = i
(

ekj + e−kj − 2
)

/ǫ2, (63)

η∗j = complex conjugate of ηj , j = 1, 2, · · · , N, (64)

exp(Bi,j) = b(i, j), i < j = 2, 3, · · · , N, (65)

exp(Bi,N+j) = b(i, j∗), i, j = 1, 2, · · · , N, (66)

exp(BN+i,N+j) = b(i∗, j∗), i < j = 2, 3, · · · , N. (67)

Following the proof of one- and two-soliton solution, one can show that the exact N−soliton solutions of the
semi-discrete system reduce to those of the continuous system in the continuum limit.

4 Numerical computations

In this section, two examples will be illustrated to show that the integrable semi-discretization is a powerful
scheme for the numerical solutions of the system (5). They include (1) propagation of the one-soliton solution,
(2) interaction of the 2-soliton solutions. We employ the Crank-Nicholson scheme for the system (42), the
central difference scheme in the y-direction and the Dirichlet condition. We choose the exact one-soliton
solution and two-soliton solutions of the system (5) as the initial and boundary values.

Example 1. one-soliton propagation. The parameters taken for the one-soliton solution are k1 = 0.6 +
0.3i, p1 = −0.25− 0.4i. The number of grid is taken as 250 in an interval of width 25 in the x-domain, which
implies a mesh size of ǫ = 0.1. The number of grid is 400 in an interval of width 40 in the y-direction. The
time-step size is taken as ∆t = 0.05. Figure 1 displays the numerical solution of the one-soliton solution at
t = 4. The L∞ norm is 0.0385 for |u|2 and 0.0422 for v at t = 4. It is noted that the numerical error is
mainly due to the error of the dispersion relation. In other words, even after a fairly long time, the numerical
solution of a soliton preserves its shape very well except for a phase shift.

Example 2. two-soliton interaction. The parameters taken for the two-soliton solution are k1 = 0.6 +
0.3i, k2 = −0.5+ 0.5i, p1 = −0.25− 0.4i, p2 = 0. Figure 2 shows the exact two-soliton solution of |u|2 and v.
Figure 3 displays the numerical solution for the collision of the two-soliton solution. The profiles show that
the collision of two solitons is well simulated.

5 Dynamic properties

In the following discussion, we fix the discrete step ǫ = 1 in the solutions (61)-(62). For b(1, 2) 6= 0 in
(55), namely b(1, 2, 1∗, 2∗) 6= 0 in (52), the two solitons possess four arms and display regular interaction as
shown in figure 4. One can see that the two obliquely moving solitons walk through each other unaffectedly
and keep their original shapes and velocities invariant during the whole propagation. Therefore, the regular
interaction between the solitons is completely elastic. Elastic interaction is found in figure 4. Parameters
are chosen as k1 = 0.6 + 0.3i, k2 = 0.37− 0.02i, p1 = −0.0185− 0.192i, p2 = −0.2406903076− 0.1197442234i.

When b(1, 2, 1∗, 2∗) = 0, that is, b(1, 2) = 0 in (55), resonant interactions can happen. The resonant
interactions in this case are called the ”minus resonance” [36, 37], namely, after the solitons interact with
each other, the amplitudes decrease, sometimes the amplitudes can even reach zero. The resonant situation
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(a) (b)

Figure 1: (Color online) Numerical solution of the one-soliton solution at t = 4.

(a) (b)

Figure 2: (Color online) Exact solution for the collision of the two-soliton solution at t = 4.

(a) (b)

Figure 3: (Color online) Numerical solution for the collision of the two-soliton solution at t = 4.
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here is similar as the continuous case. In order to analyze the amplitudes of the resonant solitons, we rewrite
two-soliton solutions as follows:

u →



















u1 = 1

2
√

b(1,1∗)
eiη1I sech(η1R + ln b(1,1∗)

2 ), η2R → −∞, η1R ∼ 0,

u2 = 1

2
√

b(2,2∗)
eiη2I sech

(

η2R + ln b(2,2∗)
2

)

, η1R → −∞, η2R ∼ 0,

u3 = 0, η1R → +∞, η1R − η2R ∼ 0,

(68)

and in the second case when |b(1, 2)| ≪ 1,

v →



































v1 = 1
4

(

e2k1R + e−2k1R − 2
)

sech2
(

η1 +
ln b(1,1∗)

2

)

, η2R → −∞, η1R ∼ 0,

v2 = 1
4

(

e2k2R + e−2k2R − 2
)

sech2
(

η2 +
b(2,2∗)

2

)

, η1R → −∞, η2R ∼ 0,

v3 =
B1+

√
b(1,2∗)b(2,1∗)b(1,1∗)b(2,2∗)Re

((

ek
∗

1−k∗

2+ek
∗

2−k∗

1−2
)

cosh
(

η1−η2+
1
2 ln b(1,2∗)b(1,1∗)

b(2,1∗)b(2,2∗)

))

(

2
√

b(1,1∗)b(2,2∗) cosh
(

η1R−η2R+ 1
2 ln b(1,1∗)

b(2,2∗)

)

+2
√

b(1,2∗)b(2,1∗) cosh
(

η1I−η2I+
1
2 ln b(1,2∗)

b(2,1∗)

))2 ,

η1R → +∞, η1R − η2R ∼ 0,

(69)

where

B1 = b(1, 1∗)b(2, 2∗)
(

e2k1R−2k2R + e2k2R−2k1R − 2
)

+ b(1, 2∗)b(2, 1∗)
(

e2k1I−2k2I + e2k2I−2k1I − 2
)

.

According to (68) and (69), the interaction between two solitons is investigated in figure 5. Parameters are
chosen as k1 = 0.5 + 0.20i, k2 = 0.37 − 0.02i, p1 = −0.0185− 0.192i, p2 = −0.2406903076− 0.1197442234i.
We can find that the two solitons possess three branches extending to infinity, which is called the triple wave
structure [37]. Therefore, one can see that for the potential |un|2, the amplitude of the third branch is zero.
The third branch has high and steep wave hump for the potential vn. The phenomena can also be found in
the continuous case.

When b(1, 2, 1∗, 2∗) → 0, similar as the continuous case, another type of the resonance is shown in figure
6. The parameters are chosen as k1 = 0.50000001+0.20000001i, k2 = 0.37−0.02i, p1 = −0.0185−0.192i, p2 =
−0.2406903076− 0.1197442234i and now b(1, 2) = 5.222108512 ∗ 10−9 + 4.762014844 ∗ 10−9i. In figure 6(a),
the two solitons generate a small amplitude soliton (in fact the amplitude is close to zero here) in the vicinity
of the crossing point, which is different from those in figure 5(a). It looks like that the two solitons separate
from each other to two parts. But in figure 6(b), the line solitons interact to create a particularly high
and steep wave hump in the vicinity of the crossing point, which is also different from those in figure 5(b).
Compared with the continuous case, the resonant interaction under the situation b(1, 2, 1∗, 2∗) → 0 is similar
to each other.

Three-soliton solutions can be obtained from (61)-(62) by setting N = 3. The elastic interaction among
three solitons is shown in figure 7 with parameters chosen as k1 = 0.6 + 0.3i, k2 = 0.37 − 0.02i, k3 =
0.2 + 0.1i, p1 = −0.0185 − 0.192i, p2 = −0.2406903076− 0.1197442234i, p3 = −0.1 − 0.25i. The resonant
interaction among three solitons is much more complicated than the one of two solitons. Here only one
case is depicted in figure 8 with parameters k1 = 0.5 + 0.2i, k2 = 0.37 + 0.02i, k3 = 0.24 + 0.257i, p1 =
0.0185 + 0.092i, p2 = −0.1734123148+ 0.1642557766i, p3 = −0.6− 0.3i.

6 Conclusion

To summarize, we presented here a semi-discrete integrable version for the (2 + 1)-dimensional system and
derived their N−soliton solutions by using pfaffian technique. Based on the asymptotic behavior of two-
soliton solutions (52)-(53) and graphical analysis, we analyzed the dynamics of the interactions. It is shown
that the regular interaction is completely elastic (i.e., figure 4), and two types of resonance occur between
two solitons, both of which are non-completely elastic (i.e., figure 5 and 6). A triple structure (figure 5) in
the procedure of interactions and a high wave hump in the vicinity of the crossing point (i.e., figure 6), are
observed. Based on the results obtained, it is natural to further consider integrability of the differential-
difference system, such as Bäcklund transformation, Lax pair and infinite conservation laws.
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(a) (b)

Figure 4: (Color online) The elastic interaction of two solitons at t = 20.

(a) (b)

Figure 5: (Color online) Resonant interactions between two solitons at t = −10 when b(1, 2) = 0.
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(a) (b)

Figure 6: (Color online)Resonant interactions between two solitons at t = 20 when b(1, 2) → 0.

(a) (b)

Figure 7: (Color online) Elastic interactions between three solitons at t = 20.
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(a) (b)

Figure 8: (Color online) Resonant interactions between three solitons at t = 20.
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7 Appendix

A pfaffian is the square root of a skew-symmetric determinant of order 2n, and consequently the properties
of pfaffians are closely related to those of determinants [30]. Let A = det(aj,k)(1 ≤ j, k ≤ 2n), where
aj,k = −ak,j. The pfaffian expression of A is

A = [pf(1, 2, 3, · · · , 2n)]2.

For example, if n = 1, we have

∣

∣

∣

∣

0 a12
−a12 0

∣

∣

∣

∣

= a212 = [pf(1, 2)]2. (70)

If n = 2, we get

∣

∣

∣

∣

∣

∣

∣

∣

0 a12 a13 a14
−a21 0 a23 a24
−a31 −a32 0 a34
−a41 −a42 −a43 0

∣

∣

∣

∣

∣

∣

∣

∣

= (a12a34 − a13a24 + a14a23)
2 = [pf(1, 2, 3, 4)]2. (71)

We rewrite original Eqs. (32) as follows

iDtgn •fn + gn+1 •fn−1 + gn−1fn+1 − 2gnfn = 0, (72a)

4(Dt +Dy)fn+1 •fn + gn+1g
∗
n + gng

∗
n+1 = 0, (72b)
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and define the pfaffian elements:

pf(ai, aj) = i
eki − ekj

eki+kj + 1
eηi+ηj , pf(a∗i , a

∗
j ) = −i

ek
∗

i − ek
∗

j

ek
∗

i
+k∗

j + 1
eη

∗

i +η∗

j , (73a)

pf(ai, a
∗
j ) = −i

eki + ek
∗

j

eki+k∗

j − 1
eηi+η∗

j , (73b)

pf(ai, b
∗
j) = (a∗i , bj) = 0, pf(ai, bj) = pf(a∗i , b

∗
j ) = δij , (73c)

pf(bi, bj) = 0, pf(b∗i , b
∗
j) = 0, pf(bi, b

∗
j) =

i

4
(

pi + p∗j + qi + q∗j
) , (73d)

pf(d0, β) = pf(aj , β) = pf(a∗i , β) = pf(b∗j , β) = 0, pf(bi, β) = 1, (73e)

pf(d0, aj) = eηj , pf(d0, a
∗
j ) = eη

∗

j , pf(d0, bi) = pf(d0, b
∗
i ) = 0, (73f)

where δij is the Kronecker delta function and

ηi = kin+ piy + qit, qi = i
(

eki + e−ki − 2
)

, i = 1, 2, · · · , N.

Theorem 7.1. The N -soliton solution to equations (32) can be expressed in the pfaffian form

fn = pf(a1, a2, · · · , aN , a∗1, a
∗
2, · · · , a∗N , b1, b2, · · · , bN , b∗1, b

∗
2, · · · , b∗N ) = pf(•), (74)

gn = pf(d0, β, a1, a2, · · · , aN , a∗1, a
∗
2, · · · , a∗N , b1, b2, · · · , bN , b∗1, b

∗
2, · · · , b∗N) = pf(d0, β, •), (75)

where we use the notation (•) for the sake of simplicity.

Proof. We introduce the pfaffian elements cp, cm as

pf(d0, cp) = 0, pf(cp, ai) =
(

−ieki − 1
)

eηi , pf(cp, a
∗
i ) =

(

iek
∗

i − 1
)

eη
∗

i , (76)

pf(d0, cm) = 0, pf(cm, ai) =
(

ie−ki − 1
)

eηi , pf(cm, a∗i ) =
(

−ie−k∗

i − 1
)

eη
∗

i . (77)

In what follows, we denote pf(•) by (•) for the sake of simplicity. From properties of pfaffians, we get the
following differential and difference formulae for fn and gn,

fn+1 = (d0, cp, •) + (•) , (78a)

gn+1 = i (d0, β, •) + i (cp, β, •) , (78b)

fn−1 = (d0, cm, •) + (•) , (78c)

gn−1 = −i (d0, β, •)− i (cm, β, •) , (78d)

fn,t = − (cm, cp, •) + i (•) + (d0, cm, •)− (d0, cp, •) , (78e)

gn,t = − (d0, cm, cp, β, •)− i (d0, β, •)− (cp, β, •) + (cm, β, •) . (78f)

The substitution of (78) into (72a) implies:

− i (d0, cm, cp, β, •) (•) + i (d0, cm, •) (cp, β, •)
− i (d0, cp, •) (cm, β, •) + i (d0, β, •) (cm, cp, •) = 0,

that vanishes due to the pfaffian identity [30]:

(a1, a2, a3, a4, 1, 2, · · · , 2m)(1, 2, · · · , 2m)

− (a1, a2, 1, 2, · · · , 2m)(a3, a4, 1, 2, · · · , 2m)

+ (a1, a3, 1, 2, · · · , 2m)(a2, a4, 1, 2, · · · , 2m)

− (a1, a4, 1, 2, · · · , 2m)(, a2, a31, 2, · · · , 2m)

= 0. (79)

Thus we proved that (74)-(75) satisfy Eq.(72a). Furthermore, in order to confirm that (74)-(75) satisfy
(72b), we introduce a new auxiliary element β∗ and define new pfaffian entries as following,

(d0, β
∗) = (aj , β

∗) = (a∗i , β
∗) = (bj , β

∗) = 0, (b∗i , β
∗) = 1. (80)
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It is easy to verify that

fn,t + fn,y = − i

4
(β, β∗, •) , (81a)

fn+1,t + fn+1,y = − i

4
[(β, β∗, d0, cp, •) + (β, β∗, •)] , (81b)

g∗n = (d0, β
∗, •) , (81c)

g∗n+1 = −i (d0, β
∗, •)− i (cp, β

∗, •) . (81d)

(see the appendix in [38] for reference). By substituting (81) and (78) into (72b), Eq. (72b) is reduced to
the pfaffian identity

i
[

(d0, cp, •) + (•)
]

(β, β∗, •)− i
[

(β, β∗, d0, cp, •) + (β, β∗, •)
]

(•)

+
[

i (d0, β, •) + i (cp, β, •)
]

(d0, β
∗, •)−

[

i (d0, β
∗, •) + i (cp, β

∗, •)
]

(d0, β, •)

= −i (β, β∗, d0, cp, •) (•) + i (d0, cp, •) (β, β∗, •)
+ i (cp, β, •) (d0, β∗, •)− i (cp, β

∗, •) (d0, β, •)
= 0. (82)

Thus the bilinear Eq. (72b) is established and so the theorem is proven.
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