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Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues.
These behaviors are controlled by complex biochemical networks within individual cells and coor-
dinated through cell-to-cell communication. Describing these behaviors requires new mathematical
models that can bridge scales – from biochemical networks within individual cells to spatially struc-
tured cellular populations. Here, we present a family of ‘multiscale’ models for the emergence of
spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental
advances that allow for the direct measurement and manipulation of the small signaling molecule
cAMP used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent
experiments, we model the Dictyostelium signaling network as an excitable system coupled to various
pre-processing modules. We use this family of models to study spatially unstructured populations of
‘fixed’ cells by constructing phase diagrams that relate the properties of population-level oscillations
to parameters in the underlying biochemical network. We then briefly discuss an extension of our
model that includes spatial structure and show how this naturally gives rise to spiral waves. Our
models exhibit a wide range of novel phenomena including a density dependent frequency change,
bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a
powerful tool for bridging scales in modeling of Dictyostelium populations.

I. INTRODUCTION

Collective behaviors are ubiquitous in nature. They
can be observed in diverse systems such as animal flock-
ing, microbial colony formation, traffic jamming, syn-
chronization of genetically engineered bacteria and social
segregation in human populations [1–5]. A striking as-
pect of many of these systems is that they span a hierar-
chy of scales and complexity. A common property of such
complex systems is that the collective behavior at larger
scales can often be understood without a knowledge of
many details at smaller scales. This important feature
allows one to study the system on multiple distinct spa-
tiotemporal scales and use the information obtained in
each scale to develop a more coarse-grained model at a
larger scale. This approach has been termed ‘multiscale’
modeling and provides a framework for the study of com-
plex systems [6–8]. Compared to a fully detailed mod-
eling approach, ‘multiscale’ models are more amenable
to computer simulations, contain fewer ad hoc parame-
ters and are easier to interpret. As a result these models
can be very useful in developing theoretical understand-
ing of complex systems. For example, great success has
been achieved in study of pattern formation in microbial
colonies by modeling them as a continuum of cells with
simple rules such as growth and diffusion [2].

One interesting system that exhibits different be-
haviors on different spatiotemporal scales is the social
amoeba Dictyostelium discoideum [9]. Dictyostelium has
a fascinating lifecycle. It starts as a population of uni-
cellular organisms that can separately grow and divide.
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However, when starved, these cells enter a developmen-
tal program where individual cells aggregate, form mul-
ticellular structures, and eventually, fruiting bodies and
spores. Upon starvation, cells produce the small signal-
ing molecule cAMP, and excrete it into the environment
in periodic bursts. Each cell responds to an increase
in the concentration of extracellular cAMP by secreting
more cAMP, resulting in pulses that propagate through
the environment as spiral waves. Cells eventually aggre-
gate at the center of these spiral waves and search for
food collectively [10]. In addition to its fascinating life
cycle, Dictyostelium is also an important model organ-
ism for eukaryotic chemotaxis. The Dictyostelium chemo-
taxis network is highly conserved among eukaryotes [11],
and is thought to be a good model for many medically
relevant phenomena ranging from neutrophil chemotaxis
and cancer metastasis to cell migration during animal
morphogenesis [12, 13].

There has been extensive work on modeling the Dic-
tyostelium signaling network, starting with the pioneer-
ing work by Martiel et al. [14]. These authors suggested
that oscillations and spiral waves emerge from negative
feedback based on desensitization and adaptation of the
cAMP receptor. Incorporating further extracellularly se-
creted molecules into this model allows for describing the
time-evolution of spiral waves [15, 16]. More recent mod-
els extend on this work by incorporating additional pro-
teins known to play a significant role in the Dictyostelium
signaling network [17]. Although very successful at pro-
ducing oscillations and spiral patterns, these models are
inconsistent with recent quantitative experiments that
show cells oscillate even in the presence of saturating
levels of extracellular cAMP [18]. Other models have fo-
cused on reproducing the eukaryotic chemotaxis network,
which shares many molecular components with the sig-
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naling network responsible for collective behavior [19, 20].
These models explore how cells respond to an externally
applied pulse of cAMP but do not attempt to model os-
cillations or spiral waves. Combinations of such models
with oscillatory networks represent a possible route for
‘multiscale’ modeling [21] but have not been extensively
studied. Other models have focused on reproducing spi-
ral waves in Dictyostelium populations using reaction dif-
fusion equations and cellular automata [22, 23]. While
these models tend to be very successful at producing pop-
ulation level behaviors, it is hard to relate these models
to the behavior of single cells. This highlights the need
for new mathematical models that can bridge length and
complexity scales.

Recently, there have been tremendous experimental
advances in the study of Dictyostelium. Using microflu-
idics and single-cell microscopy, it is now possible to pro-
duce high-resolution time-course data of how single Dic-
tyostelium cells respond to complex temporal cAMP in-
puts [18, 20, 21, 24–28]. By combining such quantitative
data with ideas from dynamical systems theory and the
theory of stochastic processes, we recently [29] proposed
a new universal model for the Dictyostelium signaling
network, based on an excitable signaling network cou-
pled to a logarithmic ‘pre-processing’ signaling module
(see Figure 1). To make a phenomenological model for
single and multicellular behavior we exploited the obser-
vation that the Dictyostelium signaling network is poised
near a bifurcation to oscillation. Each Dictyostelium
cell was treated as an excitable FitzHugh-Nagumo model
that was coupled to other cells through the concentra-
tion of the extracellular cAMP. This mechanism can be
considered an extension of the receptor-product coupling
scheme, proposed by Nagano [30]. One central finding of
this extension is that intracellular noise becomes a driv-
ing force for multicellular synchronization.

Inspired by these results, in this paper we analyze a
family of models for ‘fixed’ cells communicating via an
external signal such as cAMP. The external signal is de-
tected by the cell, transduced through a preprocessing
module which can be linear, logarithmic, or Michaelis-
Menten, and then fed into an excitable signaling network.
Using these models, we explore the rich population-level
behaviors that emerge in coupled oscillator systems from
the interplay of stochasticity, excitability, and the dy-
namics of the external medium. We then discuss an ex-
tension of our model to include space and show that spiral
waves naturally emerge in the limit of large population
densities. In contrast to earlier models for spiral waves,
we can explicitly include the dynamics of extracellular
cAMP and treat it distinctly from the dynamics of sig-
naling networks.

Our model naturally overlaps with, and complements,
the extensive literature of coupled oscillatory and ex-
citable systems. Coupled oscillators have been observed
in many different biological systems such as neuronal net-
works, circadian rhythm, Min system and synthetic bi-
ological oscillators [4, 31–34]. Most theoretical models

focus on directly coupled oscillators and relatively little
work has been done on noisy oscillators coupled through
a dynamical external medium such as cAMP [35, 36].
Furthermore, an important aspect of our model is the
role played by stochasticity. It is well-known that noisy
systems are not easily amenable to traditional methods
in dynamical systems theory [37, 38] and concepts such as
bifurcation point are ill-defined in this context. For this
reason, the Dictyostelium signaling network provides a
rich, experimentally tractable system for exploring the
physics of noisy oscillators coupled through an external
medium.

The paper is organized as follows. We start by intro-
ducing our family of models. We then construct phase di-
agrams describing the behavior of spatially-homogenous
populations, focusing on the regime where extracellular
signaling molecules are degraded quickly compared to
the period of oscillations. We then analyze the oppo-
site regime where signaling dynamics is slow and show
that this gives rise to novel new behaviors such as dy-
namic death. Finally, we extend the model to spatially
inhomogeneous populations and study how spiral waves
naturally arise in these models. We then discuss the bi-
ological implications of our results, as well as, the impli-
cations of our model for furthering our understanding of
coupled oscillators.

II. MODELING DICTYOSTELIUM
POPULATIONS

New experimental advances allow for the direct
measurement and manipulation of the small signaling
molecule cAMP used by Dictyostelium cells to coordi-
nate behavior in cellular populations. In such experimen-
tal systems, a few hundred Dictyostelium cells are con-
fined in a microfluidic device. The levels of intracellular
cAMP within cells can be measured quantitatively us-
ing a Förster Resonance Energy Transfer (FRET)-based
sensor [18, 29]. This allows for precise, quantitative mea-
surements of the response of the Dictyostelium signal-
ing networks to complex temporal signals of extracellular
cAMP. Cells are placed in a microfluidic device at a den-
sity ρ. The microfluidic device allows for rapid mixing
and exchange of extracellular buffer, which ensures that
cells experience a uniform and controlled environment.
The flow rate of buffer can be experimentally manipu-
lated. Large flows wash away the extracellular cAMP
produced by cells, resulting in a larger effective degrada-
tion rate, J , for extracellular cAMP. It is also possible to
add cAMP to the buffer at some rate αf . This experi-
mental set-up is summarized in Figure 1.

We start by building models for spatially unstructured
populations where the extracellular cAMP concentration
is assumed to be uniform. In this case, all cells in the
chamber sense the same extracellular cAMP concentra-
tions and we can ignore all spatial effects. To model in-
dividual cells, we build upon our recent work [29] where
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we showed that the dynamics of the Dictyostelium sig-
naling network can be modeled using a simple, univer-
sal, excitable circuit: the noisy Fitzhugh-Nagumo (FHN)
model. To realistically model the Dictyostelium signal-
ing circuit, it is necessary to augment the FHN with an
additional ‘pre-processing’ module that models the sig-
nal transduction of extra-cellular cAMP levels upstream
of this core excitable circuit (Figure 1B). In the full sig-
naling circuit, extracellular cAMP is detected by recep-
tors on cell membrane. The resulting signal is funneled
through several signal transduction modules, ultimately
resulting in the production of cAMP. To model this com-
plicated signal transduction process, we use a family of
preprocessing modules, whose output serves as an input
into the universal excitable circuit.

Inspired by the Dictyostelium circuit, we assume that
the dynamics of the preprocessing module are fast com-
pared to the excitable dynamics of cAMP signaling cir-
cuit. For example, the typical time scale associated with
the early signaling protein Ras is of order 30 seconds
whereas cAMP oscillations have periods of order 300 sec-
onds [18, 19]. This allows us to model the preprocessing
modules using a monotonically increasing function, I(S),
that relates the output of the preprocessing module to
the extracellular cAMP concentration, S. In this work,
we will consider three different biologically inspired pre-
processing modules: (1) a linear module I(S) = S where
the extracellular cAMP signal does not undergo any pre-
processing; (2) a Michaelis-Menten module,

I(S) =
βS

S +KD
, (1)

where the output is a saturating function of the extracel-
lular cAMP; and (3) the logarithmic module that senses
fold changes

I(S) = a ln (1 + S/K). (2)

Fold change sensing has been observed [29, 39] in re-
sponse to steps of cAMP, posing the latter preprocessor
as the likely candidate for Dictyostelium signal detection.
The output of these modules is fed into a universal, ex-
citable circuit modeled by the FHN. The FHN model
consists a set of inter-locking positive and negative feed-
back loops consisting of an activator, A, that quickly ac-
tivates itself through positive feedback, and on a slower
time scale, activates a repressor R, that degrades the ac-
tivator A. The FHN model is the prototypical example of
an excitable system, and can spike or oscillate depend-
ing on the external input. To incorporate the biology
of cAMP secretion by Dictyostelium cells in response to
external inputs, we assume that when a cell spikes, it re-
leases cAMP into the environment. To determine when
a cell spikes, we threshold the activator variable A using
a Heaviside function Θ(A), where Θ(x) = 1 if x > 0 and
Θ(x) = 0 if x = 0. Finally, we assume that cells produce
and secrete cAMP at a spike-independent basal rate, α0.

This can be summarized by the equations

dAi
dt

= Ai −
1

3
Ai

3 −Ri + I(S) + ηi(t), i = {1, 2, ..., N}

(3)

dRi
dt

= ε(Ai − γRi + C)

dS

dt
= αf + ρα0 + ρD

1

N

N∑
i=1

Θ(Ai)− JS,

where i is the index of cells changing from 1 to the total
number of cells, N . The variable Ai and Ri are the in-
ternal states of the i’th cell and correspond to activator
and repressor, respectively. ε, γ and C are parameters of
the FHN model and ensure their correct choice ensures
the model’s excitability. S is the concentration of extra-
cellular cAMP and I(S) is the preprocessing module, ρ
is the density of cells, D measures the amount of cAMP
released into the environment when a cell spikes, J is the
total degradation rate of the extracellular cAMP, α0 is
the basal leakage rate of cAMP, and αf is cAMP flow
rate provided by the experimenter. Finally, we have in-
corporated stochasticity using a Langevin term, ηi(t). In
particular, ηi(t) is an additive Gaussian white noise term
with mean and correlation defined as:

〈η(t)〉 = 0 (4)

〈ηi(t)ηj(t′)〉 = σ2δijδ(t− t′)

The model and corresponding parameters are summa-
rized in figures 1A and 1B.

Using this model, we can explore a series of questions
about how the architecture of the Dictyostelium signal-
ing circuit within cells affects population-level behaviors.
Recent experimental data suggests that the behavior of
Dictyostelium circuit is well described by the logarith-
mic preprocessing module and responds to fold changes
in extracellular cAMP [29]. This leads to natural ques-
tions about the consequences of pre-processing in the
Dictyostelium signaling circuit. In particular, using our
model we will examine how Dictyostelium exploits the
interplay between stochasticity, excitability, and signal
processing to control population-level behavior.

III. BEHAVIOR FOR LARGE DEGRADATION
RATES OF EXTRACELLULAR CAMP

A. The quasi-steady-state limit

In general, the dynamics described by the family of
models described by Eq. (3) are quite complex. For this
reason, it is worth considering various limits in which
the dynamics simplifies. One such limit that can be re-
alized experimentally is the limit where the extracellular
cAMP is degraded quickly compared to the dynamics of
the Dictyostelium circuit. This limit can be realized ex-
perimentally by changing the flow rate of buffer into the
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microfluidic device (see Fig. 1). In this limit, there exists
a separation of time-scales between external medium and
individual oscillators and we can treat the extra-cellular
cAMP as a fast variable that is always in a quasi-steady
state and set dS/dt = 0 in (3). In this limit, one has

S ≈ αf + ρα0

J
+
ρD

J

1

N

N∑
i=1

Θ(Ai). (5)

For the remainder of this section, we will work within this
quasi steady-state approximation. A formal definition of
what constitutes large J will be discussed in section IV
where we will give numerical evidence showing that there
exist a minimum value Jm above which this approxima-
tion is valid.

In this limit, it is helpful to divide the extracellular
cAMP into two terms that reflect the two mechanisms
by which extracellular cAMP is produced (see Fig. 1).
First, cells can secrete cAMP at a basal rate α0. We
denote the extracellular cAMP produced by this basal
leakage, S0, and in the quasi steady-state approximation
this is given by

S0 ≡
αf + ρα0

J
. (6)

where the experimental input flow, αf is also incorpo-
rated into the definition. The second mechanism by
which extracellular cAMP is produced is through the re-
lease of cAMP into the environment when cells spike.
We can parameterize the extracellular cAMP produced
by this latter mechanism by

∆S ≡ ρD

J
, (7)

with the total extracellular cAMP produced by spiking
given by the expression,

∆S 〈Θ(A)〉 ≡ ∆S
1

N

N∑
i=1

Θ(Ai) (8)

To better understand the quantities S0 and ∆S, it is
useful to consider an ideal situation where all the cells
in a population are perfectly synchronized. In this case,
〈Θ(A)〉 will periodically switch between 0 and 1. Hence
S will behave like a square wave with baseline S0 and
amplitude ∆S (see figure 1C). Thus, S0 corresponds to
the cAMP levels in the troughs and S0 +∆S the levels at
peaks. These two quantities provide us with a succinct
way to represent our model and in the following section
and we will use them to produce phase diagrams in the
large J regime. Finally, we note that the square wave
form of S is merely a result of our choice of Heaviside
function in dynamics of the external medium. Nonethe-
less, the basic separation of time scales discussed above
holds even when the Heaviside function is replaced by a
more realistic smooth function.

B. Phase diagrams for population level oscillations

Populations of Dictyostelium cells can exhibit several
qualitatively distinct behaviors depending on the param-
eters of our model. Cells in a population can oscil-
late in phase with each other resulting in synchronized,
population-level oscillations. We will call this behavior
synchronized oscillations (SO). Alternatively, individual
cells may oscillate, but the oscillations of the cells are
out of phase. In this case, the phase differences between
cells prevent the formation of coherent population level
oscillations and we call these incoherent oscillations (IO).
Finally, even individual cells may not spike. We will la-
bel this behavior No Oscillations (NO). To distinguish
between these behaviors, it is useful to define three or-
der parameters: the coherence, the single-cell firing rate,
and population firing rate. Coherence measures how syn-
chronized cells are within a population and is 1 for a
completely synchronized population and 0 for a fully in-
coherent one (see Appendix C for a formal definition).
To determine the rate at which a cell i spikes, we count
how often the activator variable Ai becomes positive over
some averaging time. We then average the firing rate of
individual cells over the population. Finally, we normal-
ize the rate so that the single cell firing rate is 1 for
fast oscillations and is 0 in the absence of spiking (see
Appendix B for a formal definition). The population fir-
ing rate is defined as the firing rate of the average of
activator across all cells in the population, 〈Ai〉 and is
also normalized to be between 0 and 1. Note that when
we calculate the population firing rate we are measur-
ing whether the average activator over all cells exhibits a
spike. If cells are unsynchronized, this average activator
〈Ai〉 will not exhibit any spikes. Thus, population firing
rate is a measure of spike counts in a population that
fires synchronously.

Using these order parameters, we constructed phase
diagrams characterizing the population level behavior for
large degradation rates as a function of S0 and ∆S (see
equations (6),(7)). We calculated the coherence, single
cell firing rate and population firing rate for equation (3)
for our three preprocessing modules as a function of S0

and ∆S (see Figure 2). Each data point on these phase
diagrams corresponds to one simulation of equation (3)
for a fixed simulation time (see Appendix A) where J , α0,
and ρ are kept the same for the whole phase diagram and
αf and D are chosen such that the desired S0 and ∆S
are achieved. Finally, we checked that phase diagram was
insensitive to a ten fold increase in the degradation rate
J confirming our assumption that the dynamics depend
on the parameters only through ∆S and S0 (see figure 1
in Ref. [40]).

This phase diagram contains three qualitatively dif-
ferent regions. We have labeled these different regions
with NO for No Oscillation, CO for Coherent Oscilla-
tion and IO for Incoherent Oscillation. The crossover
between these regions, which will be explained below, is
shown by dashed lines and is labeled as CC for Coher-
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ent Crossover, IC for Incoherent Crossover and SC for
Sensitivity Crossover. Note that the boundaries between
different regions is approximate and has been achieved
simply by a rough thresholding. In reality there is no
sharp transition from one ‘region’ to another but instead
due to noise this ‘transition’ happens in a continuous way.
This is a general feature of noisy bifurcating systems and
in practice, depending on the problem under study, a rea-
sonable threshold has to be chosen to separate different
qualitative behaviors. As a result the schematic phase
diagrams drawn in figure 2 are just rough sketches of the
qualitative behavior of the system.

In the NO region, single cells are silent and oscillations
do not occur. As a result, both coherence and single cell
firing rate are zero. In this region, the basal level of
cAMP, S0, is so small that the cells cannot be excited
into oscillation. Note that at all points in the NO region,
the parameters are such that individual cells are below
the bifurcation to oscillations in the FHN model. How-
ever, even below the bifurcation cells occasionally spike
due to stochasticity. In the CO region, cells oscillate co-
herently. This can be seen by noting that single cell firing
rate is nonzero and coherence is close to one. By study-
ing multiple time-courses we found that cell populations
with coherence values approximately above 0.6 can be
considered coherent (see figure 3 in Ref. [40]).

In the IO region, single cells oscillate but are unsyn-
chronized. On the phase diagrams these are regions with
large values of single cell firing rate (close to 1) and small
values of coherence (approximately less than 0.6). In this
region individual cells oscillate and, in each firing, se-
crete cAMP into the environment. However this change
in extracellular cAMP is not enough to excite the cells to
synchronize. To understand the reason behind this, we
need to look at changes in the input, I(S), that the ex-
citable systems receive. For a population of cells that is
oscillating coherently, S(t) can be thought of as a square
wave oscillating between S0 and S0+∆S (see Figure 1C).
Then the input of each excitable module within cells can
be visualized as a square wave oscillating between I0 and
I0 + ∆I with:

I0 = I(S0) (9)

∆I = I(S0 + ∆S)− I0

If changes in ∆I, are smaller than the FHN’s sensitivity
for signal detection, single cells will instead experience a
constant input with no discernable fluctuations and can-
not be coherent. For a preprocessor with a monotonically
increasing convex functional form, I(S) (with I(0) = 0)
such loss of coherence may happen due to very small ∆S
or very large S0.

Our phase diagrams exhibit a number of crossovers
between the three qualitative behaviors outlined above.
The Incoherent Crossover (IC) separates regions with
no oscillations from those where cells oscillate incoher-
ently. This transition occurs when ∆S is not large
enough to produce any discernible changes in the exter-
nal medium. As a result each individual cell goes through

this crossover as if it was alone and not communicating
with other cells. For these uncoupled cells, as S0 is in-
creased the system gets closer to bifurcation and fires
more often. Figure 2 in Ref. [40] shows this increase in
firing rate for a single cell corresponding to ∆S = 0.

There is also a crossover from the no oscillation re-
gion to coherent population level oscillations. We have
labeled this the Coherent Crossover (CC). Here, as S0

is increased, individual cells become more likely to spon-
taneously spike. These spontaneous spikes happen be-
cause, given a monotonically increasing function I(S),
for larger S0 the excitable system’s input will be closer
to bifurcation point, causing the system to become more
excitable. As a result, noise can more often kick the
system out of its stable fixed point, leading to a spike
commonly referred to as an accommodation spike [41]. If
∆S is large enough, a single (or few) cell’s spike will be
enough to cause a change in the external medium that
can be sensed by other cells. The other cells will then
get excited with a small delay, creating the effect of a
synchronized spike. Because FHN has a refractory pe-
riod, for sometime no cell will spike, until the effect is
repeated again. The overall behavior in this way seems
similar to coherent oscillations, but is in reality periodic
synchronized noise-driven spikes that are happening way
below the system’s bifurcation point. To show that this
effect is noise-dependent we decreased noise by an order
of magnitude for the system with logarithmic preproces-
sor and plotted the results (inset of 2C). We observed
that CC shifted to the same value of S0 as IC, indicat-
ing that the ‘knee’ shaped region (intersection of CC and
SC) emerges due to noise.

Finally, Sensitivity Crossover (SC) separates regions
with coherent oscillation from those with incoherent or
no oscillations. As one crosses the SC line, cells lose their
ability to detect the changes in the external medium.
Each excitable system has a response threshold and can-
not respond to abrupt changes in its input if they are
below this threshold. In our model this can occur either
because ∆S is very small or due to the nonlinear form of
preprocessor. The former case is a manifestation of the
fact that for very small changes in the external medium,
cells do not have any means of communication. How-
ever the latter case requires some further explanation.
For two of the preprocessors used in our simulations (i.e.
Michaelis-Menten and logarithmic) the function I(S) was
chosen to be concave and monotonically increasing. This
means that, for a fixed ∆S, as S0 is increased ∆I in equa-
tion (9) decreases. Once ∆I goes below the detection
sensitivity of excitable modules, coherence will be lost.
Note that since increasing S0 and/or decreasing ∆S lead
to decrease of ∆I, for larger values of ∆S a larger value
of S0 is required to take the system from coherence to
incoherence (assuming that sensitivity of excitable sys-
tem is roughly independent of baseline I0). This is why
in figure 1B,C the slope of SC is positive.

An interesting observation is that the preprocess-
ing module into the excitable system can dramatically
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change the phase diagram of the cellular population.
This suggests that it is possible to have different popula-
tion level behaviors from the same underlying excitable
system by changing the upstream components of a net-
work. We now briefly discuss the differences in phase
diagrams arising from the choice of pre-processing mod-
ules. The first row in figure 2A shows the phase dia-
grams for a linear preprocessor. As can be seen in the
schematic (last column), the curve for SC is almost flat
(with a slight downward slope), a signature that single
cell’s sensitivity to changes in the external medium is al-
most independent of the baseline S0. However inclusion
of a preprocessing module completely changes this effect.
Figure 2B and figure 2C show the results for a Michaelis-
Menten and logarithmic preprocessor respectively. Note
that in both cases SC has a dramatic positive slope. This
is due to the concave monotonically increasing nature of
the preprocessors chosen.

It is interesting to note that for the logarithmic prepro-
cessor there is an extra ‘knee’ (where CC and SC inter-
sect) that does not exist when Michaelis-Menten is used.
A behavior reminiscent of this subregion has been ob-
served experimentally [29] where increasing S0 (by chang-
ing input flow) for a synchronously oscillating population
destroys the oscillations, whereas further increase leads
to incoherent oscillations. This suggests that the sys-
tem is tuned to this corner. Interestingly, in this region
of phase diagram S0 and ∆S take the smallest possible
values that can lead to coherent oscillations. Since S0

and ∆S both correspond to production of cAMP by the
cell, it seems reasonable from an evolutionary point of
view if the system is fine-tuned to minimize its cAMP
production while achieving the coherent oscillations. Ex-
perimentally, it is possible to move horizontally along
this phase diagram by changing αf and move laterally
by changing ρ and J . One interesting prediction of this
phase diagrammatic approach is that for a coherently os-
cillating population of cells, increasing degradation rate,
J should decrease the minimum cAMP flow (αf ) required
to destroy the oscillations. This is shown in schematic of
figure 2C. In this figure the thin red dashed line corre-
sponds to the ‘natural’ parameters of the cell, when no
external cAMP flow is applied. Note that any mechanism
(e.g. increasing ρ or decreasing J) that can move the cells
upward along this line (from point 1 to point 2) will re-
sult in an increase in its distance to SC corssover line (as
noted by the double-arrow). This distance corresponds
to a change in ∆S or equivalently input flow of cAMP,
αf , required to destroy a population of coherently oscil-
lating cells (going from CO to NO). In [29] (Figure 6C)
an experiment was conducted on a population of coher-
ently oscillating cells where J and αf were changed. The
authors observed that at smaller values of degradation
rate J , a larger input flow αf was required to destroy the
oscillations. This preliminary experiment is in agreement
with the explanation provided here.

Experimentally it is possible to change both ρ and J .
Gregor et al [18] measured population firing rate for dif-

ferent values of ρ and J . They showed that there is a
data collapse of the population firing rate as a function
of ρ/J . To understand this behavior, we made phase di-
agrams as a function of ρ and J (Figure 3). The insets
show that for large degradation rates, this data collapse
occurs for all choices of pre-processing modules. The un-
derlying reason for this is that, as discussed above, in this
limit the population dynamics depends on the external
medium only through S0 and ∆S. Both of these quanti-
ties depend on ρ and J through the combination ρ

J (see
Eq 6 and Eq. 7).

C. Frequency increase as a function of extracellular
cAMP

Our model also suggests a mechanism for cell popu-
lations to tune their frequency in response to steps of
cAMP. An example of a time-course simulation of this
behavior is shown in figure 4A. In this figure a step of
external cAMP is flowed into a population of coherently
oscillating cells, leading to an increase in the frequency of
oscillations. This frequency increase suggests that pop-
ulations may be able to tune their frequency by modu-
lating sources of cAMP secretion. For example, in our
model, an increase in basal rate of cAMP, α0, is equiva-
lent to flowing cAMP into the chamber and can lead to
an increase in frequency of oscillations.

To explain the underlying reason for the frequency in-
crease, it is useful to consider the extreme case of a per-
fectly synchronized oscillating population. For this case
the extracellular cAMP concentration, S(t), will be a
square wave that oscillates between S0 and S0 + ∆S (see
figure 1C). As a result, the input to the FHN module will
be a square wave oscillating between I0 and I0 + ∆I (see
equation (9)). Thus, the dynamics of individual cells can
be thought of as an FHN that periodically switches be-
tween two cubic nullclines, corresponding to the inputs
I0 and I0 +∆I. A schematic of the phase portrait of this
system is shown in figure 4B for two different values of
∆I. As can be seen from this figure, a decrease in ∆I de-
creases the distance between the two cubic nullclines and
leads to a shorter trajectory, hence larger frequency. So
any mechanism that can decrease ∆I can lead to an in-
crease in frequency. One such mechanism is by exploiting
the nonlinearity of the preprocessing module. Note that
in our example αf is being increased while other param-
eters of the system are kept constant. This is equivalent
to increasing S0 while keeping ∆S constant. Since I(S)
is a monotonically increasing concave function, given a
constant value of ∆S an increase in S0 will lead to a
decrease in ∆I (see figure 4). And this, in turn, leads
to an increase in frequency. In practice, there are two
other mechanisms that also contribute to frequency in-
crease. However, they are not multicellular effects and
happen independent of preprocessing module. The in-
terested reader can refer to Appendix E for a detailed
description.
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Based on experimental results, in [29] we conjectured
that wildtype cells should reside on the corner of the
schematic in figure 2C where SC and CC intersect.
Changes in ρ will move the system along the thin red
dashed line in this schematic. However, to produce the
frequency change we have tuned the parameters of the
system to a different point (green dots in heatmaps of
figure 2C). This change of parameters was necessary to
ensure that initially the cells were not oscillating at max-
imum frequency and yet would stay synchronized as αf
was increased. As a result it may not be possible to ob-
serve this change of frequency in wildtype Dictyostelium
cells. Nevertheless, having a mechanism for tuning fre-
quencies has the potential to be observed if one could
change the system’s multicellular parameters. For exam-
ple it may be possible to change Dictyostelium parame-
ters by knocking out genes involved in secretion of cAMP.
And it also may be possible to implement this mechanism
in synthetic biological networks of other organisms.

IV. SMALL DEGRADATION RATE AND
BISTABILITY

Thus far, we have studied the behavior of our model
in the large J regime. In this section, we will instead
focus on the regime where this parameter is small. For
small values of J , the dynamics of the external medium
becomes too slow to follow the oscillations of single cells.
As a result, cells become unsynchronized. A behavior
somewhat similar has been termed ‘dynamic death’ by
Schwab et al. [36]. These authors studied a population of
oscillators coupled to an external medium and observed
incoherence due to inability of external signal to follow
individual oscillators. In their system, the cause of in-
coherence was slow response of the external medium to
inputs rather than slow degradation. However, in both
cases, the underlying reason for the loss of coherence is
the slow dynamics of external signal.

We can numerically define a minimum degradation
rate, Jm, below which the dynamics of the external
medium are too slow to sustain population level oscil-
lations. To do so, we identified the boundary separating
the region of coherence from incoherence by thresholding
the coherence at approximately 0.6. This boundary is in-
dicated by the green curves in the coherence plots in the
first column of Fig. 3. We call the smallest value of J on
this curve the minimum degradation rate, Jm. Figure 5A
shows a raster plot of the oscillations for J = 2Jm and
J = 0.5Jm, with all other parameters fixed. Notice that
decreasing J below Jm completely destroys the ability to
have synchronized population-level oscillations. Finally,
it is worth emphasizing that due to the stochastic nature
of our system, there is no sharp transition from coher-
ence to incoherence at Jm. Rather, Jm serves as a crude,
but effective scale, for understanding external medium
dynamics.

To better understand Jm, we asked how it scaled with

the cell period in the underlying FHN model. Since Jm
is a measure of when the external signaling dynamics are
slow compared to the signaling dynamics of individual
cells, we hypothesized that Jm would scale with the fre-
quency of oscillations in the underlying FHN model. To
test this hypothesis, we changed single cell frequencies
by changing ε in equation 3. We then determined Jm
in each case by finding the boundary between coherence
and incoherence (see figure 4 in Ref. [40]). The results
are shown in figure 5B. As postulated, we find that in-
creasing single cell firing rate leads to a higher value of
Jm. These results numerically confirm our basic intuition
that Jm is a measure of when the external signal response
is much slower than the time scale on which individual
cells respond to stimuli.

In section III B we studied the system in the J � Jm
regime. Here, we re-examine the phase diagrams changes
in the opposite limit when J is decreased below Jm. To
this end, we produced a set of phase diagrams with dif-
ferent values of J . Figure 6 shows three representative
phase diagrams showing this crossover. Notice that the
phase diagram above Jm at J = 3.2Jm is very similar
to 2C; however, decreasing J below Jm to Jm = 0.32Jm
creates a completely incoherent population in which sin-
gle cells can oscillate in regions that previously contained
no oscillations (NO). This is likely due to the fact that
once a cell fires, the secreted cAMP takes a very long
time to be degraded. During this time, other cells can
spontaneously fire. These spiking events are incoherent
but still give rise to elevated levels of external cAMP.

More interestingly the transition from the behavior at
large degradation rates (J > Jm) to small degradation
rates (J < Jm) happens through an intermediate state
with many peculiar (or pixelated) data points (the mid-
dle row in figure 6A). To ensure that these ‘pixelations’
are not simulation artifacts we looked at some of them
in more detail. Figure 6B is a time-course of the whole
population for the point corresponding to the white circle
on 6A. Note that the time-course is exhibiting a burst-
like behavior. The system is in a low frequency state
for some period of time, then stochastically switches to a
high frequency state and after a few cycles switches back
to original state. Interestingly, it remains coherent during
the whole process. Since in 6B there are stretched flat
regions with no spikes, the total spike count decreases,
leading to a smaller firing rate. As a result in these pix-
elated regions of the phase diagram a highly coherent
pixel may exhibit a very small firing rate. Furthermore
the color in the phase diagram changes from one pixel
to another. This is due to the stochastic nature of the
observed. To ensure that this is the case, we changed the
seed of the random number generator, and even though
we still observed bistabillity in the pixelated region, the
pixelation pattern was different. In conclusion, this pix-
elation pattern is due to a bistable behavior that tends
to be stochastic. At this point we do not have a conclu-
sive theory as to why this bistability happens. However,
a similar behavior had been reported by Schwab et al.
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[35] where a population of phase oscillators coupled to
an external medium exhibited bistability as mean oscil-
lator frequency was increased. We suspect that a similar
mechanism is also in effect here.

V. SPATIAL EXTENSION OF MODEL
PRODUCES SPIRAL WAVES

As a final step in our modeling approach, we extended
equation 3 to model dense population of Dictyostelium
cells. Here, we restrict ourselves to discussing the biolog-
ically realistic case of a logarithmic preprocessing mod-
ule I(S) = a ln

(
1 + S

K

)
, though similar results were ob-

tained for other pre-processing modules. To model dense
populations, we treat the activator, A(x, y), repressor,
R(x, y), and extracellular cAMP, S(x, y) as a function of
the spatial coordinates x, y. Furthermore, we explicitly
model the diffusion of the extracellular cAMP. This gives
rise to a set of reaction-diffusion equations of the form:

dA

dt
= A− 1

3
A3 −R+ I(S), (10)

dR

dt
= ε (A− γR+ C)

dS

dt
= ρα0 + ρDΘ(A)− JS +∇2S

For simplicity we have not included the noise term, η,
and the input cAMP flow, αf . Furthermore, diffusion co-
efficient has been set to 1 by absorbing it into the spatial
coordinate. We simulated these equations using no-flow
boundary conditions and random initial conditions. Fig-
ure 7 shows a snapshot of activator, A, over the whole
space. The left column shows the results with initial
conditions chosen such that at most one spiral forms (see
Appendix D). Note that a spiral wave is clearly formed at
large values of degradation rate (J = 10). However, de-
creasing this parameter leads to complete disappearance
of the spiral pattern. Here, we have kept ρ/J constant,
as to provide a comparison with previous sections at a
constant value of background cAMP and firing-induced
cAMP. However, decreasing J individually also leads to
loss of spirals (figure 5 in Ref. [40]), indicating that this
effect is not the result of a decrease in cell density. The
right column in figure 7 shows the same results with ini-
tial conditions that lead to multiple spirals (see Appendix
D). In this case, a similar disappearance of spiral waves is
observed as degradation rate of cAMP is decreased. Dis-
appearance of spiral waves has been observed in RegA
mutants[42]. Since RegA intracellularly degrades cAMP,
it can be thought of as one contributing factor to degrada-
tion rate J in our simplified model. As a result, knocking
out this gene could decrease J and have an adverse effect
on spiral formation. In this regard, this simple extension
of our model is compatible with experiments.

Besides models of Dictyostelium discoideum, spiral
patterns in excitable media have been observed in many

other contexts such as cardiac arrhythmia, neural net-
works and BZ reactions. In this regard, emergence of
spiral patterns in a diffusive excitable medium is not new.
However, in the context of Dictyostelium discoideum, a
key difference between our model and previous models
such as the one proposed by Aranson et al [22] is that in
our model only the external medium S can diffuse. Previ-
ous models made the biologically unrealistic assumption
that the intracellular variables could diffuse and the ex-
ternal medium did not.

VI. DISCUSSION

During starvation, Dictyostelium discoideum cells se-
crete periodic spikes of cAMP in response to extracellu-
lar cAMP levels and communicate by propagating waves
of cAMP across space. We modeled this behavior us-
ing a ‘multiscale’ modeling approach. We constructed a
family of dynamical models of ’fixed’ cells that increased
in complexity. We started by modeling isolated cells.
We then extended to the model to understand spatially-
homogenous multicellular populations. Finally, we in-
cluded the effects of space and diffusion. In our approach,
we treated individual cells as noisy excitable systems that
receive their input from a preprocessing module which
responds to external cAMP concentrations. We cou-
pled these cells through an external medium and studied
their oscillations and coherence through phase diagrams.
These phase diagrams provided us with a succinct, inter-
pretable representation of our model. Using these dia-
grams, we found that the complex interplay of multicel-
lularity, stochasticity and signal processing gives rise to
a diverse range of phenomena that have been observed
experimentally. By including space into this model we
were able to produce spiral patterns and study them in
different regimes.

Using phase diagrams, we showed that the crossover
from silence to coherent oscillations is noise-driven. In
this process, some cells randomly fire, leading to the sud-
den secretion of cAMP and an increase in the external
cAMP levels. This change in extracellular cAMP levels
induces other cells in the population to spike, resulting
in synchronized oscillations across the population. This
behavior emerges from the complex interplay of cellular
communication and stochasticity. In this process, each
population-level spike consists of early spikers and late
spikers, where the former drives the latter. This behav-
ior is reminiscent of ’pacemaker’ cells which are hypoth-
esized as driving forces for synchronization and pattern
formation. But unlike traditional models, in our model
no cell is intrinsically a pacemaker. Instead, early spik-
ers are picked at random. Thus, noise is crucial to the
observed dynamical behavior of cellular populations.

To explore the effect of preprocessor we studied a fam-
ily of models with different preprocessing modules. We
found that the choice of a nonlinear function as the pre-
processor leads to a new crossover from coherent oscil-
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lations to incoherent oscillations that is non-existent if
a linear preprocessor was used. Furthermore, we find
that the choice of preprocessors can lead to different re-
sponses to noise, with distinct signatures that can be in-
ferred from experimental multicellular data. This allows
us to confirm that Dictyostelium cells use a logarithmic
preprocessor, a claim that has been suggested based on
independent single cell experiments [29].

We encountered several interesting behaviors in our
model that have implications for other coupled oscillator
systems. For example, we found that the nonlinearities
in the preprocessor can lead to a mechanism for popu-
lations of oscillators to change their frequency. Further-
more we found that slowing the dynamics of the external
medium leads to incoherent oscillations. This behavior
has been termed ‘dynamic death’ for coupled oscillators
[35, 36], and we find that it occurs through a bistable
state. Furthermore, in the spatial extension of our model,
we observe a similar loss of spiral patterns due to slow
dynamics of the medium. This suggests that the concept
of dynamic death can be extended to spatially heteroge-
neous populations.

Synchronization and formation of spiral waves provides
a spatial cue for Dictyostelium cells, which guides them
toward a common aggregation center. As a result, dy-
namic death can be undesirable for a population’s sur-
vival. It is well known that in wildtype cells phosphodi-
esterases (PDE) are constantly secreted intra- and extra-
cellularly to degrade cAMP. We suspect that this mech-
anism may have evolved to avoid incoherence due to dy-
namic death.

The proposed model in this paper is a phenomenolog-
ical mechanism for Dictyostelium signaling, which is in
agreement with several experiments. However, there may
not be a one-to-one correspondence between variables of
our model and components within the signaling network
of Dictyostelium cells, but some molecular species are
more likely to contribute to this process. First, FHN is
constructed by an activator-repressor mechanism. As a
result it requires a negative feedback mechanism for its
function. PKA has been suggested to regulate ERK2 and
RegA, which leads to repression of intracellular cAMP
[10, 43]. This combined with activation by ACA pro-
vides a candidate molecular origin for the excitable sys-
tem. Second, the logarithmic preprocessing module has
to be upstream of this excitable module. This module
needs to respond to fold-changes over a wide range of
input cAMP in a time-scale faster than period of camp
oscillations. Enzymatic reactions can exhibit such be-
havior through Michaelis-Menten like mechanisms [44].
For example the PIP3 and PI3K downstream of CAR1
could potentially exhibit this behavior within a parame-
ter range. To explore any such possibility further experi-
ments are required, where response of these molecules to
changes in input camp is studied.

Despite the descriptive and predictive success of our
simple model [29] it misses several points that could be
the subject of future works. For example, we have treated

the preprocessor as a static module. However, a more
complete model that describes adaptation needs to in-
clude the dynamics of this module. Models that contain a
feedforward network [19–21] seem to be good candidates
for this purpose. Furthermore, we have ignored the ef-
fect of noise in our spatially extended model. It would be
interesting to find how noise can affect the random for-
mation of spiral patterns and their stability and explore
to what extent a spatially extended model is amenable
to the phase-diagrammatic approach proposed here. Fi-
nally, it would be interesting to study our model through
analytical approaches such as Fokker-Planck equations
[38, 45] and explore the possibility of new phases of be-
havior that have been neglected in our study.
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Appendix A: Forward Integration

In all simulations stochastic differential equations
(equation (3)) have been solved using Euler-Maruyama
method. The time-step throughout the paper has been
dt = 0.005 unless explicitly stated otherwise. Through
trial and error we found that larger time-steps lead to un-
stable solutions in large parameter regimes and smaller
time-steps did not lead to different results. As a result
we believe that our choice of time-step produces reliable
results. The simulations were started from random ini-
tial conditions with Ai(t = 0) and Ri(t = 0) indepen-
dently chosen from a Gaussian distribution with mean 0
and standard deviation 2 and S(t = 0) was set to zero.
Although these initial conditions are random and inde-
pendent for different cells, there still may be correlations
between them, meaning that the cells may be partially
in phase. To avoid such correlations affecting coherence
among cells, we ran each simulation for some waiting
time twt and then continued the simulation for an extra
run time trt. The results during the run time are what
is shown throughout the paper, while the results during
the waiting time were discarded. We found that each
simulation required a different amount of waiting time.
This was especially dramatic for the case with a very
small noise (the inset in figure 2C) where an extremely
long waiting time was required. To determine the proper
waiting time, we ran each simulation for multiple waiting
times and compared the results. Usually when waiting
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time was too short we could see patterns of ‘bleeding’ in
the phase diagram that could be avoided at longer wait-
ing times. By comparing these results in each figure we
established a waiting time twt during which the system
could ’forget’ its initial conditions.

Appendix B: Firing Rate

To find the firing rate,R(A), of a signal A(t) we thresh-
olded the signal compared to zero and counted the num-
ber of positive ‘islands’. By positive ’islands’ we mean
continuous positive intervals (i.e. A(t) > 0) that are
flanked by negative intervals (i.e. A(t) ≤ 0). Such a def-
inition would produce a correct measure of firing rate, if
the signal was smooth. However, due to the noisy na-
ture of the simulations, spurious small islands may form,
which could be mistakenly counted as extra peaks. To
avoid these undesirable counts we will filter out any small
‘islands’. The procedure is as follows:

We first threshold the signal by defining B(t):

B(t) =

{
1 A(t) > 0
0 otherwise

(B1)

To get rid of any noise-induced small ’islands’ in B(t)
we pass it through a low-pass filter. This is done by
convolving the signal with:

H(t) =

{
1 0 ≤ t ≤ τ
0 otherwise

(B2)

where in all simulations τ = 1. To ensure that real peaks
are not filtered out, this time-scale is chosen much larger
than a typical spurious island width, but much smaller
than any real peak width that we ever observed in our
simulations. The result of the convolution is then thresh-
olded again to give

L(t) =

{
1 B(t) ∗H(t) > 0
0 otherwise

(B3)

where star stands for convolution. We then count the
number of positive ‘islands’ in L(t) which correspond to
the number of peaks in A(t). The result is then divided
by total time to give the value for firing rate, R(A). We
tested this method on several signals and it was in perfect
agreement with counts done manually.

Appendix C: Coherence

We defined a measure of coherence among a population
of oscillators, F , by treating each cell as a phase oscilla-
tor. This was done by treating variables (A,R) of each os-
cillator as Cartesian coordinates and transforming them
into polar coordinates. We then adopt the same defini-
tion for coherence used by Kuramoto [46]. The definition
is such that for a perfectly incoherent system F = 0 and

for a perfectly coherent system F = 1. The mathematical
definition of this quantity is as follows:

A0 =

∫ twt+trt

twt

dt
1

N

N∑
k=1

Ak(t) (C1)

R0 =

∫ twt+trt

twt

dt
1

N

N∑
k=1

Rk(t)

Zk(t) = (Ak(t)−A0) + (Rk(t)−R0) i ≡ rk(t)eiφk(t)

F =
1

trt

∫ twt+trt

twt

dt
1

N

N∑
k=1

eiφk(t)

where twt and trt are respectively the waiting time and
run time of the simulation (see Appendix A).

Figure 3 in Ref. [40] provides a pictorial view of how
F corresponds to coherence among a population of cells.
It is easy by eye to pick coherence for populations with
F & 0.6, whereas smaller values seem incoherent.

Finally note that for a deterministic silent popula-
tion this measure is ill-defined and will be equal to 1.
But, since in all of our multicellular simulations noise is
present, we instead have F ≈ 0 whenever cells are not
oscillating.

Appendix D: Reaction Diffusion Simulations

The spatial simulations were done using Euler method
with Neumann boundary conditions. The spatial grid
spacing was ∆x = 0.5 and time steps were chosen accord-

ing to Neumann stability criterion, dt = ∆x2

8 . The initial
conditions were set by laying a coarser grid of different
sizes on top of the simulation box and setting random
values for A and R within each cell of the coarse grid.
Initially S was set to zero across space. Simulations were
run for some period of time until patterns appeared.

The intersection points on the coarse grid, where a
single point has four neighbors with different values, serve
as the possible seeds for spiral centers. Hence a 2 × 2
coarse grid leads to at most a single spiral on the center
of simulation box (figure 7A) and a 20× 20 grid lead to
many more spirals (figure 7B). In the latter case at most
19 × 19 spiral centers can form. However in practice,
due to random choice of initial conditions, typical length
scale of spirals and topological constraints, this number
tends to be much smaller.

Appendix E: Single Cell Mechanisms of Frequency
Increase

The mechanism introduced in section III C is not the
only reason for the frequency increase observed in figure
4A. There is in fact a single cell frequency change that
should not be confused with what has been described
here. This single cell effect can be further separated into
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a deterministic component and a stochastic component.
Figure 2 in Ref. [40] shows the response of a single FHN
to an input I with and without noise. Due to the choice of
nullclines for our model, an increase in I(S) increases the
frequency of the noiseless FHN, once the input crosses the

Hopf bifurcation. Furthermore addition of noise smears
the bifurcation point and creates a graded increase in fre-
quency of single cells. As a result any flow of cAMP into
a population of cells leads to a frequency increase on a
single cell level that becomes amplified by the multicel-
lular mechanism described above.
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FIG. 1. (Color online) Model Schematic - A) Schematic of the experimental setup. A population of Dictyostelium discoideum
cells with density ρ is placed in a microfluidic chamber. cAMP is flown into the chamber with rate αf and the medium is
washed out with rate J . The concentration of extracellular cAMP is labeled by S. Note that this schematic is to clarify the
experimental setup; However spatial structure is not modeled here and is only briefly discussed in section V. B) Schematic
of cell model. Extracellular cAMP concentration (S) is detected by the cell and preprocessed through the function I(S). The
result is fed into an excitable system with internal variables A and R. The value of A is then thresholded and amplified by
D to produce more cAMP for secretion. Simultaneously cAMP is also being produced with a constant rate α0 and leaks into
the extracellular environment. C) An idealized time-course of extracellular cAMP concentration (S) is shown in the large J
regime where the concentration changes according to a square wave with baseline S0 and amplitude ∆S. We refer to S0 and
∆S as the background cAMP and firing-induced cAMP, respectively.
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FIG. 2. (Color online) System Phase Diagram - A) The first three plots from left are phase diagrams of coherence, single
cell firing rate and population firing rate as a function of S0 and ∆S, in the large J regime for linear preprocessing. The
dashed line corresponds to values of ∆S and S0 for which D = 2, α0 = 1 and αf = 0 with variable ρ and J . Parameters are
J = 10, ε = 0.2, γ = 0.5, C = 1, σ = 0.15, dt = 0.005, twt = 1000, trt = 4000, N = 100 and I(S) = S. The rightmost plot is
a schematic of the phase diagrams marked with different regions. The regions consist of NO: No Oscillation, CO: Coherent
Oscillation, IO: Incoherent Oscillation. For easier reference to different transitions the following lines have been introduced:
SC: Sensitivity Crossover, IC: Incoherent Crossover, CC: Coherent Crossover B) Same plots as in (A) with a Michaelis Menten
preprocessor. Parameters are same as in (A) with twt = 11000 and I(S) = βS/(S+KD) where KD = 2.0, β = 1.5. The dashed
line is plotted for D = 1000, α0 = 1000 and αf = 0. C) Same plots as in (A) with logarithmic preprocessor. The green dots
correspond to parameter values chosen in figure 4A. The dashed line is plotted for D = 1000, α0 = 1 and αf = 0. Parameters
are same as in (A) with I(S) = a ln(1 + S/K) where a = 0.058,K = 10−5 . Inset is the same plots for a noise level 10 times
smaller (σ = 0.015) run for a longer waiting time (twt = 50000).
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FIG. 3. (Color online) Effect of ρ and J - A) Plot of coherence, single cell firing rate and population firing rate for different
values of ρ and J with linear preprocessor. Simulations are performed using the full set of equations in (3) . Parameters same
as in figure 2A with α0 = 1, D = 2, αf = 0 corresponding to dashed line in figure 2A. The green curve in the coherence graph
is where coherence is equal to 0.6, marking an approximate boundary for crossover between coherence and incoherence. The
dashed line is the leftmost line with constant J that intersects with the balck curve. We have called the value of J on this
line Jm. The inset is population firing rate as a function of ρ/J , showing a data collapse for which data points are taken from
the population firing rate heat map. To avoid effects of small degradation rate only values with J > 3Jm are plotted in the
inset. B) Same plot as in (A) with Michaelis-Menten preprocessing. Parameters same as in 2B with α0 = 1000, D = 1000
corresponding to dashed line in figure 2B. The inset is plotted for J > 10Jm. C) Same plot as in (A) with logarithmic
preprocessing. Parameters same as in 2C with α0 = 1, D = 1000 corresponding to dashed line in figure 2C. The inset is plotted
for J > 10Jm.
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FIG. 4. (Color online) Frequency Increase - A) Time-course of a cell population in response to a step in input flow (αf ).
The gray thin traces correspond to individual cells within the population and the bold black line is the population average of
activator at different times. Parameters same as in figure 2C with J = 10, ρ = 1, α0 = 0.01, D = 9000. Midway through the
simulation, αf is changed abruptly from 0 to 100. B) Blue concave curve shows the preprocessing function, I(S), for different
values of external cAMP, S. For two different input values, S0 and S′0 a constant change, ∆S, leads to different changes in
I(S) (shown by ∆I and ∆I ′) such that for S′0 > S0 we get ∆I ′ < ∆I. Phase portraits corresponding to ∆I and ∆I ′ are shown
on the right side, showing a smaller distance between the two nullclines in the latter case and a consequent shorter trajectory
over a period of oscillation. The trajectory of the system alternates between two cubic nullclines (red cubic curves) leading to
an effectively longer trajectory for larger ∆I.
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FIG. 5. (Color online) Small J Regime - A) A raster plot of A as a function of time for degradation rate (J) greater and
smaller than Jm showing a crossover to incoherence as J is decreased. Each row in the raster plot corresponds to time-course
of activator of one cell within the population. Parameters same as in figure 2C with ρ = 1, αf = 0 B) Plot of Jm as a function
of single cell firing rate. Firing rate is chnaged by changing ε while keeping all other parameters same as in part (A). The inset
shows how the single cell firing rate changes as a function of ε. Parameters same as in part A.
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FIG. 6. (Color online) Bistability at Crossover to Small J - A) Plot of coherence, single cell firing rate and population
firing rate as a function of of log10(S0) and log10(∆S) for three different values of degradation rate J . The ‘pixelation’ is not a
numerical artifact, but is rather the result of the stochastic bistability. The white circle corresponds to one point on the phase
diagram with J = 1.6Jm for which a time-course is shown in figure B. Parameters same as in figure 2C B) A section of the
time course of the system is shown with parameters chosen corresponding to the white circle in figure A (middle row). Each
thin curve with a different color corresponds to time course of the activator of one cell. For presentation purposes only 10 cells
are shown (picked at random). The black bold curve is the time-course of the average of activators of all cells. Parameters
same as in part C with J = 0.5, ρ = 1, D = 101.8J, α0 = 10−5.1J
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FIG. 7. (Color online) Spatial Simulations - Simulation results of spatially extended model at different values of J . The
colors shown represent different levels of A. Each row corresponds to a different value of J and ρ such that ρ/J remains the
same. The left column corresponds to initial conditions chosen from a 2 × 2 coarse grid of random values that is overlayed on
the simulation box (see Appendix D). And the right column shows the same simulation with initial conditions set on a 20× 20
coarse grid. Parameters were kept the same as in 3C with ρ = 0.1J . Simulations were done on a 100 × 100 box with grid

spacing ∆x = 0.5 and time steps according to dt = ∆x2
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