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Nanochannels made in solid-state materials are used for various applications such as nanoparticle
separation or DNA manipulation. In this work we examine the effects of the electric and dielec-
trophoretic forces on a charged nanoparticle confined in a nanochannel. To this end, we solve the
Poisson equation for the nanochannel with a wedge-like geometry, and consider how channel geom-
etry and electrolyte concentration affect the electrostatic potential distribution and forces acting on
nanoparticles of various sizes. On the basis of our calculations, we establish conditions necessary
for particle’s attraction to the corners of a channel. We find that for large particles, the net force is
attractive only for low concentrations of the electrolyte irrespective of the wedge angle, while small
enough particles are attracted to the vertex for either larger electrolyte concentrations or small
wedge angle.

I. INTRODUCTION

Recently, the study of the dynamics of biomolecules
confined inside nanofluidic devices, such as nanochan-
nels, attracted considerable attention [1–5]. Much of the
interest in these systems stems from the experimental ob-
servation that nanochannels can be used to manipulate
molecules. In particular, the degree of DNA stretching
has been studied extensively for different nanochannel
sizes and geometries, as well as electrolyte concentra-
tions. It has been shown that a DNA molecule inside a
nanochannel will have larger extensions for smaller elec-
trolyte concentrations or for a smaller cross section size
of a nanochannel [1, 3, 6–10]. In addition, the length
of a stretched DNA molecule affects its mobility, which
suggests that nanochannels can be used for separating
molecules by length [2, 11–13]. Nanochannels have also
been suggested to be used for fast, cheap DNA sequenc-
ing with single nucleotide precision by a variety of tech-
niques. For example, one technique measures the trans-
verse tunneling current as the stretched out DNA translo-
cates through the channel [14–16].

It has also been experimentally shown that when a
DNA molecule moves through a silicon dioxide nanochan-
nel, it is attracted to the side walls and corners of
the device [1, 2, 5]. The mechanism of this attraction
is not clearly understood because silicon dioxide has a
negative surface charge density, and so does the DNA
molecule, and as such, one would expect them to re-
pel each other. There has been proposed two explana-
tions for this phenomenon. According to Ref.[5], the
attraction of nanoparticles to the sidewalls or corners
of the nanochannel could be the result of the dielec-
trophoretic force overcoming the electrostatic repulsion.
The same group performed experiments on a colloidal
solution of nanoparticles rather than on complex DNA
molecules in an attempt to identify the mechanism of at-
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traction of nanoparticles to the nanochannel walls. The
other possible explanation is the roughness of the surfaces
of nanochannels, which acts like a “barrier” for parti-
cles near the surface, so that they may be temporarily
trapped along the surface [2].
In order to better understand the origin for a nanopar-

ticle attraction to the surface of the nanochannel, in this
work numerical investigation of a charged particle dy-
namics inside a nanochannel are performed. We consider
only one particle interacting with the channel walls, thus
assuming a dilute solution. We first compute the electro-
static potential in the vicinity the corner of a nanochan-
nel by solving Poisson equation within the Debye ap-
proximation. From the potential, we calculate the elec-
tric field, and both the electrostatic the dielectrophoretic
forces induced on a single, charged, spherical nanopar-
ticle of a dilute species. We then examine the result-
ing nanoparticle dynamics for various geometries of a
nanochannel, particle sizes, and electrolyte concentra-
tions.

The paper is organized as follows. In Section II, after
the description of our nanochannel geometry, the details
on the solution of the Poisson equation and the dielec-
trophoretic force calculations are presented. In Section
III, the analysis of our results is given, while Section IV
contains a brief summary of our work.

II. MODEL

In our calculations we assume that the nanochannel is
very long, so that we can disregard effects associated with
its ends. As such, the problem becomes two-dimensional.
A two dimensional cross section of the region near a cor-
ner of a nanochannel which we model as a wedge-like
structure is shown in Fig. 1, with the angle between the
two sides represented as α. The two sides of the wedge
(the side walls of our nanochannel) have a constant sur-
face charge density of σs = −0.08 e/nm2, and electrolyte
solution (KCl) is present everywhere inside the channel
[17].
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FIG. 1: (Color online) Schematics of the x-y cross section near
a corner of a nanochannel which extends along the z-axis.

We first calculate the electrostatic potential inside the
nanochannel. To do this, we solve Poisson equation in
cylindrical coordinates in the Debye approximation:
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where, κ = L−1
D is the inverse Debye screening length,
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(
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, ǫr = 78 is the relative per-
mittivity of the electrolyte solution, kBT is the thermal
energy with T = 300K, and C is the bulk electrolyte
concentration.

The boundary conditions for solving Eq. (1) are set on
the walls of the nanochannel:
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They correspond to the case of the constant surface
charge density (see Fig. 1).

Far from the vertex, normal to the surface of the
channel, the electrostatic potential approaches that of
a plane solution, with V∞ being the potential value on
the surface, which in the Debye approximation is equal
to V∞ = σsLD/ǫ0ǫr [18]. Since the Debye approximation
can be applied when eV∞ < 4kBT , the lowest limit of
usable KCl concentrations in our work is 3 mM [19].

With help of the Kontorovich-Lebedev transform [20],
the solution of Eq. (1) with boundary conditions (2)
everywhere inside the channel can be written in the form

[18, 21]:

Φ (r, φ) =
2V∞

π

∞
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sinh
[
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2

]

sinh[λα]
×

(cosh[λφ] + cosh[λ(φ − α)])Kiλ(κr)dλ

(3)

where Kiλ(κr) is the modified Bessel function of the sec-
ond kind of imaginary order [22] with λ being its order.
To calculate the values of the electrostatic potential in-
side our nanochannel, numerical integration of Eq. (3)
was performed (see Appendix for details).
In order to calculate the net force acting on the spheri-

cal charged particle in the electrolyte, in general, one has
to compute the Maxwell stress tensor [23]. This requires
full self-consistent calculation of the electrostatic poten-
tial for the nanochannel-particle system in the electrolyte
solution. However, in order to get a clearer insight in the
origin of the possible particle’s attraction to the surface
of the nanochannel, in this work we consider the total
potential energy of the particle, UTotal, as the sum of the
particle’s electrostatic potential energy, Up, and dielec-
trophoretic potential energy, Ud, i,e., we write

UTotal = Up + Ud. (4)

This approach works when the radius of the particle,
Rp, is smaller than the characteristic length over which
Φ(r, φ) changes, i.e., Rp . LD.
In the computation of Up, we assume that the particle

is charged with a surface charge density of σp = −10−2

e/nm2, which corresponds to that of a polystyrene latex
sphere[24], so that

Up = σp

∮

Φda, (5)

where the integral is taken over the particle’s surface.
For a small particle with Rp . LD, we can approximate

the dielectrophoretic potential energy as [25]:

Ud = −2πR3
pǫrǫ0K|∇Φ|2, (6)

where K is the static Clausius-Mossotti factor [26],

K =
ςp − ςm
ςp + 2ςm

, (7)

with ςp and ςm being the static conductivities of the par-
ticle and the electrolyte solution, respectively [25]. From
Eq. (7) one can see that for ςp ≫ ςm,K ≃ 1, while
for ςp ≪ ςm,K ≃= −1/2. Thus, depending on the ra-
tios of the particle and solution conductivities, the di-
electrophoretic force changes from repulsive to attractive
or zero when ςp = ςm. As mentioned in Ref.[5] the static
conductivity of a polystyrene bead is ∼ 10−2 S/m, which
relative to the conductivity of a very low electrolyte so-
lution, i.e., water, gives K = 0.97. However, in principle
K can vary for particles of different sizes and materials
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FIG. 2: (Color online) Contour plots of the electrostatic po-
tential, Φ(r, φ), inside the wedge for α = 45°, α = 90°, and
α = 135°, top to bottom, for C = 3 mM. The inset in each
shows line plots of the electrostatic potential along certain
angles.

relative to the medium. As such, we consider in this work
−1/2 ≤ K ≤ 1.
In the limiting case of a small particle (Rp ≪ LD)

interacting with a charged plane (α = 180° in Fig. 1),
the electric and dielectrophoretic potential energies [Eqs.
(5) and (6)], respectively, become

Up(r) = QV∞e−κr (8)

Ud(r) = −QV∞

σsκRpKe−2κr

2σp
, (9)

FIG. 3: (Color online) Schematic representation of a spheri-
cal particle located at its position closest to the vertex of a
nanochannel for α = 45°, 90°, and 135°, left to right. Each
outer (red) ring has a thickness of 0.4 nm, and represents
the thickness of the surface layer over which the charge is
distributed.

TABLE I: Values of rmin and particle’s net charge Q for dif-
ferent Rp and wedge angles α.

Rp (nm) rmin (nm) Q (e)

α = 45° α = 90° α = 135° α = 180°

1.0 2.6 1.4 1.1 1 0.13

3.0 7.8 4.2 3.2 3 1.1

5.0 13 7 5.5 5 3.3

where r is the distance between the particle and the
plane, and Q is the particle’s charge.

III. RESULTS

We first consider how the value of the wedge angle α
affects the electric potential Φ(r, φ) near the corners of
a nanochannel. In Fig. 2 we present contour plots of
the electrostatic potential distributions for α = 45°, 90°
and 135° and electrolyte concentration C = 3 mM. The
inset in each shows line plots of the electrostatic poten-
tial along certain angles φ. As one can see, the largest
variation in the potential occurs near the vertex, which
in general results in a stronger electric field and a larger
dielectrophoretic potential in that region. One can also
see from this figure that the smaller the wedge angle α,
the larger the variation in the electrostatic potential near
the vertex. Similar results (not shown) but with smaller
values of Φ(r, φ) were obtained for a concentration of 10
mM. Since the Debye length for C = 10 mM is ∼ 3.0 nm
and for C = 3 mM is ∼ 5.6 nm, we limit ourselves to a
particle with a maximum radius of 5 nm.
Next, we study the total potential, UTotal, acting on a

dielectric particle, and investigate how different particle
sizes, angles α, and values of constant K affect it. Due to
their finite size, particles can never approach the origin,
(r → 0). Thus, we first compute how close it can get to
the vertex (x = y = 0 in Fig. 2), i.e., the minimum dis-
tance between the vertex and the particle’s center, rmin,
measured along the bisecting line (see Fig. 3). The values
of rmin together with corresponding total charge Q of the
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FIG. 4: (Color online) Total potential, UTotal, for different wedge angles, α with C = 3 mM, along the bisecting angle of the
wedge for K = -1/2 (plus dashed blue line), 0 (dashed red line), 1/4 (pointed magenta line), 3/4 (dash dotted black line), and
1 (solid green line). The black dashed line shows the location of rmin value (see Table 1).

particle are summarized in Table 1 for different angles α
and for different particle sizes.

Figures 4 and 5 show the total electric potential energy,
UTotal, computed using Eqs. (3) - (6) along the bisecting
angles for the same Rp and α as in Table 1, for C = 3
mM and 10 mM, respectively. The right most column
in these figures (α = 180°) corresponds to the case of a
particle interacting with a charged plane.

Since a particle is attracted to the vertex when the
slope of UTotal is positive, one can see from Figs. 4 and 5
that in general the strongest attraction force occurs when
r is small. We also see that the particle is attracted to the
vertex only when K = 1 or 3/4, with K = 1 clearly cor-
responding to the strongest attraction (largest positive

slope of UTotal for small r), and with an attractive force
extending further away from the vertex for all studied
cases.

For C = 3 mM, Fig. 4, we see that a particle will
be attracted to the vertex for all four studied angles α
when its radius Rp = 3 and 5 nm, with a positive slope
generally extending farther out from the vertex for the 5
nm particle. On the other hand, when Rp = 1 nm, only
for α = 45° the particle is attracted to the vertex. The
reason for that is that for small Rp < LD and α → 180°,
the dielectrophoretic potential is much smaller than the
Coulomb potential (near the surface of the channel the

ratio
Up

Ud
≃ 2

σp

σs

LD

Rp
> 1, see Eqs. (8) and (9)), so that the

small particles are repelled. However, when α decreases,
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FIG. 5: (Color online) Same as in Fig. 4 but for C = 10 mM.

the potential varies more strongly, that is the magnitude
of the electric field increases, see Fig. 2, and as a result,
the attractive dielectrophoretic force increases and even-
tually overcomes the repulsive Coulomb force. For larger
particles, Rp > LD, this is manifested in the increasing
range of the region in which a particle is attracted to the
vertex. For comparison, the magnitudes of the attractive
force acting on a particle at its closest position to the
vertex for K = 1 and α = 45° is 0.61, 3.9, and 4.5 pN for
Rp = 1, 3, and 5 nm, respectively. To show how Utotal

affects the distribution of particles near the vertex, we
can use the Boltzmann distribution to calculate the ratio
of particle densities at its closest position to the vertex
to its farthest point on the plot. For the best case sce-
nario at 3 mM solution concentration, we found that this
ratio is ∼7.9 for K = 1, α = 45°, and Rp = 3 nm, which

indicates that particles are more likely to be found near
the vertex.

In order to see how decreasing Debye length modifies
the particle’s behavior, in Fig. 5 we show the total poten-
tial energy, UTotal, computed for larger electrolyte con-
centration of 10 mM. Using the same analysis as for Fig.
4, we see that a particle can be attracted to the vertex
for all four angles α both for Rp = 1 and 3 nm. On
the other hand, when Rp = 5 nm, it is repelled for α =
45°, while for other wedge angles there is a narrow range
of distances from the vertex where the slope of UTotal is
positive (the force is attractive). This can be attributed
to a smaller Debye length leading to a faster decay of the
dielectrophoretic force with the distance of the surface as
compared to the Coulomb force, see Eqs. (8) and (9), so
that large particles simply cannot get in the region of the
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strong electric field near the vertex. Similarly to the case
in Fig. 4, it can be seen that the region where the slope
is of UTotal is positive extends further from the vertex for
Rp = 3 nm and smaller α than for Rp = 1 nm. Also, no-
tice that the particle with Rp = 1 nm is now attracted for
all wedge angles, unlike the previous case of C = 3 mM

as in this case
Up

Ud
< 1. For comparison, the magnitudes

of the force acting on a particle at its closest position to
the vertex for K = 1 and α = 45° is 1.2 , 1.6, and 0.22 pN
for Rp = 1, 3, and 5 nm, respectively, where the first two
forces are attractive and the last one is repulsive. For the
best case scenario at 10 mM concentration (K = 1, α =
135°, and Rp = 3 nm.), the ratio of particle densities is
∼1.6.
From the analysis of Eqs. (8) and (9) and contour plots

of Fig. 2, one can see that in principle a charged particle
can also experience an attractive force to the sidewall
of the nanochannel. We can use the data in Figs. 4
and 5 to establish whether the particle is predominantly
attracted to the vertex or to the wall of the nanochannel.
To describe the interaction of a particle with the surface
of a nanochannel away from the vertex, we can use the
potentials for α = 180°, i.e., the right most columns in
Figs. 4 and 5. Direct comparison of the data between
this column and data for the other angles α shows that
attractive force is always stronger to the vertex than to
the surface.

IV. CONCLUSION

In this work, we investigated how the nanochannel
geometry and electrolyte concentration affect the elec-
trostatic potential distribution and the charged particle
behavior near the vertex of the nanochannel. For this
purpose, we computed the electrostatic potential from
the Poisson equation in the Debye approximation for a
region near the corner of a nanochannel assuming a con-
stant surface charge density on the nanochannel’s sur-
faces. We also took into account the induced dielec-
trophoretic force, in order to see if it can be responsible
for particle attraction to the vertex and/or side surfaces
of a nanochannel.
We found that the greatest variation in the electro-

static potential occurs near the corners of a nanochan-
nel. The wedge angle α, electrolyte concentration, val-
ues of Clausius-Mossotti factor, K, and particle size all
affect particle behavior near the vertex. We found that
the large particles and small ones exhibit attraction to
the vertex only for certain electrolyte concentrations and
wedge angles. However, particles of intermediate radius
are attracted to the corner of a nanochannel for all four
wedge angles α studied, irrespective of the electrolyte
concentration, with α = 45°, K = 1, and C = 3 mM be-
ing the case with the strongest attractive force between
the particle and the vertex. We also studied how the
electrolyte concentration affects the particle’s attraction,
and found that in order for large particles to get attracted

to the vertex smaller concentrations of electrolyte need
to be used. On the other hand, for small particles ei-
ther larger concentrations of electrolyte or smaller wedge
angles α are needed for this purpose.
From our results, we conclude that the dielectrophore-

sis can indeed overcome the Coulombic repulsion particu-
larly for small wedge angles and small particle sizes. This
could be the reason why DNA molecules are stretched
along (attracted to) the corners of a nanochannel.

Appendix A: Details of the Numerical Integration

A freeware package, bessk [27, 28], was utilized to
numerically calculate Kiλ(x) in Eq. (3), x = κr, for
0 < x ≤ 20 and 0 ≤ λ ≤ 400. bessk can also output
a scaled Bessel function, KS

iλ(x) = Kiλ(x)e
λπ/2, which

was also used in our numerical integration of Φ(r, φ) for
400 ≤ λ ≤ 1500.
In order to numerically evaluate the integral in Eq. (3),

we used the trapezoidal method of integration with an
integration step of 0.05. The integration was performed
in the region of interest with a grid spacing of 0.08 nm
in both x and y directions. For the integral in Eq. (3)
to converge at points near the walls and away from the
vertex, see Fig. 6, the upper limit of integration has to
be set at λmax = 1500.

FIG. 6: (color online) Electrostatic potential Φ versus λmax

calculated at a distance of 0.16 nm from the bottom surface
of the nanochannel, and at various distances from the vertex,
100 nm black (top) line, 20 nm red (middle) line, and 0.36 nm
blue (bottom) line. The plot clearly shows that the farther
away from the vertex, the larger the upper limit of integration
λmax is required to obtain an accurate value of the potential.

For this calculation the integral was split into three
parts. In the first part, the direct integration of Eq. (3)
was performed, but due to the machine specific limits
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for evaluation of the exponentials, the range of λ was
limited here to 0 < λ < 200. For 200 < λ < 400, approx-
imations had to be made, so that the integration could
be performed without invoking calculation of the scaled
Bessel function. In this range, the integral in Eq. (3) was
approximated without a loss of accuracy as

400
∫

200

sinh
[

λπ
2

]

sinh[λα]
(cosh[λφ] + cosh[λ(φ − α)])Kiλ(κr)dλ =

1

2

400
∫

200

eλ(φ−α)+λπ/2Kiλ(κr)dλ.

(A1)

For 400 < λ < 1500, the scaled Bessel function was
utilized in the integration, and in this range of λ’s, Eq.

(3) was approximated as

1500
∫

400

sinh
[

λπ
2

]

sinh[λα]
(cosh[λφ] + cosh[λ(φ− α)])Kiλ(κr)dλ =

1

2

1500
∫

400

(

1− eλπ
)

eλ(φ−α)e−λπKS
iλ(κr).

(A2)
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