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The low-energy physics of (quasi)degenerate one-dimensional systems is typically understood as
the particle-like dynamics of kinks between stable, ordered structures. Such dynamics, we show,
becomes highly non-trivial when the ground states are topologically constrained: a dynamics of
the domains rather than on the domains which the kinks separate. Motivated by recently reported
observations of charged polymers physio-adsorbed on nanotubes, we study kinks between helical
structures of a string wrapping around a cylinder. While their motion cannot be disentangled from
domain dynamics, and energy and momentum is not concentrated in the solitons, the dynamics of
the domains can be folded back into a particle-like description of the local excitations.

PACS numbers: 03.65.Vf, 64.70.Nd, 11.15.-q, 87.15.-v

I. INTRODUCTION

The relationship between topological and physical
properties [1–3] has received much recent attention. It
is relevant to elasticity [3, 4], non-linear physics [5, 6],
soft and hard condensed matter [2, 3, 7], and quantum
computing [8, 9]. As topology is the study of invariance
under homeomorphism, it shines a light on continuum
field theories. Topological invariants associated to phys-
ical objects often dictate interaction: for instance punc-
tures in a plane (defects, dislocations, vortices) define a
topological invariant (the winding angle) and thus a loga-
rithmic field which non surprisingly also to mediates their
mutual interaction [4]. Similarly, topologically distinct
states support infinitely continuum transitions [10, 11].

We have previously investigated [11] the statistical me-
chanics (and connections with conformal invariance in
quantum mechanics) of topological transitions among
winding states representing winding/unwinding poly-
mers. Here we study the Newton dynamics of a string
(polymer) which has preferred winding directions around
a cylinder (nanotube), coming for instance from screened
self interaction. If strings are stable in different, and
non necessarily degenerate, helical structures, they ex-
hibit topological solitons whose dynamics, however, is
not “contained” in the kink but rather involve the en-
tire system. This is a feature of the topology of heli-
cal solitons found also in systems of essentially differ-
ent physics: in “dynamical phyllotaxis” [12–14] repulsive
particles in cylindrical geometries mimic botanical pat-
terns of leaves on stems, spines on cactuses, petals on a
flower [16] by self-organizing in helical lattices described
by Fibonacci numbers [12, 15], also separated by kinks;
or in colloidal crystals on cylinders and rod-shaped bac-
terial cell walls [17].

While our analysis elucidates an interesting case of
topology-dictated dynamics connected to the simplest
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topological invariant—the winding number—it is not
without practical implications. Polymer-nanotube hy-
brids, ssDNA-carbon nanotubes in particular [18–21],
have been the subject of much recent experimental
and numerical research [18–28] as promising candidates
for nanotechnological applications in bio-molecular and
chemical sensing, drug delivery [18, 29] and disper-
sion/patterning of carbon nanotubes [20–22]. Indeed,
ss-DNA forms tight helices on carbon nanotubes after
sonication of the hybrids, although the role of base depen-
dance and nanotube chirality is still debated [21–23], and
raises issues about how long-range order is reached. One
might speculate an analogy between such sonication and
vibrofluidization in granular systems [30–43]—or mag-
neto agitation for magnetic materials [40–42], which has
been shown to be docile to descriptions in terms of an ef-
fective temperature [41–43]—not impossibly via an out-
of-equilibrium phase transition [44] in a 1-D system with
long range interactions [45]. Order could then come from
interacting kinks driven to coalesce and annihilate.

Theoretical research has so far concentrated on the
chemical physics of the DNA-nanotube interaction [24–
26] and structure of the adsorbed polymer [28] as well
as on coarse grained modeling of the hybrid [27]. How-
ever we know of no physics-based analysis rooted in the
topology of the problem. And yet one sees how topolog-
ical properties, as well as—or more so than—local con-
siderations, might be quite relevant in such problems of
winding helices.

We begin here to provide some topological implica-
tions on the unwinding/rewinding of strings in cylindri-
cal geometries, which–we suspect–might be useful in a
more general fashion. We describe the low-energy physics
of these systems in terms of the Newtonian dynam-
ics of their kinks—analysis of an over-damped, driven
regime will be reported elsewhere [46]. Within a mini-
mal, mesoscale, continuum model (M1), we attempt to
conceptualize the statics and low-energy nonlinear dy-
namics of a charged polymer physio-adsorbed on a nan-
otube. Conclusions are corroborated by numerical anal-
ysis of a ball-and-spring model (M2).
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II. FRAMEWORK

A. Model 1, Analytical

We start with M1. Consider a 2D field ψ(s, t) which
describes a string (polymer) constrained to the surface
of a cylinder or radius r: in cylindrical coordinates z, r, θ
we have ψ1 = z, ψ2 = rθ (see Fig. 1). Since s is the
intrinsic coordinate of the string, as such, T = ψ′ is its
tangent vector in the space rθ, z.

We write for ψ(s, t) the following density of Lagrangian

L =
1

2
λψ̇

2 − 1

2
k(∂sT )

2 − V (T ) (1)

(we denote time derivatives with a dot), where λ is the
linear density of mass, k of effective bending rigidity, and
V an energy that depends only on the tangent vector: we
thus assume that the long wavelength dynamics of poly-
mers provides an effective smoothened potential, which
affords us an analytical analysis. In a more realistic set-
up, a site dependent potential will be used in a ball-and-
spring model (M2) of which M1 is the continuum gener-
alization. The rigidity k in the bending term is indeed
effective. As we will see, when M1 is used to describe M2,
the bending term comes from self-interaction of the poly-
mer (screened by the tube) on top of a possible intrinsic
bending rigidity of the polymer itself.

Naturally, V contains the possible symmetry breaking
of the chiral structure. Its specific form is not relevant
to our considerations, as long as it has more than one
minimum. It can have the form of a double dip, thus
providing for two stable helices, oppositely winding and
degenerate (Fig. 1, bottom left). More generally, e.g.
because of a corrugation potential of the tube, V can have
non degenerate local minima corresponding to different
(meta)stable helices (Fig. 1, bottom right).

B. Model 2, Numerical

Before proceeding we motivate M1 by introducing M2,
a more faithful ball-and-spring model of non-locally inter-
acting monomers of cylindrical coordinates θi, zi, which
we use in dynamical simulations.

Monomers i and i + 1 interact harmonically via
K(di,i+1 − a)2/2 (dij is their distance) so that the
chain is floppy, as for ssDNA. They also interact
repulsively via a screened coulomb potential Uij =
σijUo exp(−dij/do)/dij . The modulation factor σij =
σ(θij) reflects the cylindrical nature of the screening
from the tube as well as possible effects of adhesive op-
timization well known in the case of ssDNA-nanutobe
hybrids [27]. (Clearly, a is in general slightly smaller
than the actual equilibrium length of a straight polymer,
because of the electrostatic repulsion.)

We choose a sufficiently smooth function of period π,
σ1(θ) = [1 + cos(θ/2)2]/2. In general one can imagine
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FIG. 1: Helical solitons separating helices of different winding
angle. The string is shown in three dimension (top), in cylin-
drical coordinates (second panel) and in repeated cylindrical
coordinates (third panel) which illustrates the curve ψ(s). At
the bottom the energy of a helical structures as a function of
its gain angle ∆θ (radiants) between consecutive monomers,
for two different choices of σ, with (right) and without (left)
metastable states.

that a corrugation potential can introduce an extra angle
beside the one induced by self-interaction and screening.
Thus, to conceptualize a metastable state we also con-
sider σ2 =

[
1 + cos(6θ)2

]
/2. More parametrized choices

might be needed to faithfully address specific situations,
yet they do not qualitatively change our results.

In simulations we choose r = 9, a = 7, do = 100, Vo =
10, K = 1, which corresponds, if lengths are measured
in Å, to charged ssDNA on a nanotube of diameter of
1.8 nm, with a Debye screening length of 10 nm. We
choose Vo/K = 10 to ensures a electrostatic stretch of
less than 10% of a. The actual value of Vo simply defines
the timescale (in ratio Vo/m with the mass m of the
monomer).

Figure 1, bottom left, shows the double-dip shape of
the total energy of M2 when restricted to a helical con-
figuration, as a function of the wrapping angle, when we
choose σ = σ1 as screening function. Physically, the two
opposite stable angles (which depend on r/a) come from
a competition: winding the helix increases the screening,
but also the repulsion between monomers whose distance
is shortened. Figure 1, bottom right shows the helical
energy in the case of σ2, demonstrating the existence of
metastable configurations.

Now we can justify the locality of M1 (M2 is obviously
non-local). Because we study low energy dynamics on
helical manifolds separated by kinks we approximate the
total energy with the last two terms in Eq. (1): one,
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V (T ), is the energy of the helix (Fig. 1), which depends
on its pitch defined by T ; then the self-repulsion in M2
provides to M1 a term of extra effective bending rigidity.
In practice the total energy of M1 is a functional of T (s)
and the last two terms in Eq. (1) represent the first
two terms of its functional expansion. The agreement
between analytical solutions of M1 and numerics on M2
(see the analysis below) confirms the choice.

III. ANALYTICAL SOLUTIONS, NUMERICAL
CORROBORATIONS

(Quasi)degeneracy implies kinks between (meta)stable
structures. Before investigating numerically their New-
tonian dynamics we gain theoretical insight by solving
M1.

A. Equations of Motion

The equations of motion for a string of length 2l
derived from M1 are obtained by minimizing the con-
strained Lagrangian

L =

∫ l

−l

[
L − 1

2
µ
(
T 2 − 1

)]
ds+ F+·ψ(l)− F− ·ψ(−l),

(2)
where µ(s) is a functional Lagrange multiplier ensuring
T (s)2 = 1 ∀s F+ is the force exerted at one boundary
ψ(+l) and −F− at the other boundary ψ(−l). This re-
turns the equation of motion

λψ̈ = −∂sj
j|±l = −F±, (3)

which is in fact a conservation equation for the density
of momentum λψ̇, of flux

j = −∂TV + k∂2
sT − µT . (4)

If V has local minimum in T̄ , then the stable helix
ψ(s) = T̄ s is a static solution. Such solution exist when
the forces applied at the extremities are purely tensile
and balanced, F± = T̄F . Since j is the stress vector of
our 1D system, Eq. (4) shows that the functional La-
grange multiplier µ(s) is in fact the scalar tensile stress.
For a stable helix it is, from Eq. (4), the only stress
µ(s) = const = F . Clearly ψ(s) = T̄ s + wt would also
be a solution, corresponding to a translating/rotating he-
lix.

Immediately Eqs (3) show that a helical structure can
change its pitch via uniform compression/expansion. In-
deed T (t) = T̄ eiωt (an uniform rotation of the tangent
vector in the complex plane representation of 2D vectors)
is a solution which corresponds to ψ(s, t) = T (t)s+wt.
Then, if we substitute it into Eqs (3) we obtain the ten-
sion µ(s) = µ0 − s2ω2/2λ, where µ0 is a constant which
depends on the forces applied at the boundaries: from
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FIG. 2: Schematics of a solution of Eq. (8). Top: in general
a soliton correspond to a trajectory connecting two maxima
of W (solid black line). From Eq. (6), maxima of W do not
correspond to minima of V (dashed black line), due to the
extra term λτv2 [1− cos(α− ατ )] (dashed grey line). It fol-
lows that solitons between degenerate structures are possible
but they must have a specific speed. Bottom: the solution
for a soliton between helices of different energy V , the same
obtained by simulations shown in Fig. 3 (see Sup. Mat. S1).

Eqs (3) we have for the tangentially applied forces at
the boundaries T± · F± = µ0 − l2ω2/λ, whereas the
normally applied forces account for the needed torque:
N± · F± = ∂TV (where N = T ′). This solution is
clearly problematic as stresses diverge with size and so
does speed (ψ̇± = ±lωN +w): it is thus only viable for
a finite structure, with properly applied loads.

B. Topological Solitons

However, a helical structure can also change its pitch
by propagating a soliton. A traveling solution of Eqs
(3), (4) has the form ψ = φ(s− vt) +wt, which implies
T = φ′.

Then Eqs (3) become λv2T ′ = −j′ which can be inte-
grated to obtain

kT ′′ = −∂TW (T ) + µT . (5)

Eq. (5) is simply a Newton equation for a “particle”
described by T (s) (where now s is “time” in the equiva-
lent Newton picture) constrained to a circumference (be-
cause T 2 = 1) and subject to the potential

W (T ) = −V (T ) +
1

2
λv2(T − τ )2. (6)

Here τ is defined by

F− = λv2(T− − τ ) (7)
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FIG. 3: Helical solitons separating helices of different wind-
ing angle, propagating into a region of higher potential energy
(numerical integration of the Newtonian dynamics of M2, an-
imation in supp. mat. S1). The system starts in a metastable
helical configuration (Fig1 bottom right panel). Stable helical
configurations forms at the boundaries and propagates inside.
Top: 3D plot for the angular deviation ∆θi = θi+1 − θi vs.
space and time. Bottom left: density plot for the angular
deviation ∆θi = θi+1 − θi (also plotted in 3D at the bottom)
as a function of time and monomers, demonstrating propaga-
tion at fixed speed, collision, and reflection on the boundaries.
Bottom, right: the time evolution of kinetic (red) and poten-
tial (black) energy (Vm is the energy of the initial metastable
configuration) demonstrates the expected initial linear growth
of kinetic energy until collision; after collision a stable helix
of opposite orientation forms with solitons now propagating
outward until reflection.

where T± = T (±l).
Equation (5) becomes more manageable if projected

on its Frennet-Serret reference frame [47]. We define α
via T = eiα, and similarly τ = τeiατ . Then projection
on the normal vector N = T ′ yields finally

kα′′ = −∂αW (α). (8)

The above is a simple 1D Newton equation for a particle
moving in a potential

W (α) = −V (α) + λτv2 [1− cos(α− ατ )] , (9)

but is now an unconstrained one. Its solution returns α
and thus T and from that φ =

∫
T ds.

Instead, projection on the tangent T returns the tensile
stress

µ = λv2(1− τ · T )− kα′2. (10)

From Eqs (8), (10), via linearization, the phonon dis-
persion in a stable helix ᾱ is readily found to be

ω2 = c2F q
2 + (k/λ)q4 (11)

where c2F = c2 + F/λ is the tension-dependent speed of
sound, and c is the speed of sound in absence of ten-
sion, given by c2 = ∂2

αV |ᾱ/λ. Without the direction-
dependent potential V (T ) the helical angle would be
defined by the direction of the opposite tensile forces
at the boundaries, and we would also have c = thus
c2F = c2 +F/λ, the well known dispersion law for a string
under tension. Not also that the helical structure is sta-
ble to applied pressure (F < 0) when it does not exceed
the critical value −F > λc2.

Moving to solitons, we are now in familiar territory. If
we consider l→∞ then a topological soliton connecting
two different stable or metastable helical structures cor-
responds to a trajectory between two degenerate maxima
of W [3, 5], as shown in Fig. 2. These helices are associ-
ated to (possibly local) minima of V .

Indeed, when v = 0, and the kink is static, from Eq. (6)
W = −V and maxima of W are minima of V and cor-
respond to stable helices: static kinks are thus only pos-
sible between degenerate structures of the same energy,
and never between stable and metastable structures (Un-
less of course proper forces are applied at the end, thus
changing the energetics). However, soliton between non
degenerate structures are also possible, as we shall see in
the next subsection.

C. Locked Speed

So far we have reduced the problem of a traveling solu-
tion to an equivalent Newton equation. In this context,
the soliton is a special trajectory between two degener-
ate maxima of a properly defined potential energy. That
is of course typical in problems of topological solitons
(consider the sine-Gordon case) or tunneling [3, 48, 49].

However Eq. (6) has an interesting feature missing in
most such problems. There is an extra term in W , pro-
portional to the square of the speed (see also and Fig. 2,
top panel), which implies that even if two helices do not
have the same energy, a kink can still exist between them
but it must travel, and with a locked speed. Indeed only
v 6= 0 in the second term of Eq. (6) can make the effec-
tive potential W degenerate when V is not. This is much
different from the case of a sine-Gordon soliton, and sim-
ilar other cases, where the potential W does not depend
on the speed of the soliton, and as a consequence only
solitons between degenerate structures exist, and at any
speed below the speed of sound [5].

The physical reason for this mechanism is rather in-
tuitive. The propagation of a soliton corresponds to an
homotopy between continuum states of different topo-
logical invariant (winding angle) per unit length. This
constrains a rotation of one domain with respect to the
other.
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For an heuristic understanding, consider a soliton
propagating inside a static region (2) of higher energy,
leaving a helix of lower energy (1) in its wake. Because
of continuity, helix B must rotate with respect to A, with
speed ψ̇1 = v(T 2−T 1). As the soliton propagates at con-
stant speed v, the total kinetic energy increases linearly
in time with rate λv3(T 2 − T 1)2/2 while the potential
energy decreases linearly in time with rate (V2 − V1)v.
Then energy conservation locks the speed of the soliton
at

v2 = 2
V1 − V2

λ(T 1 − T 2)2
. (12)

Thus, the kinetic energy necessary for the rotation of
one helix with respect to the other is provided by the
energy difference between the two domains, and the soli-
ton effectively turns potential energy into kinetic energy
as it propagates at constant speed. If however the two
domains are degenerate, the soliton must be static.

Remarkably, this heuristic formula precisely returns
the correct speed v that makes W of Eq. (6) degen-
erate, (having chosen τ = T 1, or F− = 0). This can be
seen clearly in Fig. 2, bottom panel, which predicts the
existence of a soliton of speed v given by (12) between
non degenerate (meta)stable helices.

Speed locking clarifies that in these system energy and
momentum are not localized inside the soliton (as in a
sine-Gordon case), but rather flow through the soliton as
it propagates. This can also be understood from Eqs (3)
from which we have j = λv2(T 1 − T ): the flux of mo-
mentum is uniform in the helical structures but changes
through the soliton.

We use M2 to corroborate this result. Figure 3 shows
results of a velocity-Verlet numerical integration of M2.
An helix is prepared in a metastable state corresponding
to ∆θ ' 0.6 rad (Fig. 1 bottom right panel), with open
boundaries. Lower energy helices (∆θ ' 0.23 rad) form
at the boundaries and propagate inside with constant
speed, as the potential energy decreases linearly, and the
kinetic energy correspondingly increases. We see from
the simulation that upon collision a new metastable helix
(∆θ ' −0.6 rad) forms and the potential energy starts
increasing again, until reflection with the boundaries. As
the simulation proceeds more energy from the solitonic
dynamics is dissipated into phonons, as expected in a
discrete system (see supp. mat. S1).

D. Pulses

While this topological soliton can only propagate at
locked speed, the union of a kink-antikink separates two
identical domains with no relative rotation of the two and
can thus–at least in principle–propagate at any speed.

Indeed such pulses are admitted by our analytical
framework M1. Consider for instance two degenerate
minima of V, α1 and α2, as in Fig. 4. We choose F− = 0
and thus τ = T− = T 1. Now W has still a maximum
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FIG. 4: Pulse soliton propagating at uniform speed, obtained
by velocity-Verlet integration of M2. Top: Plot of the angular
deviation ∆θi = θi+1 − θi between consecutive monomers as
function of time. Below we show a snapshot of the pulse in
cylindrical coordinates and in 3D. A pulse soliton is predicted
by our analytical framework M1 (bottom panel) as the speed
v raises the maximum in V (α2), allowing for a trajectory that
bounces back from α2 and returns to α1. As v → 0 the size
of the pulse increases ultimately tending to two static kinks
places infinitely far away.

in α1, but an higher maximum in α2 + δ slightly shifted
from α2. A trajectory can now start in α1, reach the
proximity of the new structure, and then come back to
α1, thus describing a kink-antikink pair (Fig. 4, bottom
panel).

Clearly an upper limit for v must exist. Much like in
the sine-Gordon cases, it is given by the speed of sound of
the helical structure, although the underlying reason is in
fact different. Indeed in our case, when v2 > c2 = ∂2

αV ,
α1 is not a maximum of W anymore but rather a mini-
mum, and thus and no solitonic solution is possible. In-
stead, in sine-Gordon-like solitons the presence of an up-
per limit for speed of any soliton, and not just pulses,
comes from the pseudo-relativistic invariance of the La-
grangian. In Fig. 4 we show results of simulations on M2
demonstrating stability and motion of such pulses (see
supp. mat. S2 for a movie).

Note that as v goes to zero, and W (α2) becomes de-
generate with W (α1), the trajectory in Fig. 4 (bottom)
describes two opposite kinks progressively far away from
each other. It is not difficult (details will be shown else-
where [46]) to compute the total energy for a traveling
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pulse of speed v and to obtain that in the limit of low
speed the energy decreases. When v → 0 it tends to the
energy of two static kinks, placed infinitely far away and
thus non-interacting.

Since in a discrete system soliton propagation is as-
sociated with phonon radiation, one would predict that
a pulse will always decay into two distant static kinks.
However we can see how topology, again, protects from
this dynamics: an increase in the size of the pulse must
force a relative rotation on the identical helices separated
by the pulse. As those are assumed infinitely long, the
kinetic energy cost would be infinite.

For finite systems, however, the decay is possible: in-
deed simulations of exactly the same situation depicted
in Fig. 4, but on 300 rather than 500 monomers, show
such decay (supp. mat. S3), as the energy needed to set
the external domain into rotation is inferior to the energy
stored in the bound kink-antikink.

Finally, note that in Fig. 4, and therefore in the dis-
cussion above, V (α2) = V (α1). However when V (α2) >
V (α1) there is a minimum speed for the pulse, given by
Eq. (12), corresponding to the speed that makes W de-
generate, with W (ᾱ2) = W (ᾱ1). Everything said above
for the case v → 0 generalizes to this case when v tends
to its minimum value.

IV. CONCLUSIONS

We have shown that topological solitons in strings
of different helical structures afford a description as
particle-like excitations. Indeed, while the collective ro-
tation of domains might make it seem impossible to de-
scribe the low-energy physics in terms of excitation dy-
namics (kinks), still such a picture can be regained by
folding the domain dynamics into a velocity dependent
effective potential for the kinks, which thus places con-
straints on their speed.

These solitons are stable but different from e.g. sine-
Gordon-like solitons: unlike the latter, they can separate
non-degenerate structures. Their velocities are controlled
by a competition between the kinetic energy of helical ro-
tation and steady changes in potential energy due to he-
lical wrapping/unwrapping, and are proportional to the
square root of the energy difference of the two domains,

and inversely proportional to the scalar difference of the
tangent vectors that define the helicity of each domain.
Bound couples of kinks/antikinks form pulses that can
travel at any speed between a minimum and a maximum
(the speed of sound of the structure).

A wealth of work covers the subject of solitons in dou-
ble or multiple well potentials, and it is related to the
quantum problem of tunneling, topological defects and
in general transitions between solutions that are homo-
topically distinct from the vacuum [3, 5, 48, 49]. In gen-
eral, in sine-Gordon-like problems in one dimension, it is
shown that a solitonic solution corresponds to a pseudo-
trajectory for a classical Newtonian particle, traveling
between two degenerate maxima of −V where V is a non-
linear, multiple well potential for the degree of freedom
of the problem. As we know the sine-Gordon or double-
well-Gordon equations are invariant under a boost of the
Poincaré group, which allows solitonic solutions at any
speed below the speed that defines the group: there the
speed of the soliton gauges the mass of the Newtonian
particle. Here, however, the potential energy does not
depend on the degree of freedom but rather on its deriva-
tive, which defines a preference for wrapping and a pre-
ferred wrapping angle. Mathematically this translates in
the same pseudo-Newton picture for the soliton as a clas-
sical trajectory, but now the speed of the soliton does not
contribute to the mass of the pseudo-trajectory, rather it
adds an extra term that depends on the speed of the soli-
ton itself. Thus it is not −V that need to be degenerate
but W of Eq. (6), allowing solitons between non degen-
erate structures, and at the same time locking the speed.
This simple picture reflects the physical fact that energy
and momentum is not contained into the soliton, but
rather flow through the soliton, and is contained in the
domains which the soliton separates, where it is trans-
formed from potential to kinetic energy as the soliton
passes by. This non-locality of energy can nonetheless be
subsumed into the usual picture of a Newtonian pseudo-
trajectory.
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