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We experimentally study rearranging regions in slow athermal flow by observing the flow of a
concentrated oil-in-water emulsion in a thin chamber with a constricting hopper shape. The gap
of the chamber is smaller than droplet diameters, so that the droplets are compressed into quasi-
2D pancakes. We focus on localized rearrangements known as “T1 events” where four droplets
exchange neighbors. Flowing droplets are deformed due to forces from neighboring droplets, and
these deformations are decreased by nearby T1 events, with a spatial dependence related to the
local structure. We see a tendency of the T1 events to occur in small clusters.

PACS numbers: 82.70.Kj, 83.80.Iz, 47.50.Ef

I. INTRODUCTION

A variety of soft materials can form dense jammed
states, such as sand, foams, pastes, and emulsions [1–3].
Jammed materials behave like elastic solids for low ap-
plied stresses but flow like a liquid when the applied stress
is above the yield stress [3–6]. If instead a constant strain
is imposed, the stress can fluctuate macroscopically, and
microscopically one observes complex rearrangements of
the internal structure [4, 5, 7–10]. The macroscopic stress
fluctuations likely arise from the fragile stress network
where only a small subset of particles support most of
load [4, 11–13]. An understanding of the plasticity of
soft materials is based on the concept of localized plas-
tic events first introduced by Argon [14]. These localized
plastic events are responsible for the macroscopic fluc-
tuations in the flow, with larger fluctuations associated
with larger numbers of plastic events [6, 15–19]. Simula-
tions [7, 10, 20, 21] and theoretical work [6, 15–17, 22–
24] have connected local plastic rearrangements and the
macroscopic flow. Experiments studying a variety of ma-
terials also provided details about local rearrangements
and the length scale of their effects [9, 25–28]. Studies
of microscopic fluctuations have focused on dynamical
heterogeneity, where at any given moment a subset of
particles rearrange. Several experiments have examined
dynamical heterogeneity in sheared colloidal glasses and
granular materials [25–27, 29–32].

A key control parameter for many soft materials is the
volume fraction φ, the amount of sample occupied by the
particles (in a granular material or colloidal suspension),
droplets (in an emulsion), or bubbles (in a foam). Jam-
ming occurs when φ exceeds a critical value φJ , and it is
for φ ≥ φJ that these samples have a yield stress. Studies
of hard (incompressible) particles are limited to φ ≤ φJ .
Emulsions and foams are useful to study as they can be

∗Electronic address: chendandan@suda.edu.cn
†Present address: ExxonMobil, Annandale, NJ 08801, USA
‡Electronic address: erweeks@emory.edu

concentrated to φ → 1, due to the softness of droplets
and bubbles. The rheology of three dimensional emul-
sion samples has been studied [5, 33, 34], but the details
of internal rearrangements were not measured. One re-
cent study used confocal microscopy to study droplets in
a sheared emulsion, but did not study plastic flow [35].
Two dimensional model systems are often used for prob-
ing flow properties on microscopic and mesoscopic length
scales simultaneously [8, 13, 19, 36–38]. Dry foams in 2D
(φ = 1) [18, 39–41] are quite useful where elastic stresses
can be determined from the polygonal shapes of bubbles,
but those analysis techniques can not be extended to wet-
ter foams or emulsions (φ < 1). In contrast, soft granular
particles are useful for measuring forces and positions si-
multaneously [30, 36] but are limited to lower area frac-
tions close to jamming (φ ≈ φJ ) due to the moderate
stiffness of the particles.

FIG. 1: A typical case of a T1 event: two droplets move apart
and are no longer neighbors, and the other two come together
to become neighbors. The field of view is 1.76×1.44 mm2.

In this paper we analyze experimental data from a
quasi-2D flowing emulsion. In our experiment, small oil
droplets are compressed into disks between two paral-
lel glass plates. Before the flow is imposed, our sam-
ples are jammed with φ ≈ 0.9 > φJ ≈ 0.84. These
samples require a finite nonzero stress in order to flow.
For each droplet, we measure the deviation of its outline
from a circle and term this the deformation; these devia-
tions are due to forces on the droplet from the surround-
ing droplets. We simultaneously measure macroscopic
flow profiles, macroscopic and microscopic deformation,
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and the microscopic plastic events. The local plastic
event we study is a “T1 event,” a topological change of
four droplets exchanging neighbors, indicated in Fig. 1
[3, 8, 19, 20, 41–43]. These are induced as the emul-
sion flows through a constricting hopper shape, shown in
Fig. 2. The flow rate is controlled, and we observe evi-
dence of large deformation fluctuations connected to the
T1 events. We investigate the spatio-temporal change of
droplet deformations around T1 events, and show that
the spatial structure of deformation relaxation is related
to the local structure.

II. EXPERIMENTAL DETAILS

A. Flow chamber

For this paper, we use data from our previous experi-
mental work [37] to study the spatial distribution of rear-
rangements in a flowing 2D emulsion. The experimental
details are given in Ref. [37] but we reprise the key points
here. Figure 2 is a sketch of our experimental setup. The
sample chamber has a gap of 0.10±0.02 mm, controlled
by a thin film of double-sided adhesive tape sandwiched
between two glass plates. The droplets are silicone oil
(poly-dimethylsiloxane, ρ = 1 g/mL, η = 350 mPa·s) in
water, made by the “co-flow” microfluidic technique [44].
The droplets are stabilized by FairyTM soap with mass
fraction 0.025. The adhesive tape is cut into a constrict-
ing hopper shape. A constant flux rate is set by a syringe
pump attached to the left edge of the chamber. More de-
tails for our experimental runs are given in Table I.
The droplets have a diameter at least twice as large as

the gap thickness, so that the droplets are compressed
into pancake shapes, as indicated in Fig. 2(a). At a low
area fraction, these droplets are circular in shape when
viewed from below. For our experiments, the samples
have area fraction φ ≥ 0.90, at which the samples are
jammed (the jamming point is φJ ≈ 0.84 for our samples)
[45]. Because of this, the droplets press against one an-
other, deforming their shapes as viewed from below and
no longer appearing circular. In our image analysis tech-
niques described below, it is this deformation (caused by
neighboring droplets) that we analyze, as distinct from
the deformation caused by the glass plates.

B. Image analysis

We use a bright-field microscope coupled to a CCD
camera to record movies of our flowing emulsions at
30 frames per second. We collect our movies well into
the contracting portion of the chamber, as indicated in
Fig. 2(b). Due to the mis-match of the indices of refrac-
tion of refraction of oil and water, the droplet outlines
are easy to see. From these outlines we identify the cen-
ter of mass of each droplet area, and also the perimeters
of each droplet [38]. A small number of droplets rupture
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FIG. 2: (Color online) A sketch of the experimental setup.
(a) Side view: oil droplets are compressed into disks between
parallel glass plates, and are driven by a syringe pump. (b)
Top view: The spacers are cut into a contracting shape. The
microscope field of view is indicated. The right is an exper-
imental image, 11.2×8.5 mm2, and flow direction is to the
right. Note that at the left side of the image, the parallel
edges are due to the limited field of view; the walls are still
diagonal in this region.

Data A Ã φ 〈r〉 σ/〈r〉 s Θ

1 2.93 12.8 0.90 0.27 0.21 0.01 25
2 1.33 18.8 0.90 0.15 0.17 -0.009 25
3 0.83 5.5 0.92 0.22 0.27 -0.010 27
4 0.75 14.1 0.93 0.13 0.24 -0.007 27
5 0.61 9.9 0.91 0.14 0.21 -0.010 26
6 0.33 6.2 0.94 0.13 0.28 -0.002 27

TABLE I: Sample details of our six runs listed in seven
columns: flux rate A (mm2/s), normalized flux rate Ã =
A/π〈r〉2 (s−1), area fraction φ, droplet mean size 〈r〉 (mm),

standard deviation σ =
√

〈(r − 〈r〉)2〉 normalized by 〈r〉,

skewness s = 〈( r−〈r〉
σ

)3〉, and hopper angle Θ (degrees).

before they enter the flow chamber, and some of these
tiny droplets are visible in Fig. 2(b). As these droplets
always fit into the interstices of the larger droplets, we
do not observe these tiny droplets playing any role in the
experiment, but rather move passively. Accordingly, we
discard these droplets (r < 0.03 mm) from our analysis;
we do not track their motion.
To quantify the deformation of each droplet, we dis-

cretize the perimeter at 200 evenly spaced angles θ [see in-
set of Fig. 3(a)]. We quantify the deformation of droplets
as the standard deviation of the radius r(θ)

D =
√

〈r2〉 − 〈r〉2/〈r〉 (1)

The values of D are shown in Fig. 3(a). Given the sam-
ple is at an area fraction above jamming, all droplets are
compressed by their neighbors and thus are deformed so
that D > 0. We have examined values of D for isolated
droplets in other data sets, and note that pixelation re-
sults in D ≈ 0.03 in these cases. This can be regarded
as the uncertainty in D, although for this paper we only
consider results where D is averaged over hundreds of
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droplets.

For our area fractions (φ ≈ 0.9), we observe that the
mean value of the deformation in a quiescent sample is
D0 = 0.06. In flowing samples, droplets exert stronger
forces on one another. These contact forces then deform
the droplets further from round. In general, larger con-
tact forces between a pair of droplet correspond with a
longer contact length between the two droplets [38, 46].
In turn, the contact length is related to the deformation,
as demonstrated in Fig. 3(b). One limiting case is when
a droplet is surrounded by six neighboring droplets, all
of which exert strong forces on the central droplet, and
then the central droplet is deformed into a hexagonal
shape with D = 0.043. This is a relatively small value
of D, and for that matter, pixelation of the image would
likely increase D above this value in our experiment. In
contrast, a droplet feeling strong forces from only two ad-
jacent droplets on opposite sides would be deformed into
an oblong droplet with D able to grow arbitrarily large.
Large D droplets, in other words, are those feeling large
forces from two or three of their neighbors. These are
often droplets participating in force chains [38]. This is
qualitatively confirmed by observations of droplets with
large D, such as shown in Fig. 3(a), where the dark-
est droplets (largest D) are oblong in shape. We can-
not measure the exact forces in these experiments as the
data were acquired with resolution inadequate to resolve
forces (in order to achieve a larger field of view). At these
slow flow rates and with the relatively large area fraction
(φ ≥ 0.90), all viscous forces are an order of magnitude
smaller than the repulsive droplet-droplet contact forces
[38, 47], so in large part values of D arise due to contacts
with other droplets rather than viscous effects. However,
note that immediately after a T1 event, the droplets feel
strong contact forces moving them into their new po-
sitions within 2-4 s, and the relaxation of these forces
is limited by viscosity (perhaps both bulk viscosity and
interfacial viscosity [48]). This will be discussed more
below.

We use standard particle-tracking routines [49, 50]
to track our droplets. These routines work best when
droplet displacements between consecutive images are
significantly less than the inter-droplet distances, which
is the case for our camera rate and flow rates.

We wish to study T1 events (Fig. 1). To identify a
T1 event, we first identify the nearest neighbors of each
droplet. As our samples are polydisperse, we use the
Laguerre (radical) tessellation [51, 52] to determine the
nearest neighbors. Similar to the Voronoi tessellation,
the Laguerre tessellation also partitions space into poly-
gons, but uses the radius of each droplet as a weight-
ing so that bigger droplets have polygons with larger ar-
eas. Droplets whose polygons share an edge are con-
sidered nearest neighbors. T1 events are cases where
two droplets that are not neighbors converge and become
nearest neighbors, and an adjacent two droplets diverge.
Neighbor relations defined by tessellation algorithms are
sensitive to positional noise, so to overcome this sensitiv-
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FIG. 3: (Color online) (a) The distribution of droplets shaded
by the magnitude of deformation D, with the gray scale in-
dicating the relative D values. Inset: sketch of r measured
from the center of the droplet, used to define deformation in
Eqn. 1. (b) The mean value of the largest contact length on
a droplet lc as a function of its deformation D, normalized by
the average 〈D〉. The correlation coefficient between the raw
data (lc and D) is ≈ 0.5. The error bars indicate the standard
deviation of the data.

ity, we further require that the separations must change
by at least 5% in a time interval of 1 s. The time of the
T1 event is when the topological neighbor change occurs.

III. FLOW PROFILES

At any given moment, the velocity field in our exper-
iment fluctuates as droplets slide past the walls and one
another. However, the time-averaged flow is straightfor-
ward to describe [37]. An example of the time-averaged
velocity profile at a fixed x location is shown in Fig. 4(a).
This velocity profile is parabolic, but does not go to zero
at the edges of the flow chamber as droplets slip along
the wall. The velocity profile is well described by

Vx(x, y) = β(x)y2 + α(x), (2)

where y = 0 is the channel centerline, α is the flow rate
along the centerline, and β relates to the local strain
rate. x = 0 has no special meaning, although the inset
to Fig. 4(a) identifies the useful location x0 where the
side walls would be separated by 2〈r〉.
The x-dependence of the parameters α and β is shown

in Fig. 4(b), and their changes reflect the increasing flow
speed as the channel narrows. The narrowing width of
the channel is given by w(x) = 2 tan(Θ)(x0 − x), the
width of the channel that droplet centers can reach, as in-
dicated in the inset sketch of Fig. 4(a). x0 where the walls
are separated by 2〈r〉, that is, where the typical droplet
would touch both walls without deforming. Thus, at the
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sample chamber walls, the droplets slide along the wall

with velocity Vx(x,
w(x)
2 ). Using w(x), the parameters α

and β are proportional to the flux rate A as

α(x) =
kαA

w(x) + 2〈r〉
, β(x) =

−kβA

w3(x) + 6〈r〉w2(x)
, (3)

as shown by the fit lines in Fig. 4(b). The fit parameters
kα and kβ appear fairly independent of the flux rate in
our experimental runs [Fig. 4(c)]. Overall, the functional
forms of Eqns. 3 and the values of the fit parameters
are consistent with a constant (x-independent) flux, as
required. In particular, kα − kβ/12 = 1 is required for
constant flux [37], and this is satisfied by our fit values
(given in the Fig. 4 caption). These results apply for
the oil droplets only, and assume that the water flows
at the same rate as the droplets, which is not a perfect
assumption [53, 54]. Given the high area fractions of our
experiment, and the fact that the observed area fraction
does not change during the experiment, the assumption
of constant flux seems adequate.
Vy(x, y) can be worked out from the condition that

~∇ · ~V = 0 (as our flow is incompressible). Using the
approximation w ≫ 〈r〉, it can be shown that

Vy(x, y) ≈ −
y

w(x)
(2 tanΘ)Vx(x, y). (4)

2 tanΘ ≈ 1 for our hopper angles Θ, and the maximum
value for |y| is w(x)/2, so Vy is no more than half the
value of Vx.
Note that several prior experiments found that the ve-

locity profile of a foam is strongly influenced by the glass
plates confining the sample (the plates making the sam-
ple quasi-2D) [55, 56]. Those experiments used shear im-
posed at the side boundaries and found that the sample
motion was localized near the moving boundary. How-
ever, when the experiments were repeated without a con-
fining glass wall (using a bubble raft floating on a water
surface), there was no shear localization. With our flow
geometry, the forcing is due to a pump rather than mo-
tion of side walls, and we do not observe shear localiza-
tion. Nonetheless, the velocity profile might be different
for flows with the same geometry as our experiments, but
without confining glass plates.
In the absence of flow, droplets would all have similar

values for their deformation, D0 = 0.06 for the area frac-
tion φ ≈ 0.9 relevant for our data. With flow, we find
the time-averaged deformation depends on the flux rate
A and the x position as 〈D〉y,t(x) = D0[1 + A/kvw(x)],
where kv = 0.81 mm/s is a velocity scale. While this is
an empirical result, we note that A/w(x) is proportional
to the mean flow speed 〈Vx〉y at a given x. This is sensi-
ble, as the increase of 〈D〉y overD0 is due to the fact that
droplets deform when they rearrange, and then viscous
forces slows the relaxation of the droplet deformations
back to their equilibrium level. In most of our analysis
below, we focus on the left side of the sample chamber
where w(x) is large [where the walls are no longer visi-
ble, see Fig. 3(a)]. In this region, the average deformation

w x0

FIG. 4: (a) An example of the time-averaged velocity profile.
The data are from Run 1, at a location where the channel
width is w ≈ 8 mm. The fit curve is Eqn. 2. Inset: the
width w(x) is the range that droplet centers can reach, which
is 〈r〉 away from the physical walls. (b) The parameters α(x)
(circles) and β(x) (triangles) obtained from fitting the flow
profile with Eqn. 2. Here the fit curves are from Eqn. 3 with
kα = 1.23 and kβ = 2.73. (c) kα and kβ for all the six runs
versus different flux rates. The dashed lines indicate the mean
values kα = 1.24 and kβ = 2.87.

〈D〉y,t varies with x by at most 20% (for the largest A)
and more typically 10% or less. The mean shear rate in
this region is ¯̇γ ∼ 0.01 s−1 and is in the range used in a
number of previous experiments [8, 20, 55, 57].
The dependence of deformation on flux rate shows that

our experiment is not in a rate-independent regime. Fur-
thermore, a prior experimental study of a sheared bubble
raft provides strong evidence that even slow steady flow
is not equivalent to the quasi-static limit [57]. Nonethe-
less, all relevant time scales appear to be set by the flow
rate for our data. This will be discussed where relevant
(as above for the velocity profiles, and in Sec. IVA for
the rates of T1 events). Furthermore, all our results be-
low are normalized by the average deformation for each
experiment, to remove the flow rate dependence of D.

IV. DEFORMATION FLUCTUATIONS AND T1

EVENTS

A. Spatial averages

Although the macroscopic time-averaged velocity field
is well defined, the microscopic flow has strong temporal
fluctuations. To quantify this, we study the properties of
the droplets at the left side of the image, in the region
where we do not see the hopper walls [see Fig. 3(a)]. This
region contains ∼ 100 droplets, and we average their de-
formations at every time. We then apply a running time
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average using a window of 0.33 s (to reduce the noise),
and then divide the time series by its time-averaged
value, terming this result DG(t), the global deformation.
Due to the normalization 〈DG(t)〉t ≡ 1. Similar to pre-
vious granular [21, 58, 59] and foam [8, 18, 57, 60–62]
experiments, large deformation fluctuations are observed
in Fig. 5. The power spectrum (inset) shows a tendency
of power-law decay P (ω) ∼ ω−1 at high frequencies, com-
parable to spectra found in granular flows [21, 58, 59].

DDG
t

FIG. 5: (Color online) Temporal fluctuations of the global
deformation DG from Run 1. The data are smoothed by a
time window of 0.33 s to reduce noise. The red time windows
indicate two events (93.9 < t < 95.6 s and 115.0 < t <
116.4 s), corresponding to the T1 events shown in Fig. 8(a).
The top-right inset is the power spectrum of the data, with
the line showing the power law P (ω) ∼ ω−1. The bottom
inset shows the definitions of ∆DG and τ .

To quantify the deformation releases, we define defor-
mation changes ∆DG between local extrema of DG(t).
For example, the inset of Fig. 5 shows an example where
∆DG < 0. The time interval between subsequent local
extrema is τ . Figure 6(a) shows a scatter plot of the re-
lation between ∆DG and τ . In general, larger changes of
DG take longer times. The different colors indicate dif-
ferent flow rates A and no dependence on the flow rate
is seen. The time scale τ is primarily set by viscosity,
and given that all of our samples have similar area frac-
tions this time scale should be relatively constant (1-3 s),
depending mainly on the number of T1 events relaxing
[47].

The probability distribution of event sizes ∆DG is
shown in Fig. 6(b). Large events are rare, but not as rare
as would be predicted from the Gaussian fit (dashed line)
shown in the plot. Our distribution is slightly broader
than a previous foam experiment which found a Gaussian
distribution for a similar quantity [18], perhaps because
the flow geometry was quite different. In our data, there
is a slightly larger probability for large decreases of DG

as compared to increases. Here, data for different flow
rates Ã are averaged together, but the individual dis-
tributions look similar. In particular, they have similar
widths: width = 0.048 ± 0.009 for the six experiments,
with the uncertainty being the standard deviation, as
compared to the width for the aggregated data of 0.044.
No systematic dependence on Ã is seen in the widths

from the individual experiments. This is, of course, as
long as the data being compared are the normalized DG

rather than the raw D, otherwise the slight dependence
of 〈D〉 on Ã is seen in the larger widths for larger Ã.
A connection between large deformation drops and T1

events has been observed before in foams [18, 62], as well
as in our prior analysis of these emulsion experiments
[37]. For illustration, T1 events within the highlighted
time windows of Fig. 5 are shown in Fig. 8(a). Here we
quantify this connection in a different way that highlights
that there is a “background” rate of T1 events, but that
the largest decreases of the deformation are connected to
a higher rate of T1 events [19]. We define the frequency
of T1 events as the number of T1 events NT1 occurring
in a given time interval τ [between extrema of DG(t)],
divided by τ , that is, fT1 = NT1/τ . There is a trivial

dependence on Ã – faster flows have higher rates of T1
events – so accordingly we normalize the T1 frequency
by considering the nondimensional quantity fT1/Ã. In
Fig. 6(c), we plot the T1 frequency as a function of the
size of the deformation change ∆DG for both decreases
(solid triangles) and increases (open triangles). For small
increases or decreases, the T1 frequency is fairly constant.
For larger decreases of DG (∆DG . −0.2), the T1 fre-
quency is markedly larger as well, although as Fig. 6(b)
makes clear, this is based on a relatively small number
of events. Similar to the discussion in the previous para-
graph, here again if we analyze the data for each experi-
ment separately, the data all show fT1/Ã decreasing for
larger ∆DG. For each individual experiment, the down-
ward slope is similar to that seen from the combined data
shown in Fig. 6(c), and again no systematic dependence

on Ã is seen.

B. Local spatial structure

Given the correlation between T1 events and global
deformation relaxations, we next examine how a T1
event changes the local deformation field D of the nearby
droplets. Fig. 7(a) is the spatial-temporal map of the lo-
cal deformation field around a T1 event. The lag time
∆t = 0 is the instant of a T1 event, and the distance
∆R = 0 is the center of the four droplets undergoing the
T1 event in their co-moving reference frame. The map
color indicates the magnitude of the mean deformationD
of individual droplets compared to the global mean 〈DG〉
(white): D < 〈DG〉 is indicated by blue, and D > 〈DG〉
is indicated by red. When a T1 event happens , the local
deformation first builds up (deep red ∼ 1.5〈DG〉), and
this drops dramatically after the T1 event, turning the
color from deep red to deep blue. The blue region after-
ward splits into two parts due to the neighbor exchange:
one locates around ∆R ≤ 〈r〉 corresponding to the con-
verging pair, and another locates around ∆R = 2〈r〉 cor-
responding to the diverging pair. The spatial structure is
confirmed by the particle density map in the same frame
of reference in Fig. 7(b), where white shades indicate
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FIG. 6: (Color) (a) Scatter plot of the time τ between local
extrema of DG(t), as a function of the change ∆DG between
the extrema; see the lower inset of Fig. 5 for definitions of
these two variables. The horizontal bands are due to our
limited time resolution. The colors indicate the flux rate Ã
in units of mm2/s. (b) Probability distribution function of
∆DG. The dashed line is a Gaussian fit with width 0.044.
(c) The T1 frequency fT1 normalized by the flux rate Ã =
A/π〈r〉2, plotted as as a function of the size of the deformation
change. The error bars are the standard error of the mean.
For the point at far left, there is only one observation with
this magnitude of ∆DG, so no error bar is shown. For panels
(b) and (c) the six experimental runs are averaged together.
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FIG. 7: (Color) (a) Spatial-temporal map of the local defor-
mation values around a T1 event, averaged over 186 T1 events
during a 194 s duration movie (Run 1). The distance ∆R is
defined in the frame of reference co-moving with the center of
the four droplets undergoing T1 rearrangements, at a speed
of roughly one mean radius per second. ∆t = 0 is the mo-
ment when the T1 event occurs, indicated by the horizontal
dashed line. The color indicates the mean magnitude of the
deformation D on individual droplets compared to the global
mean (white), where smaller values are blue and larger val-
ues are red, as indicated by the color bar. (b) The droplet
number density is indicated by brightness. The bright spot
at ∆R/〈r〉 = 1.5,∆t = 0 corresponds to the four droplets un-
dergoing the T1 event, as ∆t = 0 is defined when they are all
equidistant from the center of the event. Qualitatively similar
images are seen for the different experiments; we show here
Run 1 which has the most T1 events observed.

more probable positions of droplets relative to the T1
event.
The relaxation is asymmetric among the two pairs of

droplets in the T1 event. The length of the blue region
along the time axis for the diverging pair is much longer
than for the converging pair. This suggests the diverg-
ing droplets have their shape relaxed more significantly
than the converging droplets. Furthermore, the blue re-
gion where the deformation decreases extends along the
∆R axis to a distance up to 5〈r〉. Note that we are only
focusing on ∆R dependence, and averaging over any an-
gular dependence which might be present (angular de-
pendence has been suggested by simulations [16]). Over-
all, viscous forces help determine the moderately short
time over which the pattern changes in Fig. 7 after the
T1 event. That is, in the absence of viscosity, the T1
event would be expected to snap the droplets into place
instantaneously.

C. Clusters of T1 events

Given that T1 events affect nearby droplets (Fig. 7),
one T1 event sometimes triggers other T1 events, form-
ing a relaxing region with a larger length scale. Figure
8(a) shows small clusters of T1 events during two time
windows of global deformation drops [Fig. 5]. To quan-
tify these rearranging regions during global deformation
releases, we investigate clusters of neighboring T1 events
with separations less than 6〈r〉. The choice of this separa-
tion cutoff is motivated by the distance where the defor-
mation visibly relaxes in Fig. 7(a). To be considered part
of the same T1 cluster, the T1 events are required to oc-
cur during an interval where DG(t) drops monotonically.
Furthermore, we focus only on the largest T1 cluster in
each global deformation release. As shown in Fig. 8(b),
the sizes of those largest clusters Ncluster are fairly small
(a mean value close to 2) and have no dependence on the
flux rate in these experiments. Given the small sizes of
these clusters, we checked to see if random chance could
form clusters of similar sizes. To do this, we took the data
of all cluster positions (x, y, t) and randomly shuffled the
t values. This keeps constant the number of T1 events
occurring at any time t, but effectively randomizes their
positions. The cluster sizes formed after this shuffling are
smaller by 0.4 on average (that is, ≈ 1.6 particles rather
than ≈ 2.0). Cluster sizes of the values we see are found
only 1% of the time in the shuffled data. This strongly
suggests that our clusters, while quite small, nonethe-
less indicate some true spatial correlations between T1
events.
An alternate way to quantify the clustering is to

consider the number NT1 of T1 events during a given
global deformation release, and then compare this to
the size of the largest cluster during that event Ncluster.
If all T1 events are clustered together, then the ratio
Ncluster/NT1 = 1. For small events with NT1 = 2, this
ratio is ≈ 0.5 on average, indicating that these T1 events
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FIG. 8: (Color online) (a) Spatial distribution of consecutive
T1 events during the large deformation drops corresponding
to the time windows of Fig. 5. The colored circles show the
positions of the T1 events (at the center of the four droplets)
at t = 94.1, 94.5, 95.3, 95.5 s and t = 115.7, 116.1, 116.3 s
for each event. The color ordering is dark blue (first) to red
(last). The background images are taken at t = 95 s and
t = 116 s. The sketch on the right shows an example of
clusters of T1 events. Each point indicates the center of a
T1 event, and so the number of T1 events is NT1 = 7 in
this case. Black bonds indicate those with separations less
than 6〈r〉. In this case, the seven T1 events are composed of
three distinct clusters, and the largest cluster has Ncluster = 4.
(b) The mean largest cluster size Ncluster as a function of

the nondimensional flux rate Ã. The error bars indicate the
standard deviation. (c) The probability distribution of ratio
Ncluster/NT1 for data with NT1 ≥ 3.

are often uncorrelated in space. For larger events with
NT1 ≥ 3, we plot the probability distribution of the ratio
Ncluster/NT1 in Fig. 8(c). The peak of the distribution is
around 0.8, showing that these larger bursts of T1 events
often cluster spatially.

V. CONCLUSIONS

We have studied the link between local rearrangement
events (T1 events) and global deformation relaxations in
a 2D emulsion experiment. We see that the droplets de-
form during the flow as they are compressed by other
droplets. The flow is steady, but the global mean defor-
mation has large temporal fluctuations. Large decreases
of the global deformation are correlated with small cas-
cades of local T1 events in agreement with previous stud-
ies of 2D foams [60, 62]. We also find that T1 events
decrease the deformation of nearby droplets, with a spa-
tial pattern related to the local spatial structure of the
droplets. Noticeable decreases of the deformation are
seen as far as three diameters away, suggestive of the
“flow cooperativity length” predicted by theory [6, 15]
and suggested by previous experiments [6, 62–65] and
simulations [10]. We find T1 events tend to form small
clusters, especially in cases where the global deformation
decreases the most. To an extent, some characteristics
of flowing dense amorphous materials are independent of
their microscopic details [17, 66–68], and so our results
may be relevant for flow of three dimensional amorphous
materials, although of course the definition of rearrange-
ments will be different [9, 34]. Overall, we confirm a
connection between cascades of local rearrangements and
macroscopic fluctuations of the sample behavior, with the
latter quantified by the instantaneous mean global defor-
mation of the flowing droplets.
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tional Natural Science Foundation of China (11304212)
and the Natural Science Foundation of Jiangsu Province
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Rheology of soft glassy materials, Phys. Rev. Lett., 78,
2020–2023 (1997).

[67] G. D’Anna and G. Gremaud, The jamming route to the
glass state in weakly perturbed granular media, Nature,
413, 407–409 (2001).

[68] R. Lespiat, S. C. Addad, and R. Höhler, Jamming
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