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The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or 
molecules are ubiquitous metrics for extracting parameters that describe the object’s motion, but they are 
both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For 
the simple case of pure Brownian motion, the effects of localization error due to photon statistics (“static 
error”) and motion blur due to finite exposure time (“dynamic error”) on the MSD and VAC are already 
routinely treated. However, particles moving through complex environments such as cells, nuclei, or 
polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently 
treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly 
accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with 
a Fractional Brownian Motion (FBM). We compare these data to analytical forms of the expected values of 
the MSD and VAC for a general FBM in the presence of these errors. 
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I. INTRODUCTION 
 

Camera-based particle tracking has been an important 
tool for the study of biophysical systems and other 
condensed-matter environments at the single-
molecule/particle level for decades. A particle to be tracked 
is most often labeled with a fluorescent or scattering marker 
and imaged with a wide-field microscope over time. The 
particle’s spatial trajectory is thus recorded and further 
analysis can reveal properties of both the tracer and the 
surrounding medium. In biology this has been applied to 
the study of molecular motors [1], motion in membranes [2-
-5], and motion throughout the 3D volume of the cytoplasm 
[6--9] or nucleoplasm [10--12], to name a few instances.  

The most ubiquitous statistical measure used to analyze 
single-particle tracking data is the mean-squared 
displacement (MSD). Arguably the next most important 
metric is the velocity autocorrelation (VAC) function, and 
more sophisticated measures such as those based on 
maximum likelihood [13] or covariance-based estimation 
[14] are closely related to the VAC. In a real experiment, 
one cannot directly measure the true MSD or VAC but 
rather must estimate them, either by calculating time- or 
ensemble- averages, or combining the two if the underlying 
process is ergodic. In addition to being susceptible to 
sampling statistics from finite track lengths and numbers 
[15,16], the estimated MSD and VAC also depend on two 
major sources of error: 1) zero-mean Gaussian localization 
error due to photon statistics (referred to as “static error”), 
and 2) motion blur due to finite exposure time (referred to 
as “dynamic error”). Static and dynamic errors are always 
present to some degree, and proper care must be taken to 
account for them when analyzing any MSD or VAC. The 
equations that take these errors into account are well known 
for the special case of pure Brownian motion, but less so 

for the more experimentally relevant case of anomalous 
diffusion. We present derived equations that take both of 
these errors into account for both the MSD and VAC of an 
anomalously diffusing object obeying a Fractional 
Brownian Motion (FBM). In fact, the equation for such an 
MSD was derived a decade ago by Savin and Doyle [17], 
yet the particle tracking community has not widely used it 
when appropriate. Biologically-oriented studies often 
neglect both sources of error, while more quantitative 
studies sometimes consider the static error but not the 
dynamic error. We show that the dynamic error must also 
be considered for anomalous diffusion, especially when the 
static error has been carefully removed or mitigated as the 
leading literature advises [18--20]. The expression 
presented here for the VAC in the presence of errors 
represents a generalization of the corresponding MSD. We 
demonstrate the utility of these expressions by application 
to experimental data of tracked chromosomal loci in 
budding yeast nuclei, as well as to simulated data. 
Importantly, when the same object is tracked in two 
emission color channels with different detected photon 
numbers, we show directly that the correct parameters of 
motion can be extracted from either measurement when the 
proper expressions are used. 

 
II. RESULTS AND DISCUSSION 

 
A. Mean-Squared Displacement (MSD) 

 
For the simplest case of pure Brownian motion, the 

MSD, denoted here by the function M(·), scales linearly 
with time-lag, i.e. M(n) = 2DntE, where D is the diffusion 
coefficient, tE is the exposure time of the camera 
acquisition, and n is the number of frames spanning the lag. 
Throughout this paper we also refer to the time lag as δ = 
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ntE, and so the MSD in this case is M(δ) = 2Dδ. This 
expression is valid for tracking in 1D, though extension to 
3D is trivially achieved by adding the MSDs of three 1D 
processes together. We assume here and throughout this 
paper that the sample is illuminated continuously and that 
there is no time elapsed between recorded frames. This 
situation is common in most experimental situations, 
though extension to stroboscopic or time-lapse imaging is 
straightforward, as shown previously for the case of pure 
Brownian motion [13,21,22]. The effect of static and 
dynamic errors on the expected value of the estimated 1D 
MSD for the special case of pure Brownian motion is to 
produce a constant offset of the linear dependence 
according to Eq. (1) [13,17,21,22]: 

2 2ˆ ( ) 2 2
3E EE M n Dnt Dtσ⎡ ⎤ = + −⎣ ⎦    (1) 

where the [ ]E ⋅  refers to the expectation value and the hat 
denotes the estimated quantity. We make a point to indicate 
the expected value explicitly, as real data will show 
fluctuations about this value due to the aforementioned 
finite sampling statistics, which we discuss in more depth 
below.  The form of Eq. (1) has been known for some time, 
though recent papers have pointed out that the σ that 
appears in Eq. (1) is not the same as the localization error 
of an immobile particle σ0, but instead includes an 
additional correction due to the spreading of photons over a 
greater area of the detector for a moving particle [22,23]. 
We discuss this in more detail in the next section. While 
Eq. (1) holds for a particle undergoing pure Brownian 
motion, it does not apply for the more general case of 
anomalous diffusion, despite the importance of anomalous 
diffusion in biology. 

Anomalous diffusion refers to motion with an MSD of 
the form M(n) = 2D*(ntE)α, where D* is an effective 
diffusion coefficient and α ∈ (0,2]. Motion with α > 1 is 
referred to as “superdiffusive”, while α < 1 specifies motion 
which is “subdiffusive”. Subdiffusion is often observed in 
biology and other complex systems, and a number of 
underlying models have been invoked to explain various 
subdiffusive phenomena, including most commonly 
Obstructed Diffusion [24], Continuous Time Random Walk 
[25], and Fractional Brownian Motion (FBM) [26]. While 
some or all of these models and others can be consistent 
with a given MSD scaling, a number of tests have been 
developed to distinguish among them [16,27--35]. For a 
thorough review see [36]. 

Certain previous studies have addressed some of the 
effects of static or dynamic errors on the MSD of 
subdiffusive processes. Static error is known to cause the 
log-log MSD curve (which otherwise has constant slope α) 
to bend upward at early times, causing potential 
underestimation of α [18--20]. It is easy to show that the 
static error presents itself as an additive offset of 2σ2 as in 
the pure Brownian case, and so the static error is sometimes 
accounted for by assuming an MSD of the form: 

* 2ˆ ( ) 2 ( ) 2EE M n D nt α σ⎡ ⎤ = +⎣ ⎦   (2) 

Despite this fact, it is still very common in the literature 
to either ignore the offset due to this error or dismiss it as 
irrelevant based on a somewhat qualitative assessment. 
When more thoroughly addressed, an experimenter 
typically either fits the computed MSD with Eq. (2) directly 
by allowing for a positive constant offset, or they estimate σ 
independently and subtract the appropriate term from the 
computed MSD. However, there are some cases in which 
these treatments are insufficient as the dynamic error is also 
significant.  

Our experimental application to chromosomal tracking in 
yeast provides such a case. We tracked copies of a single 
chromosomal locus (POA1) just downstream of the GAL 
locus of genes (GAL 7, 10, and 1) [11,37] in live G1 phase 
Saccharomyces cerevisiae cells using the LacO/LacI-GFP 
labeling system [38] in a wide-field fluorescence 
microscope. This strain was previously used as a control for 
a study on velocity cross-correlations of distinct loci on 
yeast chromosomes [39]. In that study we were surprised to 
find that α was in the range 0.6-0.75 for all strains we 
measured, in contrast to the previously reported value for 
GAL in yeast of ~0.45 [11]. We determined that the most 
likely explanation for this discrepancy was the effects of 
localization errors; here we explore the effects of static and 
dynamic errors in the control strain in much greater detail.  
We collected data from 120 tracks in as many cells, 
consisting of on average 338 ± 94 frames (± standard 
deviation) taken with tE = 100 ms. Data were acquired 
using the Double-Helix Point Spread Function (DH-PSF) 
microscope, which allows for 3D wide-field tracking by 
encoding z-position into the angle made between two 
closely spaced lobes of light [40,41] and a reference line. 
3D positions were extracted via a least-squares fit to the 
sum of two 2D-Gaussian functions. Additional details 
regarding cell preparation, microscopy, and image analysis 
are given in . A 2D projection from an example track is 
shown in the inset of Fig. 1(a). 

Images were recorded on a microscope consisting of two 
color channels (green and red) split by a dichroic mirror, 
with DH-PSF-encoding transmissive phase masks located 
at the Fourier plane in both paths [42]. Because the labeling 
system typically resulted in ~20-30 GFP labels bound to the 
locus at a time, the combination of the sum of many 
emitters and the red-extending tail of the GFP emission 
spectrum allowed for tracking of the same particle 
simultaneously in both color channels, albeit with 
significantly disparate localization errors. We stress that 
there is no difference between the particles’ motion in the 
red and green channels since we simultaneously tracked the 
same 120 particles in each channel. Yet the disparate 
localization errors cause the computed ensemble mean 
time-averaged MSDs to appear very differently (Fig. 1(a)), 
only beginning to coincide at large n. Because the particles 
appeared significantly dimmer in the red channel, the static 
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error was larger in this channel and thus the MSD curves 
upward with a significantly shallower slope in log-log 
space. Of course the green channel must also suffer from 
nonzero static error, and yet the green MSD appears to be 
relatively constant in its slope. Does this mean that the 
static error is small enough to be ignored in the green 
channel? On the contrary, we argue that the apparently 
constant slope is a lucky accident since our experimental 
configuration allows us to effectively remove the static 
error in the following way: because the random photons 
hitting the detector in either channel are independent of one 
another, the random static errors in each channel are also 
independent of one another. Thus we can compute the MSD 
in a third way by multiplying each displacement recorded 
in the red channel by the simultaneously determined 
displacement in the green channel and then averaging. The 
result is the “cross-MSD” shown in black in Fig. 1(a). With 
the static error now effectively removed (only leaving a 
small residual error from the registration of the two 
channels [42,43]) we see that the MSD curve does not 
assume a perfectly straight line as Eq. (2) would suggest. 
Instead we see that the cross-MSD bends downward at 
early times—a consequence of the still-present dynamic 
error.  

An accurate model for the MSD should produce 
estimates of α which coincide for all three computed 
MSDs. The most naïve estimation is shown in Fig. 1(b). 
Here we fit each MSD in log-log space to a straight line, as 
one would expect in the absence of errors. We include a 
variable number of points in the fit, and show the estimates 
over a range of time scales. Unsurprisingly, the red (top, 
gray), green (middle, light gray), and black plots in Fig. 
1(b) do not coincide at all, as the red estimates starts from 
far below around 0.3, the black starts from significantly 
above near 1.0, and the green remains in range 0.6-0.8, 
sloping slightly downward at early times. If we instead fit 
the log-log MSDs by allowing for a positive offset from 
static error according to Eq. (2) we produce the estimates 
plotted in Fig. 1(c). The red estimation changes 
dramatically as we would expect. While the green and red 
estimates now coincide after ~2 s, there is still a small but 
significant discrepancy at earlier times. Most notably, the 
black estimates from the cross-MSD are still significantly 
inflated relative to the others. It is clear that Eq. (2) is 
insufficient to make our experimental results self-
consistent. Thus we seek an extension of Eq. (2) that 
properly incorporates the effects of dynamic error for the 
case of anomalous diffusion.  

The manifestation of dynamic error in the MSD of an 
anomalous diffusion is more elusive in the literature than 
that of static error. It has been described previously in the 
specific contexts of “hop” and confined diffusion [3,44,45]. 
We instead sought a generalization of the pure Brownian 
motion case given in Eq. (1) valid for any FBM with 
arbitrary α. The full derivation is given in [39], and here we 
sketch the derivation and present the result.  Independently, 

the resulting equation was derived a different way and 
stated nearly a decade ago in reference [17]. However, to 
our knowledge there has not been an application of the full 
equation in an appropriate case such as our chromosomal 
loci tracking. Therefore, here we restate the result and 
apply it to demonstrate its importance. 

FBM is the self-similar process that has Gaussian, 
stationary increments [26]. Denoting the position of a 
particle undergoing FBM at time t as x(t), such a particle 
exhibits a characteristic auto-covariance function between 
positions at two times [46]: 

[ ] *
1 2 1 2 1 2( ) ( ) ( | | )E x t x t D t t t tα α α= + − −  .  (3) 

One can easily show that Eq. (3) implies that pairs of 
increments exhibit negative correlation when α < 1 
(resulting in subdiffusion), no correlation when α = 1 
(resulting in pure Brownian motion), positive correlation 
when α > 1 (resulting in superdiffusion), and perfect 
correlation when α = 2 (resulting in constant-velocity 
motion). Thus, pure Brownian motion and ballistic/directed 
motion are special cases of FBM. We chose to work 
specifically within the framework of FBM since our 
chromosomal loci demonstrated the characteristic Gaussian 
increments and velocity correlations (vide infra) consistent 
with this motion [39]. Also, FBM and the closely related 
fractional Langevin motion have been implicated in a 
number of other previous instances of particles and 
biopolymers traversing the cellular cytoplasm and 
nucleoplasm, including mRNA and DNA loci in E. coli 
[28,35,39,47], lipid granules in fission yeast (at least at long 
times [48]), and telomeres in mammalian cells [12,31]. 

 Using Eq. (3) and an extension of the formalism used by 
Michalet [22] to derive the variance of position estimation 
of a Brownian diffuser, we derived the FBM analog of Eq. 
(1). Briefly, we assume that a particle moving in 1D 
undergoes FBM with specified D* and α, and that within an 
imaging frame the particle emits a random number of 
photons ~ ( )p Poisson p . The ith photon during the kth 
frame is recorded at a position that is the sum of the 
position of the particle at the time of emission, ( )k

ix , and a 

random variable ( )k
iξ , with ( )( ) 0k

iE ξ = and ( )( ) 2
0Var k

i sξ =
, that accounts for static error. Here s0 is set by the width of 
the Point Spread Function (PSF) of the microscope. The 
estimated position of the particle during the kth frame, 

)
1

( ( )ˆ /k kp
k i ii

x x pξ
=
⎡ ⎤= +⎣ ⎦∑ , is the centroid position of the 

recorded photons during that frame. While this formalism 
does not explicitly account for background, pixelation of 
the image, alternative position estimators, or extension to 
more spatial dimensions, we show below that simple 
modifications to the final result are sufficient to do so. 

The derivation then proceeds by finding an expression for
( )2ˆ ˆ ˆ( ) k n kE M n E x x+
⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦

. Naturally, the final result 

will not depend on k since FBM is a stationary increment 
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process [12,26,31,49]. As shown in the Supplemental 
Material, this approach yields the analytical expression: 
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 (4) 
This form is consistent with Eq. (30) presented in [17], 
which in fact holds for any motion obeying the appropriate 
power-law MSD (i.e. not just FBM). 
  Examination of Eq. (4) gives rise to a number of 
interesting observations. For one, an algebraic check 
confirms the key limit: for D = D* and α = 1 (thus 
specifying pure Brownian motion) we indeed recover Eq. 
(1) if we allow the equivalence in Eq. (5):   

2 2
0 3

EDt
p

σ σ= +   (5) 

where 2 2
0 0 /s pσ =  is the true static error of an unmoving 

particle. The term that is proportional to D in Eq. (5) results 
from the fact that the effective PSF of a moving object is 
effectively larger than that of a stationary one. This term 
was found previously via a different derivation [23] and 
typically only results in a small inflation of σ. This term 
settles a standing discrepancy in the literature in that a 
similar expression was also previously reported in [22], but 
mistakenly without the factor of 3 in the denominator.  
  Inspection of Eq. (4) shows that the generalized version of 
the static error term given by Eq. (5) is now given by Eq. 
(6): 

*
2 2

0
2

( 2)( 1)
ED t

p

α

σ σ
α α+ +

= +   (6) 

We can thus state the relative increase of the static 
localization error due to the particle motion as: 

*

2
0 0

2
1

( 1)( 2)
ED t

s

ασ
σ α α +

+
+

=  (7) 

Compared with the α = 1 case, a significant increase of σ/σ0 
can be expected for lower α for a given D* and tE. This is 
shown in Fig. S1 for various parameters. As an example, 
for D* = 0.2 μm2/sα, tE = 10 ms, s0 = 0.214 μm, and α = 1, 
Eq. (7) yields a ratio of 1.007, i.e. an increase of less than 
1%. However, for the same parameters except α = 0.4, the 
increase is ~19%, and so is significant. Thus, when one 
performs an independent measure of σ0 in order to subtract 
the positive offset from the MSD, the entire positive offset 
may not be fully removed, particularly when α is low. In 
any case we can rewrite Eq. (4) as: 

*
2 2 2

*
2

2ˆ ( ) ( 1) ( 1) 2
( 2)( 1)

2( 1
4

)
2

)(

E

E

n n
D t

E M n

D t

n
α

α α α

α

α α

σ
α α

+ + +

+ +

+

⎡ ⎤ ⎡ ⎤= + + − −⎣ ⎦⎣ ⎦

− +
+

(8) 

where we have also factored out 2
Et
α +  from the bracketed 

portion of the first term in order to write the expression in 
terms of n rather than δ. By fitting to Eq. (8) and allowing σ 
to be a positive free parameter we automatically take into 
account any dilation of the form in Eq. (6). This approach 
also automatically accounts for the fact that the exact form 
of Eq. (6) depends on the choice of estimator (see below).  
  The effects of the dynamic error in the pure Brownian 
case (Eq. (1)) are captured in the term 2 / 3EDt− . The 
generalized version of this term that appears in Eq. (8) is 

[ ]* 2)(4 1)/ (ED t α α α+ +− . In Eq. (8) there exists still 
another consequence of the dynamic error in that the first 
bracketed term contains powers of n beyond just nα. At first 
glance this seems somewhat peculiar, but expansion of the 
relevant term into an infinite sum gives further insight: 

2

0

2 2( 1) ( 1) 2 1 ( 1)
( ( 2)(2 1))( 1)

k
k

k k
n n n

n
k k

α α α
αα

α α

+ + ∞

=

+
−

⎡ ⎤+ + − − ⎛ ⎞⎛ ⎞ + −⎣ ⎦ = ⎜ ⎟⎜ ⎟ + +⎝ ⎝ ⎠+ + ⎠
∑  

 (9) 

Here the factor 
k
α⎛ ⎞
⎜ ⎟
⎝ ⎠

 is a generalized binomial coefficient 

and is formally defined via a ratio of gamma functions: 
( 1) ( 1)

( 1) ( 1) ! ( 1)k k k kk
α α α

α α
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

Γ + Γ +
Γ + Γ − + Γ − +

  (10) 

for integer k and possible non-integer α.  
  Evidently the leading nonzero term in Eq. (9) is actually 
still nα. We expand the infinite sum to include only the first 
few nonzero terms: 

2 2 2
2

4

( 1) ( 1) 2 ( 1)
2)( 1)
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( 1
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36
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α α α α

+ + +
−

−

⎡ ⎤+ + − −⎣ −
+

−

⎦

+

+
− −

≈ +

 
(11) 

The terms beyond nα decay rapidly. In some special cases, 
however, they can be somewhat significant. By inspection, 
the extra terms are most significant when n = 1, i.e. at the 
first point of the MSD. For simplicity consider this case 
when σ = 0 (or more realistically when σ has been 
measured and the corresponding offset has been removed). 
Fig. S2 shows the importance of including the extra terms 
as a function of α at this first point of the MSD relative to 
the case of just including the negative constant offset. Note 
that when α = 1 Eq. (9) evaluates exactly to the linear term 
n—the cubic, square, and constant terms exactly cancel one 
another. When the displacements are uncorrelated the 
additional power terms disappear, and so equivalently the 
appearance of these terms is a direct consequence of the 
presence of correlations in the motion. For subdiffusive α, 
the effect is small, as it only affects the MSD at this point 
by ~5-10% below α = 0.6. For superdiffusive α however, 
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the effect is indeed significant as it approaches 20% as α  
2. So while the extra terms in Eq. (9) are mathematically 
interesting, they likely do not have a very significant effect 
on fitting of the MSD except in some superdiffusive cases. 
We will show in the next section, however, that these terms 
can indeed make a difference when considering the VAC 
for subdiffusive cases. 

With the theory paved we now return to our 
chromosomal locus tracking data. Fitting each of the three 
MSD curves in Figure 1(a) using Eq. (8) and allowing three 
free parameters (α, D*, and σ) gives the results shown in 
Fig. 1(d). Clearly now the three cases coincide quite closely 
with one another on all time spans considered. We note that 
there might be some relatively small, non-constant temporal 
dependence of the estimated α parameter. This may reflect 
a real but modest amount of non-stationarity over the time 
scale considered. This may also be a manifestation of 
heterogeneity within the ensemble, as this appears 
consistent with the effect reported in [19]. To give an 
indication of the heterogeneity within our sample, Fig. 
S3(a) shows the individual time-averaged cross-MSDs of 
each of the 120 experimentally obtained trajectories.To the 
same end, Fig. S3(b) gives the histogram of estimated ˆcrossα
values as determined from the individual trajectories. The 
mean of the distribution is 0.74 and the standard deviation 
is 0.26. The width of the distribution of estimated α is 
indeed comparable to those explored in [19]. We note, 
however, that this finite width of the distribution is a 
function of the finite track lengths, static error, and 
dynamic error, in addition to the true underlying 
heterogeneity. A thorough treatment of heterogeneity in the 
presence of these factors is saved for future work. 

Estimating α from the ensemble mean of the MSDs gives 
the same value as taking the mean of the individual 
estimates. In particular, the results of fitting the full 10 s of 
the ensemble mean curves show remarkable agreement 
with the center of the distribution of individual estimates 
and with one another: 0.ˆ 74 0.03greenα = ±  , 

0.74 0 04ˆ .redα = ± , and 0.ˆ 74 0.03crossα = ±  (error is S. E. 
M. as determined from 100 bootstrapped samples of the 
individual tracks). To the precision of two significant 
figures, all three fits gave * 3ˆ (1.7 0.1) 10D −= ± ×  μm2/sα. 
The estimated 3D localization precisions for the three cases 
are 2 2ˆ 6greenσ = ±  nm, 59 2ˆ redσ = ±  nm, and 

1 2ˆ 3crossσ = ±  nm. Note that the 3D localization precision 
is related to the x, y, and z precisions via 

2 2 2
x y zσ σ σ σ+ += . The residual precision for the cross-

MSD case is on the order of what we expect with our 
registration method [39,42]. Thus we directly demonstrate 
that experimental measurements with different degrees of 
error produce the same estimates for the underlying 
parameters of motion when the proper expression is used. 

To further compare Eq. (8) to data over a range of motion 
and imaging parameters, we produced simulated FBM 
tracks in 1D, 2D, and 3D using the method of circulant 
embedding, with custom MATLAB code building upon the 
code provided in [50]. Tracks were simulated with tE = 10 
ms and various mean photon numbers per frame p .We 
generated the position of each recorded photon by adding 
the position of the particle at the (random) time of detection 
to a random number with PDF proportional to a simulated 
PSF. Photon positions within each frame were then grouped 
to produce position estimates. In 1D we estimated the 
positions via a simple centroid estimator such that Eq. (6) 
applies exactly as written. Fig. S4 shows the time-
ensemble-averaged MSDs for this 1D simulated data with 
parameters α ∈ {0.2, 0.4, 0.6, 0.8, 1.0, 2.0}, D* ∈ {10-3,10-2,10-1,100,101} μm2/sα and {50,500,1500}p ∈ . Fig. S4 
reflects results from 100 tracks each consisting of 100 
frames; the plotted points represent the ensemble mean of 
the time-averaged MSDs. We see excellent agreement 
between our simulations and the theoretical prediction in all 
cases, including those in which the errorless prediction 
either grossly over- or underestimates the curve. While the 
cases in which static error dominates can be matched by 
Eq. (2), the dynamic error must also be accounted for in 
order to match in other cases. 

We compared to 2D data by simulating two independent 
FBMs for x and y for each track via the method described 
above; independence between the x and y increments is a 
sufficient but not necessary way to produce the relevant 
MSD statistics. Again we simulated 100 tracks each 
consisting of 100 frames. In each frame, photons ( 500p = ) 
were binned into pixels of width a = 160 nm. A Poisson-
distributed background with specified mean b was added to 
each pixel before fitting the resulting image with a 2D 
Gaussian function in order to estimate particle position. In 
each frame the estimated position was constrained to a 
region of interest (ROI) around the true position of the 
particle. In a real experiment this would correspond to cold-
starting the fitting near an obvious localization, e.g. by hand 
as in our chromosomal tracking experiments. The ROI then 
follows the particle by resetting each frame centered on the 
localization from the previous frame.  Example simulated 
images are shown in Fig. 2(a) for α = 0.6, b = 0, and D* ∈ {10-3,10-2,10-1,100,101} μm2/sα. Note that the effective size 
of the PSF increases with increasing D*, though this only 
becomes noticeable when the increase is sufficiently larger 
than the diffraction limit. In fact, we can quantify this PSF 
broadening by multiplying s0 by the RHS of Eq. (7) to give 
the dilated PSF width s. To model σ we then substituted this 
expression for s into a known expression for 2D 
localization error which takes background and pixelation 
into account. Such a model was proposed by Thompson, 
Larson, and Webb [51] and later made more accurate [52]: 
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This treatment of σ is analogous to that done in [23] for the 
case of pure Brownian motion. Note also that we must 
multiply the rest of Eq. (8) by a factor of 2 since the 
simulation at hand was done in 2D. The dots in Fig. 2(b) 
are compared to the solid lines generated by Eq. (8), while 
the dashed lines are the straight lines of slope α expected in 
the absence of errors. Additional data for α ∈ {0.4, 0.8, 2.0} 
are shown in Fig. S5. We omit the case of α = 0.2, D* = 10 
because in particular when b > 0, the images for this 
extreme subdiffusive motion would be unusable anyway 
since the signal is unidentifiable amidst the noise (see Fig. 
S5 for example). Figure 2(b) clearly shows that we can 
accurately match the estimated MSD in 2D over a range of 
conditions, with pixelation and background, and using the 
more common Gaussian position estimator.  

Finally, to compare Eq. (8) to 3D data over a range of 
parameters we extended our FBM simulations using a 
simulated DH-PSF (Figs. S7 and S8). As in our 
experimental demonstration, we fit each simulated image to 
a sum of two 2D-Gaussian functions in order to estimate 
positions. Though we do not have a closed-form expression 
for σ in this case, with knowledge of the underlying true 
simulated motion we could compute it directly for the sake 
of comparison to Eq. (8). 

Admittedly, the chosen track length and number of tracks 
considered in our simulations are somewhat arbitrary. As 
mentioned in the introduction and known previously 
[15,16], these sources of finite statistics also cause errors in 
the computed MSD. For this reason we stress that Eq. (8) 
only represents the expected value (i.e. mean) of the MSD 
of an ensemble of finite-length trajectories. The full 
distribution will have a finite width that depends on track 
length. This fact is not a revelation unique to Eq. (8) or 
FBM. Indeed, fitting an individual pure Brownian track 
with Eq. (1) should be treated with similar care. Previous 
work has painstakingly detailed how many points should be 
ideally fit for a pure Brownian track of a given length, 
exposure time, and localization error[22], and derived the 
higher moments of the distribution of the estimated MSD 
under such circumstances. We reserve the derivation of the 
full distribution of the MSD of FBM for future work, as it 
becomes immediately much more involved to even derive 
the next moment of the distribution.  

To partially explore the effects of finite track length, we 
shortened and re-analyzed the MSDs of the 2D simulated 
tracks described above. Figs. S9 and S10 show the full 
ensemble of 100 time-averaged MSDs, along with the mean 
of the ensemble compared to the curve expected from Eq. 
(8), for trajectory lengths of 25, 50, and 100 frames. These 
depict the particular case of tE = 10 ms, D* = 0.1 μm2/sα, 

500p = , and b = 50; obviously this is only a slice within a 
massive parameter space. Fig. S9 plots the data in linear 

space and Fig. S10 in log-log space. While experimental 
constraints like finite depth of focus or fluorophore 
bleaching can realistically limit trajectory lengths, it should 
always be possible to record a sufficiently high number of 
tracks, and so we did not explore the effects of the latter 
here further. By inspection, the ensemble mean in each case 
closely follows Eq. (8) except for a fraction of points at the 
largest lags, since there are fewer data to average at these 
lags. To be more to the point, we assessed the effects of 
shortened trajectory length by fitting variable numbers of 
points of the MSD to Eq. (8) for these simulated data. The 
results are shown in Fig. S11 and point to a very 
heuristically determined rule-of-thumb that fitting the first 
third of the points available gives reasonable accuracy and 
precision (<~ 0.1). Fitting too many points over-values 
poorly averaged points. Fitting too few points makes it 
more difficult to detect nonlinear behavior since the 
limiting case of two points will always be consistent with α 
= 1 and some offset. 

As mentioned, the effectiveness of this rule-of-thumb 
clearly will depend on the parameters of motion and 
imaging. Thus we fit the first third of the MSD for various 
D* and b values and enumerated the resulting bias and error 
on estimated α.Fig. S12 shows the results from fitting to 
Eq. (8) with free parameters α, D*, and σ. Estimation errors 
are still understandably best (< 0.1) for the longest 
trajectory lengths, and for the highest ratios of D*/σ. Fig. 
S13 shows comparable errors when σ is measured and 2σ2 
is subtracted from the MSD before fitting with only two 
free parameters.  

 
B. Velocity Autocorrelation (VAC) 

 
Next to the MSD, the VAC is perhaps the second-most 

common statistical metric employed in analyzing single-
particle tracking data. In an experiment one can only 
compute the mean velocity between recorded frames 
according to (in 1D): 
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k
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x x
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=   (13) 

Thus the expected value of the measured VAC in one 
dimension is defined as: 
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Note the presence of two time indices n and m, or 
equivalently two time variables δ = ntE (time scale for 
defining velocity) and τ = mtE (lag in VAC). Again, for a 
stationary increment process like FBM the expectation does 
not depend on the index k. Note also that when m = 0 the 
VAC is proportional to the MSD: 
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Hence the ensuing expression for the VAC of a particle 
undergoing FBM in the presence of both static and dynamic 
errors is a generalization of the previously described MSD.   
   It is straightforward to show that the defining covariance 
function of FBM in Eq. (3) implies the following VAC in 
the absence of errors:  
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For  m ≥ n, this function is negative for α < 1, positive for α 
> 1, and zero when α = 1. The characteristic negative 
signature is a key tool in distinguishing FBM from other 
modes of subdiffusion [28,53,54]. Most often the computed 
VAC is scaled by ( ) ( 0)n

vC m =  so that values at various n 
can be directly compared. For FBM the scaled VAC is 
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  The scaled VACs computed from our chromosomal loci 
data are plotted in Fig. 3, as determined in the green (Fig. 
3(a) and (d)) and red (Fig. 3(b) and (e)) channels. The 
cross-correlation between the two channels is shown in Fig. 
3(c) and (f). The bottom row of Fig. 3 shows a closer view 
of the first 2-s window depicted in the top row. The plotted 
values are the averages of the scaled VACs in x, y, and z. 
We plot and color-code the VAC as computed for all n 
between 1 and 100. In all three cases we see negative 
values at each n. At sufficiently large n the minima appear 
to become more-or-less constant, as we would expect from 
Eq. (17) for all n. We fit each VAC (i.e. each colored curve 
in each panel) to Eq. (17) to again produce naïve estimates 
of α. These results are shown in Fig. 4(a). None of the cases 
agree well at early times, with the cross-correlation at 
higher α than in the green channel, and the red channel 
suggesting far lower α. At longer times the cross-
correlation and green channel agree but the red estimates do 
not quite reach the others. Much as in the MSD case, our 
goal is to extend Eq. (16) to properly account for static and 
dynamic errors such that estimates of α coincide for the 
three cases. 
  The effects of static error on the VAC have been 
characterized previously [28]. Namely, this error results in 
constant offsets at two particular points: 
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(18) 
The main effect on the scaled VAC is an enhanced 
negative-going peak at m = n which gradually decays for 
increasing n [28]. We clearly see this type of behavior in 
the red channel as depicted in Fig. 3(b) and (e). If we fit to 
Eq. (18) allowing for σ2 > 0 we obtain the estimates of α 
shown in Fig. 4(b). The largest improvement is predictably 
in the red channel case, and we see that the red and green 
channels now coincide well over the full 10 s. However, the 
estimates from the cross-correlation still do not agree with 
the others at times up to around 1 s. As discussed in the 
MSD section, the cross-correlation data has only a very 
small contribution from static error (due to finite 
registration error) and so the dynamic error dominates. 
From Fig. 3(f) we see that the effect on the VAC is 
opposite that of large static error, as the negative-going 
peak becomes larger in magnitude for increasing n, before 
it asymptotes to the constant value predicted by Eq. (17). 
This positive offset of the point at m = n has been noted in 
the case of pure Brownian motion [13,14,55]. The most 
general form of Eq. (18) should be able to match this 
behavior for an arbitrary FBM as well. 
  The derivation of the VAC of FBM in presence of both 
errors is presented in the Supplemental Material. It follows 
along the same lines as our MSD derivation and makes use 
of a number of the mathematical relationships worked out 
therein. To simplify our expressions let us define the 
function A(u) according to Eq. (19): 

2 2 2( ) ( 1) ( 1) 2A u u u uα α α+ + +≡ + + − −   (19) 
Note the relevance of Eq. (19) in the previous discussion 
surrounding Eqs. (9-11). The value at the point m = 0 is of 
course given by plugging Eq. (8) into Eq. (15). Making use 
of the definition in Eq. (19): 
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The next special point to consider is when m = n. Here we 
find: 
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Finally, when m ≠ 0 and m ≠ n we have: 
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The importance of terms of the form in Eqs. (9) and (19) 
are especially apparent in Eq. (22) since there are no 
additional constant offsets in Eq. (22). In line with the 
discussion in the MSD section, these terms are a direct 
consequence of the correlations of the motion, a claim 
which is buttressed by the appearance of analogous terms in 
[14] for a different form of correlated motion. Taken 
together, Eqs. (20-22) completely define the expected value 
of the VAC in the presence of dynamic and static errors, 
and are consistent with previously published equations 
applicable to pure Brownian motion [13,14,55]. We fit the 
data presented in Fig. 3 to this function (scaled by Eq. (20)) 
to yield the estimated values of α shown in Fig. 4(c). With 
this complete expression we obtain excellent coincidence of 
all three cases over the whole 10 s. These estimates of α are 
in close agreement with those produced from fitting the 
MSD alone as well. In Fig. 4(d) we show the computed 
VACs for n = 1, along with the curves estimated from Eqs. 
(20-22), and the cross-correlation behaves as expected. 
  To further demonstrate the utility of Eqs. (20-22) over a 
range of parameters, we computed the scaled VAC for the 
same 2D simulated data analyzed in the MSD section. 
Different behaviors are shown in Fig. 5 for the case of tE = 
10 ms, 500p =  photons, D* = 0.1 μm2/sα, and various α 
and b. This figure shows that the VACs predicted from Eqs. 
(20-22) match the simulated data closely, particularly in 
cases in which the naïve prediction from Eq. (17) fails due 
to large static error (e.g. α = 1 and b = 100), or more 
uniquely due to large dynamic error (e.g. α = 0.2 and b = 0).  
  As a final example of the utility of Eqs. (20-22), we 
consider simulated 2D data for which we mimic the 
independent measurement and removal of static error 
before analyzing the VAC for the special case n = 1. While 
for the MSD setting n = 1 corresponds to a single point 
which is essentially useless to analyze on its own, for the 
VAC this corresponds to a full curve. It is not uncommon to 
subject this curve to analysis [14,47] since it represents the 
VAC with the most statistics and at the shortest time scale 
of the measurement. But this also corresponds to the VAC 
that is most affected by errors and so independent 
measurement and removal of the static error may be 
especially appropriate. For this set of simulations we 
sampled α between 0.1 and 1.0 at intervals of 0.1; D* = 
0.01 μm2/sα, tE = 10 ms, 1000p = , and b = 0. Again the 
sample consisted of 100 tracks of 100 frames each. 
According to Eq. (7), the ratio σ/σ0 is less than 1.06 for α ≥ 
0.1 and so a measurement of σ0 reflects the effective static 
error within reasonable accuracy. Fitting simulated images 
of a static emitter with the above prescribed photon 
statistics gave σ0 = 9 nm in both x and y. We then computed 
the ensemble-mean time-averaged VAC for each α and 

subtracted the constant offsets due to static error at the 
points m = 0 and m = n = 1. We fit the scaled VAC and 
estimated α in three different ways, each treating the 
dynamic error at different levels of sophistication. Fig. 6(a) 
shows the computed and estimated VACs for the case α = 
0.2. The point m = 0 is not plotted since by definition each 
scaled VAC is trivially equal to 1 here. The gold dashed 
line corresponds to the fit to Eq. (17), which ignores 
dynamic error altogether. This fit is highly inaccurate, 
indicating that the dynamic error cannot be ignored. The 
magenta dashed-dotted line corresponds to the fit with an 
intermediate treatment of dynamic error. Namely, the 
correct constant offset is included at m = 0 and m = n, but 
A(u) is replaced with 2)( ( 1)uαα α+ +  in each of Eqs. (20-
22). This corresponds to the previous discussion of 
including powers of n beyond nα in Eqs. (8-11) for the 
MSD, except for the VAC it is evidently more important. 
Fig. 6(a) shows that this fit is inaccurate for the most 
important early time points. Finally, the cyan solid line 
corresponds to the complete treatment of errors consistent 
with Eqs. (20-22), which matches the simulated data 
accurately. For each of the α values considered in this 
simulation, Fig. 6(b) shows the bias in its estimated value 
for the three fits. Unsurprisingly, the treatment that ignores 
dynamic error completely gives very large biases. More 
subtle yet still significant are the biases resulting from the 
fit of intermediate sophistication—for low α we see that 
even this can lead to biases greater than 0.1.    
 

III. CONCLUSIONS 
 
By thoroughly analyzing data from tracked chromosomal 
loci in live yeast we found that both static and dynamic 
errors must be properly accounted for when considering 
anomalous diffusion. Tracking the same particles in two 
channels with different static error was shown to be 
particularly useful in demonstrating the need for the full 
analysis. We thus showed that when the static error has 
been effectively mitigated, one must still include the effects 
of dynamic error in order to infer the correct parameters of 
motion. For the MSD, this means that the complete 
expression in Eq. (8) should be applied. For analysis of the 
VAC we derived Eqs. (20-22). We note that recently 
proposed analytical methods based on maximum likelihood 
[13] and covariance-based estimation [14] are directly 
related to the VAC, and so versions of Eqs. (20-22) will be 
necessary to properly generalize these approaches beyond 
pure Brownian motion. 
  The expected values of MSD and VAC reported here are 
clearly useful, as they compare well to our experimental 
data. Future work should extend these results to derive the 
full distributions of the ensemble, which also depend on 
sampling statistics. To this end it is simple to set up the 
derivation of higher moments, but it quickly becomes 
difficult to maintain analytical tractability. Future work 
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should also include non-stationary and non-ergodic effects, 
for instance due to confinement or underdamped fractional 
Langevin behavior [56]. 
  The equations presented were derived assuming FBM and 
its defining covariance function Eq. (3). This framework is 
appropriate for our purposes since our chromosomal loci 
data displayed the characteristic VAC of the form in Eq. 
(16). The latter fact certainly distinguishes the source of 
anomaly from confined diffusion or CTRW, as shown in 
previous work [28,53,54]. The identification of FBM in our 
data is also consistent with previous tracking studies of 
chromosomal loci in other organisms [12,31,47]. We note 
that previous work suggests that obstructed diffusion can 
also lead to negative signatures in the VAC, and that the 
non-Gaussianity of the corresponding increments can be 
difficult to detect [54,57]. However, our data not only 
displays negative signatures in the VAC, but fits well to the 
specific form of Eq. (16) consistent with FBM. If another 
source of anomaly happens to produce the correlations of 
Eq. (16), then our derived Eqs. (20-22) still hold, much in 
the same way that Eq. (8) holds for any motion of the 
correct power-law MSD scaling [17]. 
 

IV. Methods for Experimental Data Analysis 
 

Details on the strain construction and growth, 
microscopy, and image analysis can be found in [39]. 
MSDs and VACs were produced by calculating the time-
averaged version for each individual trajectory. Then the 
results from individual trajectories were averaged together 
before any fitting. For our experimental data we used the 
MATLAB function trimmean to ignore the maximum 
and minimum 5% of the values when computing the 
ensemble mean. This was done because we noted that a few 
outliers exhibited abrupt very large jumps in only the x 
direction, which caused inflated MSDs and α only in this 
direction. These large, abrupt jumps are indicative of some 
heterogeneous behavior and perhaps a short-lived active 
process. They should be investigated in future work, but 
here they were removed such that the x, y, and z data were 
equivalent in their ensemble means. In the interest of 
symmetry, this approach also removed small outliers before 
fitting, though the effect of this was less drastic. We 
produced estimated parameters by fitting the ensemble and 
time-averaged curves to the equations described using the 
MATLAB function lsqnonlin. In estimating parameters 
we imposed physically reasonable yet modest lower and 
upper bounds, mostly in order to ensure non-negative 
numbers. In particular, in fitting the MSD of our 
chromosomal loci we constrained α to (0, 2), D* to (10-5, 
103) μm2/sα, and σ to (0, 10) μm. This least squares fitting 
was carried out in log space, i.e. the minimization function 
was of the form (log(data) – log(model))^2. We found that 
doing the fit in log space put the correct emphasis on the 
early time points, which 1) are better-averaged and thus 
more reliable and 2) best capture the error effects we 

emphasize. Also, this gives the most direct connection to 
the usual treatment in the absence of errors. 
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FIGURE CAPTIONS 
 

FIG 1: (Color online) MSD for chromosomal loci in yeast. All 
error bars are S. E. M. from 100 bootstrapped samples of the 
ensemble. Each panel depicts data from the green channel MSD 
(green or light gray), red channel MSD (red or darker gray), and 
“cross-MSD” (black).  (a) Dots are data points computed from 
experimental data. Solid lines are fits to Eq. (8). (Inset) Example 
image of 2D-projected locus track in white light image of a yeast 
cell. This example is from a diploid, but all cells analyzed here 
were haploids. Scale bar: 1 μm. (b) Naïve estimates of α from 
fitting to a straight line in log-log space. Each point corresponds to 
fitting all points from n = 1 through the marked time point. (c) 
Estimates of α taking only static error into account. Only estimates 
corresponding to 5 points or more are shown since the 
nonlinearity requires several points to be reliably fit (see Fig. S11 
and discussion in main text). (d) Estimates of α taking both static 
and dynamic error into account; plotted points start at n = 5 for the 
same reason as in (c). 

FIG 2: (Color online) (a) Example simulated images of particle 
diffusing within a single frame with α = 0.6, b = 0, and tE = 10 ms. 
From left to right D* is 10-3, 10-2, 10-1, 100, and 101. Pixel size = 
160 nm. (b) Resulting MSDs from 2D simulation of FBM for 
various α (top to bottom rows: α = 0.2, 0.4, 0.6) and b (left to right 
columns b = 0, 50, 100), with 500p =  and (from bottom to top in 
each panel:) D* = 10-3 (blue), 10-2 (cyan), 10-1 (green), 100 
(yellow), and 101 (red) μm2/sα. Dots are simulated data, solid lines 
are theoretical predictions, and dashed lines are the predictions in 
the absence of errors. 

FIG 3: (Color online) Computed scaled VACs across various time 
scales for chromosomal locus data from the green channel [(a) and 
(d)], the red channel [(b) and (e)], and the cross-correlated data 
[(c) and (f)]). Bottom row depicts the same curves from the first 2 
seconds as in the top row, zoomed in and with a different color 
scale. The color scales for the top and bottom rows are shown on 
the right. For reference in grayscale version, larger δ corresponds 
to a curve with negative peak further to the right.  
 
FIG 4: (Color online) Analysis of VACs from chromosomal loci 
data. All error bars are S. E. M. from 100 bootstrapped samples of 
the ensemble. Each panel depicts data from the green channel 
VAC (green or light gray), red channel VAC (red or darker gray), 
and cross-correlation (black). (a) Estimates of α resulting from 
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naïve fits of the VACs without accounting for static or dynamic 
error. (b) Estimates of α resulting from taking static error into 
account, but not dynamic error. (c) Estimates of α taking both 
static and dynamic error into account. (d) Example computed and 
fit VACs for n = 1. Dots with error bars are computed from data, 
solid lines are fits taking static and dynamic error into account.  
 
FIG 5: (Color online) Scaled VAC from simulated 2D data for 
various n, b, and α. Here tE = 10 ms, 500p =  photons, D* = 0.1 
μm2/sα. Each black rectangle corresponds to a different b (from 
left to right: 0, 50, 100).Each row corresponds to a particular α 
(from top to bottom 0.2, 0.6, 1.0). Within a rectangle and row the 
left panel shows comparison of the data to the naïve VAC of Eq. 
(17) which does not take errors into account. The right panel 
shows comparison of the same data to the VAC in the presence of 
errors described in Eqs. (20-22). For reference in grayscale 
version, larger n corresponds to a curve with negative peak further 
to the right. 
 
FIG 6: (Color online) Illustrative example of n = 1 VAC analysis 
of 2D simulated data for D* = 0.01 μm2/sα, tE = 10 ms, 1000p =
, and b = 0. The ensemble consisted of 100 tracks of length 100 
frames each. Offsets due to static error have been removed by first 
estimating σ0 for the specified photon statistics. Error bars reflect 
the S. E. M. from 100 bootstrapped samples of the ensemble. In 
both panels the gold dashed line corresponds to the VAC without 
inclusion of dynamic error, the magenta dashed-dotted line 
corresponds to the intermediate treatment of dynamic error as 
described in the text, and the cyan solid line corresponds to the 
full treatment of dynamic error. (a) Example computed VAC for α 
= 0.2 (black dots and error bars) and the corresponding predicted 
curves for each treatment of dynamic error. The point at m = 1 is 
not plotted for the sake of scaling the figure and since each scaled 
VAC is equal to 1 here by definition. (b) Bias in the estimate of α 
for various α. 
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