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We investigate the time evolution of lead changes within individual games of competitive team
sports. Exploiting ideas from the theory of random walks, the number of lead changes within a
single game follows a Gaussian distribution. We show that the probability that the last lead change
and the time of the largest lead size are governed by the same arcsine law, a bimodal distribution
that diverges at the start and at the end of the game. We also determine the probability that a
given lead is “safe” as a function of its size L and game time t. Our predictions generally agree
with comprehensive data on more than 1.25 million scoring events in roughly 40,000 games across
four professional or semi-professional team sports, and are more accurate than popular heuristics
currently used in sports analytics.
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I. INTRODUCTION

Competitive team sports, including, for example,
American football, soccer, basketball and hockey, serve as
model systems for social competition, a connection that
continues to foster intense popular interest. This passion
stems, in part, from the apparently paradoxical nature
of these sports. On one hand, events within each game
are unpredictable, suggesting that chance plays an im-
portant role. On the other hand, the athletes are highly
skilled and trained, suggesting that differences in ability
are fundamental. This tension between luck and skill is
part of what makes these games exciting for spectators
and it also contributes to sports being an exemplar for
quantitative modeling, prediction and human decision-
making [1–4], and for understanding broad aspects of so-
cial competition and cooperation [5–10].

In a competitive team sport, the two teams vie to pro-
duce events (“goals”) that increase their score, and the
team with the higher score at the end of the game is
the winner. (This structure is different from individual
sports like running, swimming and golf, or judged sports,
like figure skating, diving, and dressage.) We denote by
X(t) the instantaneous difference in the team scores. By
viewing game scoring dynamics as a time series, many
properties of these competitions may be quantitatively
studied [11, 12]. Past work has investigated, for exam-
ple, the timing of scoring events [13–19], long-range cor-
relations in scoring [20], the role of timeouts [21], streaks
and “momentum” in scoring [17, 22–26], and the impact
of spatial positioning and playing field design [27, 28].

In this paper, we theoretically and empirically inves-
tigate a simple yet decisive characteristic of individual
games: the times in a game when the lead changes. A
lead change occurs whenever the score difference X(t)
returns to 0. Part of the reason for focusing on lead
changes is that these are the points in a game that are
often the most exciting. Although we are interested in
lead-change dynamics for all sports, we first develop our

mathematical results and compare them to data drawn
from professional basketball, where the agreement be-
tween theory and data is the most compelling. We then
examine data for three other major competitive Amer-
ican team sports: college and professional football, and
professional hockey, and we provide some commentary as
to their differences and similarities.

Across these sports, we find that many of their statis-
tical properties are explained by modeling the evolution
of the lead X as a simple random walk. More strikingly,
seemingly unrelated properties of lead statistics, specif-
ically, the distribution of the times t: (i) for which one
team is leading O(t), (ii) for the last lead change L(t),
and (iii) when the maximal lead occurs M(t), are all
described by the same celebrated arcsine law [29–31]:

O(t) = L(t) =M(t) =
1

π

1√
t(T − t)

, (1)

for a game that lasts a time T . These three results are,
respectively, the first, second, and third arcsine laws.

Our analysis is based on a comprehensive data set of all
points scored in league games over multiple consecutive
seasons each in the National Basketball Association (ab-
breviated NBA henceforth), all divisions of NCAA col-
lege football (CFB), the National Football League (NFL),
and the National Hockey League (NHL) [32]. These data
cover 40,747 individual games and comprise 1,306,515
individual scoring events, making it one of the largest
sports data sets studied. Each scoring event is annotated
with the game clock time t of the event, its point value,
and the team scoring the event. For simplicity, we ignore
events outside of regulation time (i.e., overtime). We also
combine the point values of events with the same clock
time (such as a successful foul shot immediately after a
regular score in basketball). Table I summarizes these
data and related facts for each sport.
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Num. Num. scoring Duration Mean events Mean pts. Persistence Mean num. Frac. with no
Sport Seasons games events T (sec) per game N per event s p lead changes N lead changes

NBA 2002–2010 11,744 1,098,747 2880 93.56 2.07 0.360 9.37 0.063

CFB 2000–2009 14,586 123,448 3600 8.46 5.98 0.507 1.23 0.428

NFL 2000–2009 2,654 20,561 3600 7.75 5.40 0.457 1.43 0.348

NHL 2000–2009 11,763 63,759 3600 5.42 1.00 — 1.02 0.361

TABLE I. Summary of the empirical game data for the team sports considered in this study, based on regular-season games
and scoring events within regulation time.

Basketball as a model competitive system

To help understand scoring dynamics in team sports
and to set the stage for our theoretical approach, we out-
line basic observations about NBA regular-season games.
In an average game, the two teams combine to score an
average of 93.6 baskets (Table I), with an average value
of 2.07 points per basket (the point value greater than
2 arises because of foul shots and 3-point baskets). The
average scores of the winning and losing teams are 102.1
and 91.7 points, respectively, so that the total average
score is 193.8 points in a 48-minute game (T =2880 sec-
onds). The rms score difference between the winning and
losing teams is 13.15 points. The high scoring rate in bas-
ketball provides a useful laboratory to test our random-
walk description of scoring (Fig. 1).
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FIG. 1. Evolution of the score difference in a typical NBA
game: the Denver Nuggets vs. the Chicago Bulls on 26
November 2010. Dots indicate the four lead changes in the
game. The Nuggets led for 2601 out of 2880 total seconds and
won the game by a score of 98–97.

Scoring in professional basketball has several addi-
tional important features [18, 19]:

1. Nearly constant scoring rate throughout the game,
except for small reductions at the start of the game
and the second half, and a substantial enhancement
in the last 2.5 minutes.

2. Essentially no temporal correlations between suc-

cessive scoring events.

3. Intrinsically different team strengths. This feature
may be modeled by a bias in the underlying random
walk that describes scoring.

4. Scoring antipersistence. Since the team that scores
cedes ball possession, the probability that this team
again scores next occurs with probability p < 1

2 .

5. Linear restoring bias. On average, the losing team
scores at a slightly higher rate than the winning
team, with the rate disparity proportional to the
score difference.

A major factor for the scoring rate is the 24-second
“shot clock,” in which a team must either attempt a shot
that hits the rim of the basket within 24 seconds of gain-
ing ball possession or lose its possession. The average
time interval between scoring events is ∆t = 2880/93.6 =
30.8 seconds, consistent with the 24-second shot clock. In
a random walk picture of scoring, the average number of
scoring events in a game, N=93.6, together with s=2.07
points for an average event, would lead to an rms dis-
placement of xrms =

√
Ns2. However, this estimate does

not account for the antipersistence of basketball scoring.
Because a team that scores immediately cedes ball pos-
session, the probability that this same team scores next
occurs with probability p ≈ 0.36. This antipersistence
reduces the diffusion coefficient of a random walk by a
factor p/(1 − p) ≈ 0.562 [18, 33]. Using this, we in-
fer that the rms score difference in an average basketball
game should be ∆Srms ≈

√
pNs2/(1− p) ≈ 15.01 points.

Given the crudeness of this estimate, the agreement with
the empirical value of 13.15 points is satisfying.

A natural question is whether this final score difference
is determined by random-walk fluctuations or by dispar-
ities in team strengths. As we now show, for a typi-
cal game, these two effects have comparable influence.
The relative importance of fluctuations to systematics in
a stochastic process is quantified by the Péclet number
Pe≡vL/2D [34], where v is the bias velocity, L = vT is a
characteristic final score difference, and D is the diffusion
coefficient. Let us now estimate the Péclet number for
NBA basketball. Using ∆Srms = 13.15 points, we infer a
bias velocity v = 13.15/2880 ≈ 0.00457 points/sec under
the assumption that this score difference is driven only
by the differing strengths of the two competing teams.
We also estimate the diffusion coefficient of basketball as
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D = p
1−p (s2/2∆t) ≈ 0.0391 (points)2/sec. With these

values, the Péclet number of basketball is

Pe =
vL

2D
≈ 0.77 . (2)

Since the Péclet number is of the order of 1, systematic
effects do not predominate, which accords with common
experience—a team with a weak win/loss record on a
good day can beat a team with a strong record on a bad
day. Consequently, our presentation on scoring statis-
tics is mostly based on the assumption of equal-strength
teams. However, we also discuss the case of unequal team
strengths for logical completeness.

As we will present below, the statistical properties of
lead changes and lead magnitudes, and the probability
that a lead is “safe,” i.e., will not be erased before the
game is over, are well described by an unbiased random-
walk model. The agreement between the model predic-
tions and data is closest for basketball. For the other
professional sports, some discrepancies with the random-
walk model arise that may help identify alternative mech-
anisms for scoring dynamics.

II. NUMBER OF LEAD CHANGES AND
FRACTION OF TIME LEADING

Two simple characterizations of leads are: (i) the aver-
age number of lead changesN in a game, and (ii) the frac-
tion of game time that a randomly selected team holds
the lead. We define a lead change as an event where the
score difference returns to zero (i.e., a tie score), but do
not count the initial score of 0–0 as lead change. We
estimate the number of lead changes by modeling the
evolution of the score difference as an unbiased random
walk.

Using N = 93.6 scoring events per game, together
with the well-known probability that an N -step random
walk is at the origin, the random-walk model predicts√

2N/π ≈ 8 for a typical number of lead changes. Be-
cause of the antipersistence of basketball scoring, the
above is an underestimate. More properly, we must ac-
count for the reduction of the diffusion coefficient of bas-
ketball by a factor of p/(1 − p) ≈ 0.562 compared to
an uncorrelated random walk. This change increases the
number of lead changes by a factor 1/

√
0.562 ≈ 1.33,

leading to roughly 10.2 lead changes. This crude esti-
mate is close to the observed 9.4 lead changes in NBA
games (Table I).

For the distribution of the number of lead changes,
we make use of the well-known result that the probabil-
ity G(m,N) that a discrete N -step random walk makes
m returns to the origin asymptotically has the Gaussian

form G(m,N) ∼ e−m2/2N [35–37]. However, the antiper-
sistence of basketball scoring leads to N being replaced
by N 1−p

p , so that the probability of making m returns to
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FIG. 2. Distribution of the average number of lead changes
per game in professional basketball.

the origin is given by

G(m,N) '

√
2p

πN(1− p)
e−m

2p/[2N(1−p)] . (3)

Thus G(m,N) is broadened compared to the uncorre-
lated random-walk prediction because lead changes now
occur more frequently. The comparison between the em-
pirical NBA data for G(m,N) and a simulation in which
scoring events occur by an antipersistent Poisson process
(with average scoring rate of one event every 30.8 sec-
onds), and Eq. (3) is given in Fig. 2.

For completeness, we now analyze the statistics of lead
changes for unequally matched teams. Clearly, a bias
in the underlying random walk for scoring events de-
creases the number of lead changes. We use a suitably
adapted continuum approach to estimate the number of
lead changes in a simple way. We start with the proba-
bility that biased diffusion lies in a small range ∆x about
x = 0:

∆x√
4πDt

e−v
2t/4D .

Thus the local time that this process spends within ∆x
about the origin up to time t is

T (t) = ∆x

∫ t

0

dt√
4πDt

e−v
2t/4D

=
∆x

v
erf
(√

v2t/4D
)
, (4)

where we used w =
√
v2t/4D to transform the first line

into the standard form for the error function. To con-
vert this local time to number of events, N (t), that the
walk remains within ∆x, we divide by the typical time
∆t for a single scoring event. Using this, as well as the
asymptotics of the error function, we obtain the limiting
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FIG. 3. The distribution of the time that a given team holds
the lead, O(t).

behaviors:

N (t) =
T (t)

∆t
∼

{√
v20t/πD v2t/4D � 1

v0/v v2t/4D � 1 ,
(5)

with v0 = ∆x/∆t and ∆x the average value of a single
score (2.07 points). Notice that v2T/4D = Pe/2, which,
from Eq. (2), is roughly 0.38. Thus, for the NBA, the first
line of Eq. (5) is the realistic case. This accords with what
we have already seen in Fig. 2, where the distribution in
the number of lead changes is accurately accounted for
by an unbiased, but antipersistent random walk.

Another basic characteristic of lead changes is the
amount of game time that one team spends in the lead,
O(t), a quantity that has been previously studied for bas-
ketball [18]. Strikingly, the probability distribution for
this quantity is bimodal, in which O(t) sharply increases
as the time approaches either 0 or T , and has a minimum
when the time is close to T/2. If the scoring dynamics is
described by an unbiased random walk, then the proba-
bility that one team leads for a time t in a game of length
T is given by the first arcsine law of Eq. (1) [37, 38].
Figure 3 compares this theoretical result with basketball
data. Also shown are two types of synthetically gener-
ated data. For the “homogeneous Poisson process”, we
use the game-averaged scoring rate to generate synthetic
basketball-game time series of scoring events. For the
“inhomogeneous Poisson process”, we use the empirical
instantaneous scoring rate for each second of the game to
generate the synthetic data (Fig. 5). As we will justify
in the next section, we do not incorporate the antiper-
sistence of basketball scoring in these Poisson processes
because this additional feature minimally influences the
distributions that follow the arcsine law (O, L and M).
The empirically observed increased scoring rate at the
end of each quarter [18, 19], leads to anomalies in the
data for O(t) that are accurately captured by the inho-
mogeneous Poisson process.

III. TIME OF THE LAST LEAD CHANGE

We now determine when the last lead change occurs.
For the discrete random walk, the probability that the
last lead occurs after N steps can be solved by exploiting
the reflection principle [38]. Here we solve for the cor-
responding distribution in continuum diffusion because
this formulation is simpler and we can readily general-
ize to unequal-strength teams. While the distribution of
times for the last lead change is well known [29, 30], our
derivation is intuitive and elementary.

score
difference X

t T

FIG. 4. Schematic score evolution in a game of time T . The
subsequent trajectory after the last lead change must always
be positive (solid) or always negative (dashed).

For the last lead change to occur at time t, the score
difference, which started at zero at t = 0, must again
equal zero at time t (Fig. 4). For equal-strength teams,
the probability for this event is simply the Gaussian prob-
ability distribution of diffusion evaluated at x=0:

P (0, t) =
1√

4πDt
. (6)

To guarantee that it is the last lead change that occurs at
time t, the subsequent evolution of the score difference,
cannot cross the origin between times t and T (Fig. 4). To
enforce this constraint, the remaining trajectory between
t and T must therefore be a time-reversed first-passage
path from an arbitrary final point (X,T ) to (0, t). The
probability for this event is the first-passage probabil-
ity [37]

F (X,T−t) =
X√

4πD(T−t)3
e−X

2/[4D(T−t)] . (7)

With these two factors, the probability that the last
lead change occurs at time t is given by

L(t) = 2

∫ ∞
0

dX P (0, t)F (X,T−t)

= 2

∫ ∞
0

dX√
4πDt

X√
4πD(T−t)3

e−X
2/[4D(T−t)] . (8)

The leading factor 2 appears because the subsequent tra-
jectory after time t can equally likely be always positive
or always negative. The integration is elementary and
the result is the classic second arcsine law [29, 30] given
in Eq. (1). The salient feature of this distribution is that
the last lead change in a game between evenly matched
teams is most likely to occur either near the start or the
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FIG. 5. (upper) Empirical probability that a scoring event
occurs at time t, with the game-average scoring rate shown
as a horizontal line. The data is aggregated in bins of 10
seconds each; the same binning is used in Fig. 14. (lower)
Distribution of times L(t) for the last lead change.
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FIG. 6. The distribution of time for the last lead change,
L(f), as a function of the fraction of steps f for a 94-step
random walk with persistence parameter p = 0.36 as in the
NBA (◦) and p= 0.25 corresponding to stronger persistence
(4). The smooth curve is the arcsine law for p = 0.5 (no
antipersistence).

end of a game, while a lead change in the middle of a
game is less likely.

As done previously for the distribution of time O(t)
that one team is leading, we again generate a synthetic
time series that is based on a homogeneous and an inho-
mogeneous Poisson process for individual scoring events
without antipersistence. From these synthetic histories,
we extract the time for the last lead and its distribution.
The synthetic inhomogeneous Poisson process data ac-
counts for the end-of-quarter anomalies in the empirical
data with remarkable accuracy (Fig. 5).

Let us now investigate the role of scoring antipersis-
tence on the distribution L(t). While the antipersistence
substantially affects the number of lead changes and its
distribution, antipersistence has a barely perceptible ef-
fect on L(t). Figure 6 shows the probability L(f) that
the last lead change occurs when a fraction f of the steps
in an N -step antipersistent random walk have occurred,
with N = 94, the closest even integer to the observed
value N = 93.56 of NBA basketball. For the empirical
persistence parameter of basketball, p = 0.36, there is
little difference between L(f) as given by the arcsine law
and that of the data, except at the first two and last two
steps of the walk. Similar behavior arises for the more
extreme case of persistence parameter p = 0.25. Thus
basketball scoring antipersistence plays little role in de-
termining the time at which the last lead change occurs.

We may also determine the role of a constant bias on
L(t), following the same approach as that used for un-
biased diffusion. Now the analogues of Eqs. (6) and (7)
are [37],

P (0, v, t) =
1√

4πDt
e−v

2t/4D

F (X, v, t) =
X√

4πDt3
e−(X+vt)2/4Dt .

(9)

Similarly, the analogue of Eq. (8) is

L(t) =

∫ ∞
0

dX P (0, t)
[
F (X, v, T−t)+F (X,−v, T−t)

]
.

(10)

In Eq. (9) we must separately consider the situations
where the trajectory for times beyond t is strictly posi-
tive (stronger team ultimately wins) or strictly negative
(weaker team wins). In the former case, the time-reversed
first-passage path from (X,T ) to (0, t) is accomplished in
the presence of a positive bias +v, while in the latter case,
this time-reversed first passage occurs in the presence of
a negative bias −v.

Explicitly, Eq. (10) is

L(t) =
e−v

2t/4D

√
4πDt

∫ ∞
0

dX
X√

4πD(T−t)3

×
{
e−(X+a)2/b + e−(X−a)

2/b
}
, (11)

with a = v(T − t) and b = 4D(T − t). Straightforward
calculation gives

L(t) =
e−v

2t/4D

π
√
t(T−t)

{√
πv2(T−t)

4D
erf

(√
v2(T−t)

4D

)
+e−v

2(T−t)/4D
}
. (12)

This form for L(t) is again bimodal (Fig. 7), as in the
arcsine law, but the last lead change is now more likely
to occur near the beginning of the game. This asym-
metry arises because once a lead is established, which is
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FIG. 7. The distribution L(t) for non-zero bias (Eq. (12)).
The diffusion coefficient is the empirical value D = 0.0391,
and bias values are: v = 0.002, v = 0.004, and v = 0.008 (in-
creasingly asymmetric curves). The central value of v roughly
corresponds to average NBA game-scoring bias if diffusion is
neglected.

probable because of the bias, the weaker team is unlikely
to achieve another tie score.

More germane to basketball, we should average L(t)
over the distribution of biases in all NBA games. For
this averaging, we use the observation that many sta-
tistical features of basketball are accurately captured by
employing a Gaussian distribution of team strengths with
mean value 1 (since the absolute strength is immaterial),
and standard deviation of approximately 0.09 [18]. This
parameter value was inferred by using the Bradley-Terry
competition model [39], in which teams of strengths S1

and S2 have scoring rates S1/(S1 +S2) and S2/(S1 +S2),
respectively, to generate synthetic basketball scoring time
series. The standard deviation 0.09 provided the best
match between statistical properties that were computed
from the synthetic time series and the empirical game
data [18]. From the distribution of team strengths, we
then infer a distribution of biases for each game and fi-
nally average over this bias distribution to obtain the
bias-averaged form of L(t). The skewness of the resulting
distribution is minor and it closely matches the bias-free
form of L(t) given in Fig. 5. Thus, the bias of individual
games appears to again play a negligible role in statisti-
cal properties of scoring, such as the distribution of times
for the last lead change.

IV. TIME OF THE MAXIMAL LEAD

We now ask when the maximal lead occurs in a
game [40]. If the score difference evolves by unbiased
diffusion, then the standard deviation of the score differ-
ence grows as

√
t. Naively, this behavior might suggest

that the maximal lead occurs near the end of a game.
In fact, however, the probabilityM(t) that the maximal

lead occurs at time t also obeys the arcsine law Eq. (1).
Moreover, the arcsine laws for the last lead time and for
the maximal lead time are equivalent [29–31], so that
the largest lead in a game between two equally-matched
teams is most likely to occur either near the start or near
the end of a game.

M

difference X

T

score

t

FIG. 8. The maximal lead (which could be positive or nega-
tive) occurs at time t.

For completeness, we sketch a derivation for the dis-
tribution M(t) by following the same approach used to
find L(t). Referring to Fig. 8, suppose that the maxi-
mal lead M occurs at time t. For M to be a maximum,
the initial trajectory from (0, 0) to (M, t) must be a first-
passage path, so that M is never exceeded prior to time
t. Similarly, the trajectory from (M, t) to the final state
(X,T ) must also be a time-reversed first-passage path
from (X,T ) to (M, t), but with X < M , so that M is
never exceeded for all times between t and T .
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FIG. 9. Distribution of times M(t) for the maximal lead.

Based on this picture, we may write M(t) as

M(t) = A

∫ ∞
0

dM F (M, t)

∫ M

−∞
dX F (X−M,T−t)

= A

∫ ∞
0

dM
M√

4πDt3
e−M

2/4Dt

×
∫ M

−∞
dX

(M−X)√
4πD(T−t)3

e−(M−X)2/4D(T−t) .

(13)
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The constant A is determined by the normalization con-

dition
∫ T
0
M(t)dt=1. Performing the above two elemen-

tary integrations yields again the arcsine law of Eq. (1).
Figure 9 compares the arcsine law prediction with em-
pirical data from the NBA.

V. PROBABILITY THAT A LEAD IS SAFE

Finally, we turn to the question of how safe is a lead
of a given size at any point in a game (Fig. 10), i.e., the
probability that the team leading at time t will ultimately
win the game. The probability that a lead of size L is
safe when a time τ remains in the game is, in general,

Q(L, τ) = 1−
∫ τ

0

F (L, t) dt . (14)

where F (L, t) again is the first-passage probability
[Eqs. (7) and (9)] for a diffusing particle, which starts at
L, to first reach the origin at time t. Thus the right-hand
side is the probability that the lead has not disappeared
up to time τ .

τ
t

L

score

difference

FIG. 10. One team leads by L points when a time τ is left in
the game.

First consider evenly-matched teams, i.e., bias velocity
v = 0. We substitute u = L/

√
4Dt in Eq. (14) to obtain

Q(L, τ) = 1− 2√
π

∫ ∞
z

e−u
2

du = erf(z) . (15)

Here z ≡ L/
√

4Dτ is the dimensionless lead size. When
z � 1, either the lead is sufficiently small or sufficient
game time remains that a lead of scaled magnitude z is
likely to be erased before the game ends. The opposite
limit of z � 1 corresponds to either a sufficiently large
lead or so little time remaining that this lead likely per-
sists until the end of the game. We illustrate Eq. (15)
with a simple numerical example from basketball. From
this equation, a lead of scaled size z ≈ 1.163 is 90% safe.
Thus a lead of 10 points is 90% safe when 7.87 minutes
remain in a game, while an 18-point lead at the end of
the first half is also 90% safe [41].

Figure 11 compares the prediction of Eq. (15) and the
empirical basketball data. We also show the prediction
of the heuristic developed by basketball analyst and his-
torian Bill James [42]. This rule is mathematically given
by: Q(L, τ) = min

{
1, 1τ (L−3+δ/2)2

}
, where δ = +1 if

the leading team has ball possession and δ = −1 oth-
erwise. The figure shows the predicted probability for
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FIG. 11. Probability that a lead is safe versus the dimen-
sionless lead size z = L/

√
4Dτ for NBA games, showing the

prediction from Eq. (15), the empirical data, and the mean
prediction for Bill James’ well-known “safe lead” heuristic.

δ = {−1, 0,+1} (solid curve for central value, dashed oth-
erwise) applied to all of the empirically observed (L, τ)
pairs, because ball possession is not recorded in our data.
Compared to the random walk model, the heuristic is
quite conservative (assigning large safe lead probabilities
only for dimensionless leads z > 2) and has the wrong
qualitative dependence on z. In contrast, the random
walk model gives a maximal overestimate of 6.2% for the
safe lead probability over all z, and has the same quali-
tative z dependence as the empirical data.

For completeness, we extend the derivation for the safe
lead probability to unequal-strength teams by including
the effect of a bias velocity v in Eq. (14):

Q(L, τ) = 1−
∫ τ

0

L√
4πDt3

e−(L+vt)
2/4Dt dt

= 1− e−vL/2D
∫ τ

0

L√
4πDt3

e−L
2/4Dt−v2t/4D dt ,

(16)

where the integrand in the first line is the first-passage
probability for non-zero bias. Substituting u = L/

√
4Dt

and using again the Péclet number Pe = vL/2D, the
result is

Q(L, τ) = 1− 2√
π
e−Pe

∫ z

0

e−u
2−Pe2/4u2

du

= 1− 1
2

[
e−2Peerfc

(
z−Pe

2z

)
+erfc

(
z+
Pe
2z

)]
.

(17)

When the stronger team is leading (Pe > 0), essentially
any lead is safe for Pe & 1, while for Pe < 1, the safety
of a lead depends more sensitively on z (Fig. 12(a)).
Conversely, if the weaker team happens to be leading
(Pe < 0), then the lead has to be substantial or the time
remaining quite short for the lead to be safe (Fig. 12(b)).
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(a)

(b)

FIG. 12. Probability that a lead is safe versus z = L/
√

4Dτ
for: (a) the stronger team is leading for Pe = 1

5
, 1

2
and 1, and

(b) the weaker team is leading for Pe = − 2
5
, − 4

5
and − 6

5
. The

case Pe = 0 is also shown for comparison.

In this regime, the asymptotics of the error function gives

Q(L, τ) ∼ e−Pe
2/4z2 for z < |Pe|/2, which is vanishingly

small. For values of z in this range, the lead is essentially
never safe.

VI. LEAD CHANGES IN OTHER SPORTS

We now consider whether our predictions for lead
change statistics in basketball extend to other sports,
such as college American football (CFB), professional
American football (NFL), and professional hockey
(NHL) [43]. These sports have the following common-
alities with basketball [19]:

1. Two teams compete for a fixed time T , in which
points are scored by moving a ball or puck into a
special zone in the field.

2. Each team accumulates points during the game and
the team with the largest final score is the winner
(with sport-specific tiebreaking rules).

3. A roughly constant scoring rate throughout the
game, except for small deviations at the start and
end of each scoring period.

4. Negligible temporal correlations between successive
scoring events.

5. Intrinsically different team strengths.

6. Scoring antipersistence, except for hockey.

These similarities suggest that a random-walk model
should also apply to lead change dynamics in these
sports.

However, there are also points of departure, the most
important of which is that the scoring rate in these sports
is between 10–25 times smaller than in basketball. Be-
cause of this much lower overall scoring rate, the dimin-
ished rate at the start of games is much more apparent
than in basketball (Fig. 14). This longer low-activity
initial period and other non-random-walk mechanisms
cause the distributions L(t) and M(t) to visibly deviate
from the arcsine laws (Figs. 14 and 15). A particularly
striking feature is that L(t) and M(t) approach zero for
t → 0. In contrast, because the initial reduced scoring
rate occurs only for the first 30 seconds in NBA games,
there is a realu, but barely discernible deviation of the
data for L(t) from the arcsine law (Fig. 5).

Finally, the safe lead probability given in Eq. (15)
qualitatively matches the empirical data for football and
hockey (Fig. 16), with the hockey data being closest to
the theory [44]. For both basketball and hockey, the ex-
pression for the safe lead probability given in Eq. (15) is
quantitatively accurate. For football, a prominent fea-
ture is that small leads are much more safe that what is
predicted by our theory. This trend is particularly no-
ticeable in the CFB. One possible explanation of this be-
havior is that in college football, there is a relatively wide
disparity in team strengths, even in the most competitive
college leagues. Thus a small lead size can be quite safe
if the two teams happen to be significantly mismatched.

For American football and hockey, it would be use-
ful to understand how the particular structure of these
sports would modify a random walk model. For instance,
in American football, the two most common point values
for scoring plays are 7 (touchdown plus extra point) and
3 (field goal). The random-walk model averages these
events, which will underestimate the likelihood that a few
high-value events could eliminate what otherwise seems
like a safe lead. Moreover, in football the ball is moved in-
crementally down the field through a series of plays. The
team with ball possession has four attempts to move the
ball a specific minimum distance (10 yards) or else lose
possession; if it succeeds, that team retains possession
and repeats this effort to further move the ball. As a
result, the spatial location of the ball on the field likely
plays an important role in determining both the prob-
ability of scoring and the value of this event (field goal
versus touchdown). In hockey, players are frequently ro-
tated on and off the ice so that a high intensity of play
is maintained throughout the game. Thus the pattern
of these substitutions— between potential all-star play-
ers and less skilled “grinders”—can change the relative
strength of the two teams every few minutes.
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FIG. 13. Distribution of the average number of lead changes per game, for CFB, NFL, and NHL, showing the simple prediction
of Eq. (3), the empirical data, and the results of a simulation in which scoring events occur by a Poisson process with the
game-specific scoring rate.
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FIG. 15. Distribution of times M(t) for the maximal lead, for games of CFB, NFL, and NHL.

VII. CONCLUSIONS

A model based on random walks provides a remarkably
good description for the dynamics of scoring in competi-
tive team sports. From this starting point, we found that
the celebrated arcsine law of Eq. (1) closely describes the
distribution of times for: (i) one team is leading O(t)
(first arcsine law), (ii) the last lead change in a game
L(t) (second arcsine law), and (iii) when the maximal
lead in the game occurs M(t) (third arcsine law). Strik-
ingly, these arcsine distributions are bimodal, with peaks
for extremal values of the underlying variable. Thus both

the time of the last lead and the time of the maximal lead
are most likely to occur at the start or the end of a game.

These predictions are in accord with the empirically
observed scoring patterns within more than 40,000 games
of professional basketball, American football (college or
professional), and professional hockey. For basketball,
in particular, the agreement between the data and the
theory is quite close. All the sports also exhibit scor-
ing anomalies at the end of each scoring period, which
arise from a much higher scoring rate around these times
(Figs. 5 and 14). For football and hockey, there is also
a substantial initial time range of reduced scoring that
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FIG. 16. Probability that a lead is safe, for CFB, NFL, and NHL, versus the dimensionless lead z = L/
√

4Dτ . Each figure
shows the prediction from Eq. (15) and the corresponding empirical pattern.

is reflected in L(t) and M(t) both approaching zero as
t → 0. Football and hockey also exhibit other small but
systematic deviations from the second and third arcsine
laws that remain unexplained.

The implication for basketball, in particular, is that a
typical game can be effectively viewed as repeated coin-
tossings, with each toss subject to the features of antiper-
sistence, an overall bias, and an effective restoring force
that tends to shrink leads over time (which reduces the
likelihood of a blowout). These features represent incon-
sequential departures from a pure random-walk model.
Cynically, our results suggest that one should watch only
the first few and last few minutes of a professional bas-
ketball game; the rest of the game is as predictable as
watching repeated coin tossings. On the other hand, the
high degree of unpredictability of events in the middle
of a game may be precisely what makes these games so
exciting for sports fans.

The random-walk model also quantitatively predicts
the probability that a specified lead of size L with t sec-
onds left in a game is “safe,” i.e., will not be reversed
before the game ends. Our predictions are quantitatively
accurate for basketball and hockey. For basketball, our
approach significantly outperforms a popular heuristic
for determining when a lead is safe. For football, our pre-
diction is marginally less accurate, and we postulated a
possible explanation for why this inaccuracy could arise
in college football, where the discrepancy between the
random-walk model and the data is the largest.

Traditional analyses of sports have primarily focused
on the composition of teams and the individual skill lev-
els of the players. Scoring events and game outcomes are
generally interpreted as evidence of skill differences be-
tween opposing teams. The random walk view that we
formalize and test here is not at odds with the more tra-
ditional skill-based view. Our perspective is that team
competitions involve highly skilled and motivated players
who employ well-conceived strategies. The overarching
result of such keen competition is to largely negate sys-
tematic advantages so that all that remains is the residual

stochastic element of the game. The appearance of the
arcsine law, a celebrated result from the theory of ran-
dom walks, in the time that one team leads, the time
of the last lead change, and the time at which the maxi-
mal lead occurs, illustrates the power of the random-walk
view of competition. Moreover, the random-walk model
makes surprisingly accurate predictions of whether a cur-
rent lead is effectively safe, i.e., will not be overturned
before the game ends, a result that may be of practical
interest to sports enthusiasts.

The general agreement between the random-walk
model for lead-change dynamics across four different
competitive team sports suggests that this paradigm has
much to offer for the general issue of understanding hu-
man competitive dynamics. Moreover, the discrepancies
between the empirical data and our predictions in sports
other than basketball may help identify alternative mech-
anisms for scoring dynamics that do not involve random
walks. Although our treatment focused on team-level
statistics, another interesting direction for future work
would be to focus on understanding how individual be-
haviors within such social competitions aggregate up to
produce a system that behaves effectively like a simple
random walk. Exploring these and other hypotheses, and
developing more accurate models for scoring dynamics,
are potential fruitful directions for further work.
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[29] P. Lévy, “Sur certains processes stochastiqnes homo-
genes,” Comp. Math. 7, 283–339 (1939).
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