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Lúıs A. Nunes Amaral,3, 4, 5 and Marta Sales-Pardo1, ∗

1Departament d’Enginyeria Qúımica,
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Abstract

High-throughput experimental techniques and bioinformatics tools make it possible to obtain

reconstructions of the metabolism of microbial species. Combined with mathematical frameworks

such as flux balance analysis, which assumes that nutrients are used so as to maximize growth, these

reconstructions enable us to predict microbial growth. Although such predictions are generally

accurate, these approaches do not give insights on how different nutrients are used to produce

growth, and thus are difficult to generalize to new media or to different organisms. Here, we

propose a systems-level phenomenological model of metabolism inspired by the virial expansion.

Our model predicts biomass production given the nutrient uptakes and a reduced set of parameters,

which can be easily determined experimentally. To validate our model, we test it against in

silico simulations and experimental measurements of growth, and find good agreement. From a

biological point of view, our model uncovers the impact that individual nutrients and the synergistic

interaction between nutrient pairs have on growth, and suggests that we can understand the growth

maximization principle as the optimization of nutrient synergies.
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I. INTRODUCTION

The rapid development of high-throughput experimental techniques and bioinformatics

tools has made it possible to obtain reliable metabolic reconstructions from genomic data

in a semiautomatic fashion [1–4]. The availability of such reconstructions makes it possi-

ble, in turn, to investigate metabolism from a systems point of view [5]. In particular, the

development of a mathematical framework to predict cellular growth based on cellular func-

tion optimization has significantly advanced our understanding of how the metabolic state

of an organism will change upon modifications in the growth medium, the introduction of

mutations, or the effect of stress [6–12].

Unfortunately, our ability to calculate microbial growth rates has not been paralleled

by a substantial gain of insight into metabolic processes, especially for what concerns the

impact of nutrients on growth. A number of mathematical models have been developed

aiming at predicting microbial growth rates [13–18], but these models are only valid for a

limited number of specific nutrients and are not easily generalizable because of the need to

determine parameters empirically.

Here, we present a systems-level phenomenological model that enables us to predict

growth and, at the same time, provides insights into the effective systems-level principles

by which nutrients are catabolized. Our approach does not predict which nutrients will be

uptaken from a given medium; rather, it predicts, from the values of the uptakes, how each

nutrient will contribute to cellular growth. Despite the fact that we use flux balance analysis

(FBA) to develop, justify and validate our model (and that, as we discuss later in Section IV,

FBA has well known limitations), the model is ultimately independent of FBA and of any

particular metabolic reconstruction; in this sense, the model is also organism-independent.

Our approach, which is analogous to a virial expansion, reveals that cellular growth can

be well-approximated by the contributions of each individual nutrient plus a synergy term

that considers nutrient-pair contributions. We demonstrate that the predictions of the model

are in good agreement with empirical measurements of biomass production. Moreover, our

model provides novel insight into the effective contributions to growth since we can express

synergy contributions as scaling functions that depend exclusively on four factors: the type

of nutrients considered, the pathways that catabolize them, the ratio between their uptake

fluxes, and the effective carbon content of each nutrient. Uptake fluxes are allocated among
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possible synergistic contributions in order to maximize synergy, thus revealing the principles

of nutrient use that lead to the maximization of biomass production.

II. MODEL

Our goal is to express in closed form the steady-state growth rates g of a bacterium

given the nutrient uptakes from the external medium, without taking explicitly into account

any micro-level information about the processes occurring inside the cell. In [19] and [20],

models to predict which nutrients can produce growth and what constraints are necessary

to reproduce observed uptakes in rich media were already developed. Here, we consider that

the real uptake fluxes of each nutrient are known and fall within the empirical range which

ensures that nutrient uptakes can be fully catabolized [9].

To validate our model, we use FBA predictions of biomass production for Escherichia

coli using the metabolic reconstruction iAF1260, which has been shown to yield a good

agreement with empirically measured growth rates [21]. Note that we focus exclusively on

the use of nutrients for biomass polymerization, discarding the role of ATP maintenance (see

[19] and Sec. IV). For simplicity, we focus on nutrients that belong to one of the four main

nutrient classes: sugars, fatty acids, amino acids, and bases (see Appendix for a complete

list).

Following a virial expansion-like formulation, we hypothesize that, given a fixed vector of

nutrient uptake fluxes φ, we can express the steady-state biomass production of an organism

as

g(φ) =
E∑
i=1

αi(φi) +
E∑
j<k

βjk
(
φj, φk

)
+
∑
i<j<k

γ
(
φi, φj, φk

)
+ . . . ,

(1)

where E is the number of uptakes.

A first order approximation is equivalent to considering that each single nutrient con-

tributes independently to g(φ) as in [19]. In analogy to the ideal gas approximation, we call

this model idealized metabolism (IM). Note that because we consider the nutrient use for

stationary biomass production exclusively, in the presence of a single nutrient uptake (i.e.

φi 6= 0 for a single i and φk ≡ 0 for k 6= i) the scale of our system is precisely given by φi.
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Therefore, the biomass production must be proportional to φi, so that g(φi) = α̂φi, where

α̂ is the biomass yield of nutrient i [9, 19, 22]. For the first order terms, we thus write:

g(φ) =
E∑
i=1

αi(φi) =
E∑
i=1

α̂iφi. (2)

We evaluate α̂i for each nutrient i by computing the FBA biomass production gFBA(φ(i))

allowing for a single nutrient uptake

φ(i) =

φi = 1 arb.units,

φj = 0 arb.units ∀j 6= i,

where we use arbitrary units, since all fluxes are defined up to a multiplicative constant in

the FBA problem. Note that in Eq. (2), only purines among bases can be accounted for

growth, since pyrimidines alone cannot be catabolized by E. coli [19]. Previously, we found

that α̂i is proportional to the effective number of carbons Ci, that is, the number of carbons

that are actually catabolized [23] in each metabolite i as

α̂i = acCi, (3)

with a slope ac that is nearly insensitive to the nutrient class c (fatty acids, sugars, amino

acids, Fig. 1a). Here, both the vector α̂ and the slopes ac are dimensionless quantities.

To assess the accuracy of the IM, we compare the predictions of the model against FBA

calculations for the growth of E. coli on random complex media with a fixed number of

non-zero nutrient uptakes (Methods). Because g is defined up to a multiplicative constant,

the largest the total uptake, the largest the biomass production. We thus consider complex

uptake vectors normalized to 1, to mimic physiologic conditions. However, we note that

we would obtain the same relative errors for a fixed number of uptakes if we considered

non-normalized fluxes.

Figure 1c shows that despite its simplicity, the idealized model is fairly accurate, with a

relative error, ∆ := |gFBA−g(φ)|
gFBA

, ranging from ∼ 0–2% for one nutrient to 24% for 20 uptakes.

Note that using Eq. (3) to predict growth lightly overestimates single nutrient contributions

to growth, as the corresponding ∆ for growth on one nutrient shows. This effect however is

negligible when increasing the number of uptakes above E ≥ 5. It is also apparent that the

IM systematically underestimates FBA predictions for media with E ≥ 2 nutrients, which

implies that when several nutrients are present, they contribute synergistically to growth.
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III. RESULTS

A. Scaling of second order terms

In order to capture nutrient growth synergies, we consider next the second order terms

in Eq. (1). Using FBA, we numerically determine βij by setting to zero all entries of the

exchange fluxes except φi and φj and computing the difference

βij
(
φi, φj

)
= gFBA(φ(i,j))−α̂iφi − α̂jφj, (4)

where φ(i,j) is the vector φ such that φk = 0 ∀k 6= i, j (Fig. 2a).

Since there is only one output in our system (biomass), the scale of of g is fixed by one of

the uptake fluxes (for instance φj) and the dependency on the remaining uptake fluxes can be

expressed as dimensionless quantities, which are ratios of uptake fluxes. As a consequence,

we expect β to obey a scaling property (Fig. 2b):

1

φj
βij(φi, φj) = βij

(
φi
φj
, 1

)
≡ βij

(
φi
φj

)
. (5)

Remarkably, we find that β displays additional scaling properties. For concreteness, consider

the synergy between sugars and fatty acids. We found that the β functions for any sugar–

fatty acid pair (Fig. 2c) collapse on the same curve when the sugar and the fatty acid

uptake fluxes φi, φj are rescaled with respect to the effective number of carbons Ci, Cj of

the corresponding nutrient (Fig. 2d). One thus has

β′sug,f acid

(φi
φj

)
=

1

Cj
βij

(
Ciφi
Cjφj

)
, (6)

so that the introduction of the rescaled β′ function allows to have a systematic description

of growth only given the nutrient–pair classes, their carbon content and the ratio of their

uptake fluxes. For each nutrient–class pair σ, σ′ it is therefore possible to define a function

β′σσ′ that displays a simple two–regime behavior (Fig. 2d), in which one of the nutrients

becomes the limiting factor in the contribution to growth. Considering again the case of

sugars and fatty acids, when the ratio Ciφi/(Cjφj)→ 0 the function β′sug,f acid grows linearly,

while when Ciφi/(Cjφj)� 1 it reaches a plateau. To capture these two regimes, we propose

the generalized phenomenological model:

β′σiσj

(φi
φj

)
= bσjσi tanh

(
bσiσjCiφi

bσjσiCjφj

)
(7)
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where

bσiσj ≡ lim
φi/φj→0

β′(φi/φj)

φi/φj
,

bσjσi ≡ lim
φi/φj→∞

β′(φi/φj).
(8)

Here σi and σj are the classes of nutrient i, j, respectively, while bσiσj and bσjσi are dimension-

less parameters, since they are defined as a flux ratio. These parameters can be interpreted

as the limiting synergistic contribution to the biomass yield when one of the two nutrients is

in excess of the other. In this formulation, knowing the limiting contributions is thus enough

to compute the synergistic contribution to growth of any sugar–fatty acid pair and for any

value of the uptake fluxes. For instance, the transition value T (sug, f acid) = b
f acid sug

/b
sug f acid

marks the relative sugar–fatty acid uptake values at which maximal synergy may be attained

without waste of nutrients.

Figure 3 shows the averaged collapsed curves for all nutrient class pairs we consider.

Our calculations indicate that Eq. (7) is a fairly good description for such averaged β′,

although we note that for each nutrient class pair β′ has different parameters (see Table I

and Appendix for a summary of the averaged parameters for each one of these curves). Note

that, for nutrients in the same class, it is not necessary to consider all pair permutations.

One can, for instance, sort nutrients in a given class σ by their carbon content and evaluate

the parameters bσσ only between pairs i, j such that Ci < Cj. This is the approach we follow

in evaluating the parameters bσσ′ , which, as a consequence, are not symmetric when σ = σ′.

The phenomenological model in Eq. (7) captures very well the behavior of β′ for 4 of

the 9 cases: (fatty acid, sugar), (fatty acid, fatty acid), (base, sugar) and (base, base) pairs

(Figs. 3a, d, b, and g) [24]. For the (base, fatty acid) case (Fig. 3 e), we find that the

phenomenological model in Eq. (7) does not fully capture the behavior of the averaged β′

(see Appendix). In such case we still find that β′ is roughly linear for φ1/φ2 � 1 and shows

a plateau when φ1/φ2 � 1, as predicted by Eq. (7). However, for C1φ1/(C2φ2) ' 1, the

model overpredicts the observed synergy. Despite this deviation, Eq. (7) is a good trade off

between model simplicity and predictive power, since the initial slope of β′ and the plateau

value are well predicted by taking the average of the parameter b over all nutrient pairs.

Finally, for all pairs including amino acids (Figs. 3 c,f, h, and i), we find that not

all curves collapse into a single one. In particular, we see that when φother/φa.acid � 1

({other : sugar, f acid, base, a acid}), the scaling functions reach different plateau values,
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which always lie either above or below a 10−2 threshold value, respectively. Interestingly,

for interclass interactions, any given amino acid consistently reaches a plateau above or

below such threshold independent of the other nutrient paired with it. We hence classify

amino acids into two groups, L (Low synergy), H (High synergy), according to whether they

can attain a synergy below or above the mentioned 10−2 threshold, for interclass synergies.

For amino acid-amino acid interactions, we thus divide nutrients into H and L and study

intraclass/L-H synergies. This allows us to find two slope and plateau values respectively,

each related to the H or L amino acid limiting the interaction in turn.

Using a logistic regression model, we find that the set of metabolic pathways in which an

amino acid participates determines to which group (H or L) it belongs (see Appendix). By

minimizing the Bayesian Information Criterion [25], we see that knowing whether the amino

acid participates in the set of six pathways listed in Table II is enough to correctly assign all

amino acids except MD-Methionine to either group H or L. Once the corresponding group

is known, we can use Eq. (7) to describe β′ by allowing two plateau values when the nutrient

pair involves an amino acid. In this way, we can have close estimates of synergies through

the function Eq. (8) for nutrients pairs from all classes, by only knowing their class and the

pathways in which they participate.

B. Competition for synergistic potentials

When a bacterium grows on a complex medium with E > 2 nutrients, Eq. (1) yields a sum

over E(E−1)/2 synergy contributions resulting in an overprediction of the biomass produc-

tion (see Appendix). The reason for this is that resources are limited by stoichiometry, thus

besides the independent nutrient contribution to growth of each uptake φi, resources must be

distributed in some way among the E − 1 possible synergies. Two plausible flux allocations

are the following: i) an equitative distribution of all {φi} among the synergies (equitative

synergy model, ES); ii) a distribution among synergies that yields maximal synergy, which

we call optimal synergy model (OS). We find that while the former underpredicts growth

rates when increasing the number of uptakes, the latter yields an accurate prediction of FBA

growth rates roughly independent of the number of nutrients (Fig. 4 and Appendix). Our

results thus suggest that, phenomenologically, one can understand the growth maximization

principle observed in microbes as the optimization of nutrient synergies.
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The OS theory exploits the fact that synergy contributions are limited by the smallest

uptake flux Eq. (7), so that only the nutrients in excess can be used in other synergies. In

order to maximize the overall synergy, we hypothesize that an optimal allocation of nutrients

is adopted to produce the largest pair–synergies. We thus rank nutrient–pair synergies and

add up to the total synergy each contribution. After each addition, the fluxes of the pair

are rescaled such that the limiting one is not considered further, while the nutrient in excess

can contribute to other synergies with the fraction of uptake not invested yet (Methods).

In a complex growth medium with E non-zero nutrient uptakes, we thus express the

OS growth rate as follows:

g(φ) =
E∑
`=1

α̂σ`φ`

+
P∑

(κ,)=1

bσκσCκq
rκ
κ φκ tanh

(
bσσκq

rκ
κ φκCκ

bσκσq
rκ
 φC

)
,

(9)

where the second sum runs over the P = E(E − 1)/2 ranked pairs of nutrients, rκ is the

ranking of the nutrient pair synergy (κ, ), and q
rκ
κ ∈ [0, 1] indicates the fraction of uptake

flux φκ yet to be allocated to this contribution. As before, C` is the effective number of

carbons of nutrient ` and σ` is the nutrient class to which nutrient ` belongs, and coefficients

b have been reported in Table I. The yields α̂σ` can either be directly evaluated for each

nutrient, or computed as in equation Eq. (3), with parameters a reported in Fig. 1 b.

Note that, when available it is preferable to use the exact α̂ when dealing with less than

4 nutrients, because Eq. (3) slightly overpredicts single nutrient contributions to growth in

this case (this effect however vanishes when dealing with E ≥ 5 nutrients).

Finally, we compare the biomass production predictions of our OS model Eq. (9) against

FBA predictions for E. coli in media with a fixed number of non-zero random nutrient

uptakes normalized to 1 (Methods).

Figure 4a shows the OS model is able to predict with high accuracy the growth rates com-

puted by using FBA assuming known uptakes. The average relative error ∆ := |gFBA−gmodel|
gFBA

computed over 500 different random growth media with fixed number of uptakes is sys-

tematically smaller for OS model predictions than for those of the IM. Notably, the gap

between the two models increases with the number of uptakes, due to the more synergistic

contributions that are being neglected by the IM model.

Since sugars are the main source of carbons and are quite commonly included in experi-
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mental growth media, to reproduce these media we always allow the uptake of one sugar. For

more random nutrient setups we find ∆ of the OS to be slightly larger, but still consistently

smaller than the IM theory (see Appendix).

C. Comparison with experiments

After validating our model in silico, we test here how well the OS model predicts actual

growth rates in vivo. To do so, we compare our model with experimental measurements of

nutrient uptakes and growth for bacterial culture on complex media. Note that obtaining

such type of data is generally not straightforward as measurement of multiple uptakes is

typically hard. Additionally, to date, standard experiments used to validate FBA generally

focus on the simpler case of growth media with a single source of carbon. Nevertheless, a very

interesting study on complex media where bacterial growth rate and variation of nutrient

concentration are measured was published by Beg et al. [20]. The authors performed

there some E. coli batch culture experiments that allowed them to estimate those quantity

simultaneously as a function of time. From their published data, we were able to recover the

nutrient uptakes corresponding to every measured growth rate (Appendix) and to use such

uptakes as inputs in our model. This approach allowed us in turn to compare the predicted

growth rate with the experimental one.

The results are reported in Fig. 5, where we compare OS model predictions with the

experimentally measured growth rates. Note that now that physiological uptake and growth

values are measured, we can use proper mmol gDW−1h−1 units for the former and h−1 for

the latter. When doing so, model Eq. (9) reaches a remarkable accuracy, especially taking

into account that i.) the E. coli strain in the experiments differs from the reconstruction at

our disposal and ii.) we used the b and a parameters we derived by calibrating the model

with FBA, rather than estimating them ad hoc, thus highlighting the broad applicability of

our model.

The excellent agreement we found between the growth predicted by our model and the ac-

tual growth on a complex medium supports that scaling and synergy really are two principles

regulating microbial growth in vivo besides their role in modeling metabolism in silico.
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IV. DISCUSSION: SCOPE AND POTENTIAL LIMITATIONS OF OUR AP-

PROACH

We have used FBA predictions under growth optimization as a reliable source of growth

rates, that is, as a substitute for growth experiments with real bacteria. Thus, even though

our model is ultimately independent of FBA (in that Eq. (9) does not rely in any way

on FBA or on any particular metabolic reconstruction), one may argue that our model is

susceptible to suffer the shortcomings of FBA. Here we discuss these shortcomings, although

the comparison to experimental data in Fig. 5 demonstrates that, whatever limitations FBA

may have, our model is able to reproduce experimental growth rates in a variety of realistic

conditions.

The first issue is the determination of the so-called ATP maintenance flux. This is an

additional reaction flux that FBA adds to the set of metabolic reactions and constraints to

reproduce the experimental growth rates. Such ATP flux encompasses a series of external

factors that affect microbial growth rates, such as the uptake rate of nutrients, oxygen avail-

ability, and regulation or temperature. But although ATP maintenance rates obtained for a

specific minimal medium have been shown to reproduce accurate results in different growth

conditions for certain organisms [26], it cannot be assumed that specific values are valid to

make predictions for different growth conditions in general. To overcome this, we proceed as

in [19] and first evaluate the ATP needed for the polymerization of biomass components by

using the values experimentally determined (which are available in the literature [26, 27])

and then fix the ATP maintenance to this baseline, removing any further ATP maintenance

contribution. In any case, it is always possible to rescale our findings a posteriori in the

same way ATP maintenance is fitted within the FBA approach. Moreover, Fig. 5 suggests

that the effect of the maintenance flux is not very relevant.

Another caveat of FBA is that it systematically predicts the simultaneous uptake of

different sugars, while it is known that microbes absorb their preferred sugar first [28]. For

this reason FBA will regularly over-predict biomass production in presence of multiple sugars

[29]. In our approach this is mostly irrelevant because we are concerned with determining

growth given the uptakes of nutrients. In any event, to avoid validating our model against

unrealistic settings, we focus on complex growth media containing a single sugar (Methods

and Appendix).
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Finally, it has been empirically demonstrated that under certain conditions, unicellular

organisms do not strictly follow a maximal growth principle [12]. However, it has also been

shown that in many occasions the metabolic state predicted by growth maximization is very

similar to that of the maximization of other functions [11], so that our formalism could be

applicable to these conditions.

V. CONCLUSIONS

In this work, we present a second order phenomenological model of metabolism that, by

relying on a very limited set of parameters, is able to predict the biomass production of E.

coli in arbitrary complex growth media within 1% of the actual value for growth in silico

and with great accuracy for growth in vivo.

Our model shows that nutrients within the same class are effectively catabolized in a

similar manner, so that the contribution to growth in the presence of a given nutrient is

fully determined by the nutrient’s effective carbon content and the class it belongs to. We

find that the synergy developed by the uptake of several nutrients increases the catabolic

potential of the metabolic network. Such synergy between nutrients pairs depends on the

relative abundance of the nutrients and is capped by the less abundant nutrient.

Our model shows that, effectively, nutrient contributions to growth can be well approxi-

mated by the sum of the independent contribution of each nutrient and a synergy contribu-

tion. The synergy contribution depends exclusively on nutrient pair synergies so that uptake

fluxes are allocated among pair synergies in order to maximize the synergy contribution with

the available resources. In this way, the function maximization principle (usually growth)

that determines the metabolic state of a unicellular organism can be effectively understood

as the optimization of nutrient synergies.

METHODS

Random flux uptakes generation

For each fixed number of uptakes E, we generate a vector φ of uptake fluxes that allows

the bacterium to catabolize a combination of fatty acids, amino acids and bases, plus one

sugar only. To do so, only one of the entries of φ that do correspond to sugar uptakes is
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chosen uniformly at random to have a value different from zero. Such value is uniformly

drawn at random in the range (0, 1) arb.units. All E − 1 remaining uptakes are uniformly

chosen at random among entries of φ that do not correspond to a sugar. Again, the flux

value is drawn in the range (0, 1) arb.units. After all the E nonzero entries of φ are drawn,

we normalize the uptakes so that the total uptake is always equal to one (see Appendix for

results in other complex media).

Optimal synergy model

Suppose we want to compute the growth of a vector φ of uptake fluxes with E non-zero

entries according to the OS model Eq. (9).

In order to allocate the uptake of fluxes to maximize synergy we proceed as follows. First,

we compute all E(E − 1)/2 synergies β′ and rank them according to their corresponding

contributions to growth from largest to smallest. Starting from the largest, we evaluate which

nutrient in the pair (n1, n2) is in excess by comparing the flux ratio Cn1φn1/(Cn2φn2) to the

transition value T (n1, n2) = bn2n1/bn1n2 of the corresponding β′ function. For instance,

if Cn1φn1/(Cn2φn2) < T (n1, n2), n2 is in excess. We then store this contribution, set the

limiting flux φn1 to zero and reduce φn2 by its distance from the transition value as φn2 →
φn2 − Cn1/Cn2φn1T (n1, n2). Note that this implies that φn1 is not used in other synergies.

All the other fluxes are kept constant. These updated fluxes are used to re-compute the

synergies occupying lower positions in the rank, and the process is repeated for the second

largest β′. In this way synergies at position k in the rank are computed with effective fluxes

(φkn1
, φkn2

) that take into account both the limitedness of resources and their optimal routing.

A slightly different version of our approach, where ranking of synergies is computed after

each step φkn → φk+1
n is not as accurate as the protocol described above (see Appendix and

fig. 4).
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Figure 1. (Color online) Idealized metabolism theory. (a) The α̂ parameters introduced in Eq. (2),

versus the number of effective carbons for each of the nutrients considered in our study. We consider

nutrients in four groups: sugars, fatty acids, bases and amino acids. The α̂ coefficients are a linear

function of the effective number of carbons whose slope depends very weakly on the nutrient class,

except for bases (see panel b). The dashed lines show linear fits for each class of nutrients, while

the black dotted line is a fit considering all of them together. (b) The coefficients ac introduced

in Eq. (3). We show the values of ac obtained from the fits shown in panel a). ac varies weakly

with nutrient class. (c) Predictions of the idealized metabolism theory, Eq. (2), versus FBA results

for a selection of 100 random media with increasing number of possible uptakes (see Methods).

Filled red circles correspond to using exact α values, while empty blue squares to Eq. (3). (d)

The relative error ∆ = |gFBA−gmodel|
gFBA

of the IM theory predictions for the two different choices of

α̂ averaged over 500 random media, for increasing number of uptakes. ∆ is relatively small in

presence of a few nutrients only, but it increases roughly linearly. Note that the error performed

when using Eq. (3) in presence of one nutrient only is different from zero, meaning that Eq. (3)

does not correctly capture single nutrient contributions to growth. This effect however is negligible

increasing the number of nutrients, as the two ∆ curves overlap.
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Table I. Average numerical values of the parameters of the phenomenological model in Eq. (7).

We show here the average slope (b12) and plateau (b21) values of the β′ functions for the cross

interactions plotted in Fig. 3. For nutrient pairs involving an amino acid we obtain two different

plateau values, depending on the metabolic processes in which the amino acid participates (see

text). If two amino acids are involved, also an additional slope is needed. When the pair is inverted,

for different nutrient classes, the values of the plateau and and slope are also swapped. Note that

we order nutrients according to their carbon content and do not consider pair permutations. For

this reason, for pairs of the same class (e.g. Fatty acids–Fatty acids), values b12 and b12 are not

equal: b12 captures growth on media where the nutrient with more carbons is in excess, while b12

renders the opposite situation.

1
2

Fatty acids Bases Amino acids

Sugars
b12 2.4× 10−3 8.8× 10−4 1.6× 10−3

b21 1.2× 10−2 3.1× 10−2 2.9× 10−3 3.6× 10−2

Fatty acids
b12 1.4× 10−4 1.2× 10−2 1.2× 10−2

b21 3.5× 10−3 3.4× 10−2 3.9× 10−3 4.1× 10−2

Bases
b12 7.2× 10−4 3.0× 10−2

b21 1.3× 10−2 2.8× 10−3 1.3× 10−2

Amino acids
b12 2.× 10−3 5.4× 10−5

b21 4.× 10−3 3.3× 10−2
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Figure 2. (Color online) Scaling of nutrient synergy contributions. (a) The function β, Eq. (4),

that expresses the gap between the linear model predictions Eq. (2) and the FBA results for the

growth rate of E. coli, when there are two nutrient uptakes different from zero. We show here the

simultaneous uptake of dodecanoate and butyrate (both fatty acids) as a typical example. β is a

growing function of the exchange fluxes of both nutrients. The circles and crosses correspond to

the two (example) curves that are shown, once rescaled, in panel (b). (b) Scaling property of β,

Eq. (5). We plot the same data points of panel (a): each curve shows β/φ2 as a function of φ1/φ2,

for two different fixed values of φ1. Such normalization allows to collapse all points on the same

curve. (c) The function Eq. (5) for a set of five sugar-fatty acid pairs, that shows a characteristic

linear–plateau behavior. (d) The rescaling property Eq. (6). We rescale the uptake fluxes of the

nutrient pairs shown in panel c with the number of carbons of each nutrient. All the points collapse

on the same curve. The dotted line corresponds to the function Eq. (7), where we set b
s·fa , bfa·s as

the average of the set b
s·fa , bfa·s for all the sugar–fatty acid pairs.
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Figure 3. (Color online) Nutrient synergy contributions. We show the β′ function, Eq. (6), for

pairs of four nutrient classes: sugars, fatty acids, bases and amino acids. Dashed lines correspond

to the function in Eq. (7) where the parameters {bκ} are averaged over all pair of nutrients in the

corresponding pair of classes.
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Figure 4. (Color online) Second order equitative synergy theory. (a) Predictions of the optimized

synergy model (OS) Eq. (9), empty blue squares, versus the FBA results, compared with the IM

theory Eq. (2), filled red circles, for 100 different random media at increasing number of uptakes (see

Methods and Appendix for the details on growth media). Here, we use the exact values of parameter

α̂ and the average interclass value of parameters b. (b) The relative error ∆ = |gmodel−gFBA|
gFBA

vs. the

number of uptakes for the IM (filled red circles) and the OS model (empty blue squares), averaged

over 500 different random media. The relative error of the IM theory grows almost linearly, while

it remains much lower in the OS model and becomes roughly independent of the number of uptakes

for E ≥ 6.
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Figure 5. (Color online) Comparison of the OS model, Eq. (9), (y axis) with the experimental

growth of Beg et al., [20] (x axis); the dashed diagonal indicates perfect agreement. The uptakes

corresponding to each experimental growth rate were computed (Appendix) and used as an input

of the OS model to evaluate the predicted growth. The x error bars are one standard error, the y

error bars indicate all feasible growths consistent with the uptakes plus/minus their error. We find

a fair agreement between our theory and the experimental measurements, supporting that scaling

and synergy are two principles regulating also microbial growth in vivo.

Table II. The metabolic pathways included in the logistic model to predict amino acids groups (H or

L). We report in the first column the pathway names, sorted for decreasing Bayesian Information

Criterion associated with the model. In the second column we list the number of amino acids

participating in each pathway.

Metabolic pathway No. a. acids

1. alanine, aspartate and glutamate metabolism 6

2. valine, leucine and isoleucine degradation 2

3. phenylalanine, tyrosine and tryptophan biosynthesis 3

4. sulfur relay system 2

5. glycine, serine and threonine metabolism 7

6. arginine and proline metabolism 7
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Appendix A: The metabolic reconstruction

We use the genome scale E. coli metabolic reconstruction iAF1260 [26]. Such reconstruc-

tion features 1678 metabolites and 2392 reactions, of which 299 are exchange reactions. The

minimal medium is composed by 18 essential nutrients Ca2, cobalt2, Cu2, Zn2, Mn2, cbl1,

H2O, Pi, H, K, Cl, Fe2, Fe3, mobd, Na1, Nh4, So4, Mg2 [26]. The fluxes of the reactions

that uptake these nutrients are always kept different from zero. In our analysis we assume

nutrient uptakes are known. Thus we focus exclusively on the 63 exchange reactions deliv-

ering sugars (22 reactions), fatty acids (6 reactions), amino acids (26 reactions), and bases

(9 reactions) to the bacterium (see Table III), and keep all other exchanges locked to zero.

Appendix B: Flux Balance Analysis

Flux Balance Analysis (FBA) is a mathematical tool to predict, under certain assump-

tions, the fluxes ν and the biomass production gFBA of a metabolic network [9]. Given

the stoichiometry S of the network, FBA aims at finding the solution of the metabolic

mass balance equation under steady state condition. Denoting by c the vector of metabolic

concentration, FBA seeks thus to solve the system of linear equations:

ċ = Sν = 0. (B1)

Since in real metabolic networks there are much more reactions than metabolites, the above

system is underdetermined and it allows several solutions. From the space of solutions,

physiologically relevant points are usually selected by coupling the mass balance problem

Eq. (B1) with an optmization principle. Quite generally, thus, a FBA problem seeks solutions

to Eq. (B1) such that a linear objective function Z of the form

Z =
∑
k

rkνk, (B2)

with rk some positive constants, is maximized. The objective function is often related

to the biomass production. In our case we focus solely on the maximization of biomass

polymerization, so that we have one flux only appearing in the sum Eq. (B2) (which expresses

the biomass synthesis) and we can assume Z = gFBA. Finally, we note that when essential

nutrients are assumed to available in excess, Eq. (B1) specifies a linear problem that is
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Table III. The 63 uptake fluxes considered in our study. We include uptakes delivering sugars

(22 reactions), fatty acids (6 reactions), amino acids (26 reactions), and bases (9 reactions) to the

bacterium.

Sugars Fatty acids Amino acids Bases

1. L-Arabinose 14. Maltose 1. Octanoate 1. Glycine 14. D-Methionine 1. Allantoate

2. L-Lyxose 15. Melibiose 2. Decanoate 2. D-Alanine 15. L-Methionine 2. Cytosine

3. D-Ribose 16. Sucrose 3. Dodecanoate 3. L-Alanine 16. Ornithine 3. Uracil

4. D-Xylose 17. Trehalose 4. Tetradecanoate 4. D-Cysteine 17. L-Proline 4. Adenine

5. L-Xylulose 18. Maltotriose 5. Hexadecanoate 5. L-Cysteine 18. L-Valine 5. Guanine

6. D-Allose 19. Maltotetraose 6. Octadecanoate 6. D-Serine 19. L-Arginine 6. Hypoxanthine

7. D-Fructose 20. Maltopentaose 7. L-Serine 20. L-Histidine 7. Orotate

8. L-Fucose 21. 1-4-α-D-glucan 8. L-Asparagine 21. L-Isoleucine 8. Thymine

9. β-D-Galactose 22. Maltohexaose 9. L-Aspartate 22. L-Leucine 9. Xanthine

10. Galactose 10. L-Homoserine 23. L-Lysine

11. D-Mannose 11. L-Threonine 24. L-Phenylalanine

12. L-Rhamnose 12. L-Glutamine 25. L-Tyrosine

13. Lactose 13. L-Glutamate 26. L-Tryptophan

defined up to multiplicative constant: any solution to Eq. (B1) may be rescaled through a

constant factor and still be a valid solution. We therefore keep uptakes in arbitrary units

when validating our model against FBA.

Appendix C: Generation of the growth media

We focus only on nutrients that can be uptaken by the organism and produce growth

[19]. The growth media we generate therefore only contain sugars, fatty acids, amino acids,

and bases. Since multiple uptake of sugars is not observed [28], we allow for the exchange

of one sugar only and randomly allow all other nutrients to be uptaken by the bacterium.

Summing up all the exchange fluxes listed in Sec.A, each growth medium can therefore be

composed of 42 nutrients at the most (i.e. one sugar and 41 other nutrients), plus the 18

nutrients in the minimal medium.
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Sugars

Fatty acids Amino acids
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φ

Figure 6. (Color online) Illustration of how random media are generated. Besides the minimal

medium, we only consider growth on sugars, fatty acids, amino acids, and bases. Each random

medium we generate only contains one sugar (the purple filled arrow), plus a set of other nutrients.

The sugar and the remaining nutrients are all uniformly chosen at random. These nutrients and

their uptake value form a random vector of exchange fluxes φ. In the figure we sketch as filled arrows

all the nutrients included in the random medium and as empty arrows the ones not considered.

For any random medium considered, uptakes are normalized so that
∑

i φi = 1 arb.units..

As the minimal medium is always included, just considering the 22 sugars and the 41

remaining nutrients, for each growth medium we hence have a 63–dimensional random vector

of exchange fluxes φ which, for any fixed number of uptakes E, is generated as follows (see

Fig. 6 for a pictorial representation of the growth media):

• Only one of the 22 entries delivering sugars is uniformly chosen at random. We ran-

domly fix its value uniformly in the set φsug ∈ (0., 1.) arb.units.

• The remaining E− 1 uptakes are uniformly drawn at random among the 41 entries of

φ that do not correspond to a sugar. The value of each flux is again uniformly drawn
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at random in the set (0., 1.) arb.units.

• The E nonzero entries of φ are normalized so that
∑

i φi = 1 arb.units

In all the complex growth media we generate we always include the essential nutrients,

which are assumed to be present in excess, i.e. they are uptaken at a rate 1× 107 arb.units,

equivalent to infinite uptake rate in the metabolic reconstruction.

Appendix D: Selection of the minimal model for the growth on amino acids

When studying nutrient–class–wide pairwise interactions involving amino acids, we no-

ticed that the β′ functions appearing in Fig. 3 tended to acquire two plateau values. We

hence divided the amino acids into sets H and L, according to whether their corresponding

β′ plateau value was above or below 10−2, respectively.

By doing this, we observed that the pathways that process a given amino acid correlate

in some way with its associated β′ plateau values. Indeed, as we show in Fig. 7, many

metabolic pathways feature either amino acids belonging to only one set, or a far exceeding

number of amino acids in one of the two sets.

We thus opted to predict whether a given amino acid belonged to group H (or L) by

exploiting the minimum information on the metabolic processes it participates in. We

developed a linear model πi for each amino acid i and used logistic regression to estimate the

probability Pi(i ∈ H|πi) for metabolite i to belong to group H given model πi. Considering

a set M of n metabolic pathways, we assumed

πi ≡ ξ0 +
n∑
j=1

ξjX
j
i

Pi(i ∈ H|πi) =
1

1 + exp πi
,

(D1)

where the sum runs over the n pathways in M. In Eq. (D1) Xj
i is a binary variable

taking value 1 if amino acid i participates to pathway j and 0 otherwise. All coefficients

{ξj}nj=1 have real values. For each set M we estimate {ξj}nj=1 by miximizing the likelihood

L =
∏

i=1,Pi. The coefficient ξ0 is related to the probability that an amino acid i belongs to

H while not participating to any pathway in πi. As we aim to gain the maximum predictive

power by exploiting the minimum information, we opted to seek for the smallest set M
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Figure 7. (Color online) Number of amino acids in sets H and L for each metabolic pathway. We

see that the amount of amino acids in each set is uneven in the majority of pathways, with most

of them only featuring amino acids in the L set. We opted to exploit this characteristic to predict

to which set each amino acid belongs to and automatically assign it a β′ plateau value.

that yields the largest rate of correct guesses, that is, which returns Pi larger than 0.5 for

metabolites actually belonging to H in the majority of cases. The minimum set may be

found by minimizing the Bayesian information criterion (BIC) [25] , viz:

BIC = (n+ 1) logN − 2 logL, (D2)

where n ≡ ‖M‖ is the size of the set M (i.e. the number of included pathways), N is the

number of amino acids and L is the likelihood that the observed H, L sets are generated by

models {πi}Ni=1.

To seek for the minimalM, we started out with zero pathways and then used an iterative
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greedy approach that at each step added the pathway that yielded the minimum BIC, that

is, that maximized the likelihood L. The result of this iterative approach is shown in Fig.

8: the first point features one metabolic pathway and renders a BIC close to 30. Adding

parameters (i.e. adding metabolic pathways) lowers the BIC up to n = 6 where there is

no more significative gain in predictive power and adding more pathways only overfits the

model, so that the BIC starts to grow. The whole analysis was performed using R (version

2.15.3 [30]).

Once we knew the profile of the BIC, we retained the setM that minimized it. Such set

is the best trade off between the likelihood L (i.e. the predictive power) and the number

of pathways included in the model. The six pathways included in the final M yielded a

BIC = 27.3 and are listed in Table IV, where we also report the BIC returned by all models

featuring n ≤ 6 pathways and the number of amino acids participating in each pathway

included.

In Fig. 9, we show the probabilities Pi(i ∈ L|πi) as a function of the number of pathways

n in the model πi. In our analysis we fix a threshold of 0.5 and assume metabolite i belongs

to H if Pi > 0.5 and i ∈ S otherwise. The green shaded area in Fig. 9 indicates the

region where we expect Pi to lie: for the vast majority of the amino acids only a few

parameters in the πi are sufficient to classify all amino acids into sets L or H. For the case

n = 6 pathways, which minimizes the BIC, we see that there is only one amino acid which

is not correctly classified, namely D-Methionine (met D). All the rest of the amino acids

are correctly assigned to either L or H by only inspecting whether they participate in the

metabolic pathways listed in Table IV.

Since knowing whether a given amino acid participates to these six pathways is sufficient

to know where its associated β′ plateau will lie, we decided to model the β′ functions through

their phenomenological form Eq. (8) and assign two possible values to parameters b, which

are evaluated by averaging β′ corresponding to amino acids in the sets H and L separately.

Appendix E: Optimal synergy in the second order model

As shown in Sec. II, the IM model systematically underpredicts growth rates in presence

of multiple nutrients. As a result we have to include a synergy term in our model. We do so
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Figure 8. (Color online) The Bayesian Information Criterion as a function of the number of

pathways n. Starting with zero pathways, we iteratively incorporated into the model Eq. (D1)

the metabolic pathway that yielded the minimum BIC. This allows to gain predictive power and

to lower the BIC up to n = 6 pathways (black arrow). Inclusion of further information does not

enhance the predictive ability and only overfits the model.

by introducing the β′ functions. However, we find that an equal contribution of all synergisitc

terms overpredicts the growth rate in complex media (see fig 10). This is because resources

are limited and not all nutrient pairs can develop such maximal synergy. We therefore call

this a naive equitative synergy (NES) model, that assuming maximal synergy among all

nutrients describes an unrealistic scenario.

In order to limit the overall synergy, we tested the equitative synergy (ES) theory, where

resources are equally distributed across the nutrient pairs. We created complex growth

media as explained in Sec. C, with each medium κ consisting of Eκ nutrients and thus

Pκ = Eκ(Eκ − 1)/2 possible pairs. We then assumed that, for each nutrient i, the uptake

φκi was equally invested in the Eκ − 1 synergies such nutrient can develop. Therefore, we

computed the ES model growth on medium κ by correcting the IM theory with the β′
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Table IV. The six pathways included in the model π that minimizes the Bayesian Information

criterion. We report in each row the name of the pathway, the number of amino acids participating

in it, and the BIC value of the model containing all pathways up to the row, so that the last line

has the minimum BIC value.

BIC Metabolic pathway no. a. acids

34.0 alanine, aspartate and glutamate metabolism 6

33.3 valine, leucine and isoleucine degradation 2

31.3 phenylalanine, tyrosine and tryptophan biosynthesis 3

29.8 sulfur relay system 2

29.1 glycine, serine and threonine metabolism 7

27.3 arginine and proline metabolism 7

contributions Eq. (7) as:

gκES = gκIM +
1

Eκ − 1

∑
i<j

φκiCibσiσj tanh
bσjσiCjφ

κ
j

bσiσjCiφ
κ
i

. (E1)

Here gκIM is the IM theory growth, Eq. (2), σi is the class of nutrient i, while the sum runs

on the Pκ possible nutrient pairs. Hence, with factor 1/(Eκ−1), we equally spread φκi across

the Eκ − 1 synergies.

The resulting model shows an improvement respect to the IM theory, although the gain

decreases when the number of uptakes grows.

The decrease in accuracy for increasing E of both the NES and the ES model suggests

that the uptake of resources is distributed in some optimal way. Since in the FBA approach

metabolism is aimed at growth optimization, we hypothesized that uptakes are organized

in such way to maximize the nutrient synergistic contributions to growth. Specifically, such

optimality must be reached by considering that nutrient uptakes that are invested to attain

a certain synergy may not contribute to another synergy. In Fig. 3, one clearly realizes how

this can be taken into account. Indeed, the β′(Cn1φn1/(Cn2φn2)) functions shown in Fig. 3

typically have a growing regime followed by a plateau. The appearance of the plateau means

that the synergy is not affected by a variation of the uptake of nutrient n1, i.e. nutrient n1

is in excess with respect to nutrient n2. Conversely, in the growing region, the situation is

reverted and nutrient n2 is in excess. The point T (n1, n2) = b21/b12 marks the transition
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Figure 9. (Color online) The probabilities Pi(i ∈ H|πi) of each amino acid i varying the number of

pathways n included in the model πi. The shaded green area highlights the expected region where

Pi should lie, i.e. Pi ∈ [0, 0.5] and Pi ∈ (0.5, 1] for amino acids in sets L and H respectively. For

the majority of them, the inclusion of only a few pathways in πi is enough to predict the correct

set. When n = 6, that is, when the BIC is minimum, we correctly capture the behavior of all

amino acids except for D-Methionine (met D).
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Figure 10. (Color online) Second order model predictions. (a) Prediction of model bacterial growth

against FBA results, for four models (see text): IM, NES, ES, OS. The idealized metabolism (IM,

red circles) captures reasonably well FBA growth predictions. Including maximal synergy for

all the nutrient pairs with a naive equitative synergy theory (NES, purple up triangles) largely

overestimates the FBA growth. Considering a uniform uptake for all nutrient pairs with the

equitative theory (ES, green diamonds) improves the IM results. When the number of uptakes

is � 1, all these models produce worse results than the Optimized Synergy model (OS, blue

squares). (b) The relative error ∆ of the different models as a function of the FBA growth gFBA.

The baseline is the first order IM theory (red circles), with a relative error that increases roughly

linearly with the number of uptakes. The NES model (purple up triangles) is clearly unrealistic,

with a relative error that increases very fast. The ES model (green diamonds), conversely, improves

the IM results, although its ∆ still increases with the number of uptakes. The OS model error

(blue squares) remains very low and depends very weakly on the number of uptakes, suggesting

optimal allocation of synergies is a robust explanation for maximal growth.
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from one regime to the other. Thus, if Cn1φn1 < Cn2φn2b21/b12, nutrient n2 is in excess: in

such case, n1 has been completely invested and it cannot be used in other synergies, while

n2 can only contribute further with an effective flux Cn2φ
′
n2

= Cn2φn2−Cn1φn1T (n1, n2) [31],

that is, with the surplus of its uptake.

We hence devised the following method to achieve optimality in the case of limited re-

sources on complex growth media:

1. For each pair of nutrients i, j and corresponding uptake fluxes φi, φj compute the

second order correction ∆gij to the IM growth:

∆gij = Cjφjbσjσi tanh
bσiσjCiφi

bσjσiCjφj
, (E2)

where σi and Ci are the class and the carbon content of nutrient i, respectively.

2. Rank all ∆gij from largest to smallest. The first in such rank will be the best contri-

bution to accomplish optimal growth.

3. Add to the IM growth prediction the first correction in the rank.

4. Reduce fluxes φi and φj, so to take into account that some uptake of nutrients i and

j has been invested into their synergy:

(a) For the nutrient in excess, say j, set φj → φj − Ci/Cjφibσjσi/bσiσj .

(b) Set φi → 0, as uptake of i has all been used to develop synergy ∆gij.

5. Remove from the rank all synergies involving nutrient i, as its effective uptake is now

zero.

6. Re-compute the synergies {∆gkj} with the new uptake flux φj.

7. Optimal synergy (OS) model: go to step 3.

The process is iterated until no uptake flux can be diminished further.

The above strategy to pinpoint optimal allocation of resources is really effective. The

OS model gives very accuarate results even for a large number of uptakes and we thus opted

for it.

Note that the results presented are derived assuming that a sugar is always present in

the medium. One can generalize and also work with sugar-free complex growth media.
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Because β′(x) functions for (fatty acid, base), (fatty acid, amino acid), and (amino acid,

amino acid) interactions are not perfectly captured by Eq. (7) when x ' 1, this scenario is

better captured allowing for two different slopes of the beta functions: results for the OS

model are slightly less accurate than in presence of sugars, but still far better than the IM,

as shown in Fig. 11.
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Figure 11. (Color online) (a) Predictions of the OS model (blue open squares) vs the IM model

(red filled circles), for complex media that may not include sugars. To better capture non–sugar

synergies we allow here 2 different slopes to the β functions (b) The relative error ∆ of the

OS model (blue empty squares) and the IM model (red filled circles). Also when sugar are not

always uptaken the OS model has a consistently smaller relative error than the IM model.

Appendix F: Comparison with the experiments

Beg et al. [20] published a few years ago a study that proves to be an excellent means

to contrast our model against experimental results. In their work, the authors measured at

high frequency the growth rate of a batch culture of E. coli and the corresponding variation

of nutrient concentration in the medium, simultaneously. Additionally, they included in

their paper measurements of the culture optical density and other quantities of interest. All

the relevant measurements for our analysis are reported in Ref. [20] Fig. 2, panels a and b:

in the following, we explain how to integrate such data in our approach.

The first step to make the results of Beg et al. useful in our framework is to calculate,
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for each nutrient i, the uptakes φi given the time evolution of nutrient concentration ci(t)

reported in Fig. 2b of Ref. [20]. For each nutrient i, the uptake φi is related to the time

derivative of the nutrient concentration ċi as:

φi(t) = VW
1

D(t)mi

ċi(t), (F1)

where mi is the molar mass of nutrient i, D(t) the microbial dried mass at time t and VW

is the working volume, which is provided by the authors in the supporting material of Ref.

[20] (note indeed that concentration are provided per unit volume in [20]). This relation

properly yields uptakes in mmol gDW−1 h−1, the units commonly applied in metabolic

reconstructions and that we use in our model.

From Eq. (F1), we see that, to compute φi(t), first the derivatives ċi must be evaluated

from the provided curves ci(t), for each nutrient i. This is straightforward and can be

accomplished with, e.g., centered differences. For each value ċi(t) we also compute the error

σċi(t) evaluating the maximum and minimum slopes compatible with the given error bars

of ci(t), also reported in Fig. 2b of Ref. [20].

The second quantity to evaluate in order to calculate the uptakes is the dried weight

D(t). We assume it to be proportional to the optical density O(t), which is given in Fig.

2a of Ref. [20]. Knowing the initial optical density O(0) and dried weight D(0) (which is

specified to be 6.75× 10−3 g), we are hence able to compute the whole D(t) curve, with its

own error σD(t) (evaluated from the known error on the optical density).

After the above step, we are able to compute the uptakes φi(t) and their associated

errors σφi(t) (propagating σċi(t) and σD(t)), for each nutrient i and time t. Note that we

do not allow negative uptakes (corresponding to nutrient release, really) and we discard

noisy fluctuations of ċi(t) allowing for unexpected multiple nutrient uptakes at t ≤ 3.5h.

Consequently, φi(t) = 0 with zero uncertainty for all nutrients except glucose when t ≤ 3.5h.

The resulting uptakes are plotted in Fig. 12a.

Knowing all uptakes for each time t, we finally compute the growth gOS(t) predicted by

the OS model by using Eq. (9). We also derive an associated error σgOS
(t) by evaluating the

growth rates yielded by the minimum φmin(t) = {φi(t)−σφi(t); i ∈ nutrients} and maximum

φmax(t) = {φi(t) + σφi(t); i ∈ nutrients} possible uptake vectors, respectively. Therefore, in

turn, σgOS
(t) = gOS

(
φmax(t)

)
− gOS

(
φmin(t)

)
.

Albeit the experimental growth rate is partially provided in Fig. 2a of Ref. [20], we
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opt to calculate the experimental growth rate gexpt(t) resulting from our estimate of the

experimental dried weight curve D(t). The rationale is to have a gexpt(t) consistent with

the D(t) values used to compute the uptakes. Note indeed that in Fig. 2a of Ref. [20]

the entire time series of the experimental growth rate is not available (i.e. time window

t = 0 to t = 1.5h is missing), so we cannot proceed the other way around and estimate D(t)

integrating back the growth rate. Hence, we evaluate gexpt(t) from the differential equation:

gexpt(t) =
Ḋ(t)

D(t)
, (F2)

that fixes the evolution of the dried weight in exponential growth condition. Again we

estimate Ḋ(t) from D(t) with centered differences and its error σḊ(t) analogously to what

done for σċ(t). Finally, we compute the error σgexpt(t) for gexpt(t) by propagating σḊ(t) and

σD(t). The growth rates gexpt(t) we find are entirely consistent with the ones originally

published in Fig. 2a of Ref. [20], as shown in Fig. 12b. However, as said, such gexpt(t)

values are more coherent with the dried weight we used in Eq. (F1) to compute the uptakes,

so these are the ones we plot in Fig. 5.

Having computed gOS(t) and gexpt(t), we finally compare them in Fig. 5, finding an

excellent agreement. To obtain these accurate results, we use Eq. (3) to estimate the value

oif each α̂. In Fig. 13 we show how results change when using the exact α̂ values instead:

the predictions are only slightly better. This finding is remarkable, because to use Eq. (3)

we only need to use the slopes ac (Fig. 1b) and the carbon content of each nutrient, rather

than the actual yield. The ac values hold for all nutrients in a given class, while the carbon

content of nutrients is generally known, so that Eq. (3) can be readily applied to diverse

situations without having to reevaluate single nutrient contributions to growth.

Note that in these two validations against experimental results we only focus on the truly

exponential growth phase, i.e. where tgexpt(t) & 1, which is the shaded region in Fig. 12.

A final remark on the fact that the experimental growth medium contains lactate and

glycerol, which do not belong to nutrient classes we discuss presently. Again, one can

proceed as we outline in Secs. II and III A to evaluate parameters a and b for the classes

corresponding to these nutrients. For organic acids, the class lactate belongs to, we find

aorg ac = 1.5 × 10−2, while b parameters for all cross interactions are reported in Table V.

For glycerol, we opt instead to use the same a and b parameters we derived for fatty acids,
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which do yield accurate results already.
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Figure 12. (Color online) (a) The experimental uptakes φ computed via Eq. (F1), for the five

nutrients considered in Fig. 2b of Beg et al. [20]. Glucose is almost totally consumed first, the rest

of nutrients is consumed for t > 3.5 h. Note that the dried weight, which normalizes the plotted

values, steadily grows in time. The grey shaded area is the purely exponential growth time window

(tgexpt(t) & 1), where we pick the points plotted in Fig. 5. (b) Comparison of the growth rate

gexpt(t) calculated via Eq. (F2) (Calc., red circles) and the values directly published in Fig. 2a of

Ref. [20] (Publ., blue squares). The two quantities are fully consistent, all points but one being

within one standard error. We use the values corresponding to the red circles to validate our model

in Fig. 5, as they are also related to the dried weight employed to compute the nutrient uptakes.

The shaded area once again denotes the pure exponential growth region.
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Figure 13. (Color online) Model prediction of experimental growthg rates. We compare here the

accuracy of model Eq. (9) at predicting experimental bacterial growth rates when using Eq. (3) to

estimate the α̂ parameters (red circles) and by using the exact values of α̂ (blue squares), which

are evaluated by estimating the nutrients yield. Eq. (3) performs fairly well, its predictions being

only slightly worse than the ones obtained with the exact α̂s. This is remarkable, as it implies that,

when dealing with physiological values, one can accurately predict growth rates by only knowing

the slope ac of each nutrient class and the carbon content of each nutrient, respectively, rather

than the exact yield.
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Table V. The OS model b parameters for synergies with organic acids (org ac in the Table). Inter-

actions with amino acids again allows for two different plateau values of the β′ function. Nutrients

are always sorted for increasing carbons: organic acids intra–class interaction does not consider

pair permutations and yields thus two different b values: borg ac other corresponds to growth on

a medium where large carbon content organic acids are in excess, while bother org ac captures the

opposite situation.

other borg ac other bother org ac

Sugars 3.0× 10−3 1.7× 10−3

Fatty acids 3.4× 10−3 1.1× 10−2

Organic acids 2.7× 10−3 4.0× 10−3

Bases 2.4× 10−3 2.4× 10−2

Amino acids 3.0× 10−3 3.0× 10−3 1.8× 10−2
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