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We report a combined experimental and simulation study of deformation-induced diffusion in
compacted quasi two-dimensional amorphous granular pillars, in which thermal fluctuations play
negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing up-
right on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant
speed. The plastic flow and particle rearrangements in the pillars are characterized by computing
the best-fit affine transformation strain and non-affine displacement associated with each particle
between two stages of deformation. The non-affine displacement exhibits exponential crossover
from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that
in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal
systems and drives effective particle diffusion. We further study the size-dependent deformation
of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape
evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar
size. Formation of transient shear lines in the pillars during deformation becomes more evident as
pillar size increases. The width of these elementary shear bands is about twice the diameter of a
particle, and does not vary with pillar size.

PACS numbers: 45.70.-n, 47.57.Gc, 83.50.-v, 83.80.Fg

I. INTRODUCTION

Disordered materials such as metallic glasses can
exhibit highly localized deformation and shear band
formation[1, 2]. Most experiments on these systems,
however, use loading geometries in which there are free
boundaries and inhomogeneous strains, while simulations
have typically focused on systems with periodic boundary
conditions under homogeneously-applied shear strain. To
understand at a microscopic level the effects of loading
geometry on the macroscopic mechanical response, it is
useful to study a disordered system in which individual
particles can be imaged and tracked as they rearrange
under an applied load. Here we introduce a granular
packing–a packing of discrete macroscopic particles for
which thermal agitation plays a negligible role [3, 4]–in
a pillar geometry commonly used for mechanical testing
of metallic glasses. Cubuk and Schoenholz et al. showed
that machine learning methods can be used to identify a
population of grains that are likely to rearrange in these
two-dimensional (2D) pillars [5]. In this paper, we com-
bine experiment and simulation to study the response of
the pillars to athermal, quasistatic, uniaxial compression.

One question of interest is how the mechanical response
of the pillar depends on pillar size. We find that the pillar
shape evolves under load in a self-similar fashion, so that
the shape of the pillar at a given strain is independent
of system size. We also find that as the pillars deform,
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the strain rate localizes into transient lines of slip, whose
thickness of a few particle diameters is independent of
system size. Thus, the system is self-similar in shape at
the macroscopic scale, but, surprisingly, its yielding is
not self-similar at the microscopic scale.

A second question concerns the random motions of
particles as they rearrange under inhomogeneous load-
ing conditions. Because particles jostle each other, they
display diffusive behavior in homogeneously sheared sys-
tems that are devoid of random thermal fluctuations [6].
Recently, crystal nucleation and growth were observed
in situ in mechanically fatigued metallic glasses at low
temperature [7]. Crystallization is typically thought
to require diffusion. Therefore, it was suggested that
the “shear transformation zones” (STZs) [2] should
be generalized to “shear diffusion transformation zones”
(SDTZs) [7, 8], to reflect the contributions of random mo-
tions driven by loading, even under inhomogeneous con-
ditions. Our amorphous granular pillar is an athermal
system as far as the macroscopic particles are concerned
(effective vibrational temperature ≈ 0), so our experi-
ment and simulations can examine how inhomogeneous
loading affects particle motion. We find that the idea of
load-induced diffusion can be generalized to inhomoge-
neous loading by replacing time with the cumulative de-
viatoric strain, and the mean-squared displacement with
the mean-squared displacement of a particle relative to
the best-fit affine displacement of its neighborhood (i.e.
the mean-squared non-affine displacement [9]). With this
generalization, we observe that the mean-squared non-
affine particle displacement crosses over from ballistic to
diffusive behavior as a function of the cumulative devia-
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toric strain.
The article is organized as follows. In section II, we

describe the experimental and simulation setup, as well
as the simulation methodology, of 2D amorphous gran-
ular pillars under uniaxial and quasistatic deformation.
Section III describes the results of our combined experi-
ments and simulations on the deformation of a 2D gran-
ular pillar containing 1000 particles. In section IV, we
discuss the exponential crossover of non-affine particle
displacement from ballistic to diffusion with respect to
cumulative deviatoric strain. Section V presents our sim-
ulation results on the size-dependent deformation of large
2D granular pillars. Then we conclude the article in sec-
tion VI.

II. METHODS

The compacted 2D amorphous granular pillars in our
study consist of 50-50 mixture of bidisperse cylindrical
particles (grains) standing upright on a substrate. A top-
view of the schematic setup is shown in Fig. 1. The pil-
lars have aspect ratio H0/W0 ≈ 2, where H0 and W0 are
the original height and width of the pillars respectively.
In our experiment, the cylindrical granular particles are
made of acetal plastic. The diameter of the large grains
in the pillars, denoted by D, is 1/4 inch (0.635 cm), while
for the small grains the diameter d has the value of 3/16
inch (0.47625 cm). The ratio of diameter between large
and small grains is therefore D/d = 4/3. Both types
of grains are 3/4 inch (1.905 cm) tall. The masses for
the large and small grains are 0.80 gram and 0.45 gram
respectively. The pillars are confined between a pair of
parallel bars. The bottom bar is static while the top bar
deforms the pillars uniaxially with a slow, constant speed
vc = 1/300 inch per second (0.0084667 cm/sec). The
force sensors connected to the bars measure the forces
on the top and the bottom bars, and the trajectory of
each particle in a pillar is tracked by a high-speed cam-
era mounted above the pillar. The basic parameters in
our simulation, including the size and mass of the grains,
as well as the velocity of the bars, are the same as in
the experiment. Further experimental details will be de-
scribed in an upcoming paper [10, 11].

A. Packing Generation Protocol

Properly prepared initial configurations are crucial for
the study of the mechanical properties of amorphous
solids. In our experiment, 50-50 random mixture of bidis-
perse grains are compacted to form a pillar with aspect
ratio 2 to 1. To facilitate direct comparison between ex-
periment and simulation, for small-sized pillars (number
of grains in the pillar N = 1000), the simulation initial
conditions are taken from the experimental data, which
was then relaxed in simulation to eliminate particle over-
lapping that results from measurement error. For large-

FIG. 1. Top-view of the experimental/simulation setup. A
two-dimensional pillar of granular particles on a frictional sub-
strate is deformed quasistatically and uniaxially by a rigid bar
from one side. The direction of gravity is perpendicular to the
substrate. The compacted, disordered granular packing con-
sists of 50-50 mixture of bidisperse cylindrical-shape grains.
The ratio of radius between large and small grains is 4:3. The
aspect ratio of the pillar, defined as the initial height of the
pillar (H0) divided by the initial width (W0), is 2:1. The pil-
lar is confined between two rigid bars placed at the top and
bottom end of the pillar. The top bar deforms the pillar with
a constant speed vc while the bottom bar is kept static.

sized pillars, which can only be studied by simulation, we
generate compacted, amorphous granular pillars through
computer simulation, using the protocol described below.
The particle area density in the simulation-generated pil-
lar is controlled to be at the onset of jamming transition
[12]. To generate the initial conditions, we assign the
following truncated Lennard-Jones potential with purely
repulsive interaction to the large (L) and small (S) grains

Uαβ(r) =

{
ε
[
(σαβ/r)

12 − 2 (σαβ/r)
6
]

for r < σαβ ,

−ε for r ≥ σαβ ,
(1)

where the subscripts α, β denote L or S. The zero-force
cut-off distances σαβ are chosen to be the sum of radii of
two particles in contact, namely σLL = D, σLS = 7D/8,
and σSS = 3D/4, where D is the diameter of a large
grain. We note that this potential will only be used to
generate the initial conditions of the granular packings,
and is different from the particle interaction model we
describe later for the deformation of the granular pillars.

To create a disordered granular packing with 50-50
mixture of N total number of large and small grains,
a rectangular simulation box with dimensions Λ × 2Λ is
initially created, where the width of the box Λ is chosen
such that the initial particle area density, ρ = N/2Λ2,
is slightly above the particle overlapping threshold. We
then randomly assign the positions of the particle within
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the simulation box, and subsequently use conjugate-
gradient (CG) method to minimize the total potential
energy of the system. Periodic boundary conditions are
applied during this process. The particle positions are
adjusted iteratively until the relative change of energy
per particle between two successive CG steps is smaller
than 10−12. When this stage is reached, the pressure of
the system is calculated using the following virial formula

p = − 1

2A

∑
i>j

rij
dU

drij
, (2)

where A is the area of the simulation box, rij is the dis-
tance between particles i and j. If the pressure is greater
than zero, both dimensions of the simulation box will be
enlarged by a fraction of 10−5, and the particles in the
box will be mapped to the corresponding new positions
in the enlarged box via affine transformation. CG en-
ergy minimization will then be carried out on the new
configuration. This iterative process stops when the cal-
culated pressure of the system at the end of a CG run
becomes smaller than 10−10ε/D2. The final configuration
will be taken as the initial conditions of close-packed 2D
amorphous granular assembly. Free boundaries are then
implemented on the lateral sides of simulation box to cre-
ate a pillar with 2:1 aspect ratio. Calculation of radial
distribution functions for different-sized pillars indicates
that the structure of the amorphous assemblies generated
following the above procedures does not show noticeable
size dependence. Comparison of the radial distribution
functions computed for the experimental and simulation-
generated initial conditions is shown in Fig. 2.

B. Simulation Methodology

We use molecular dynamics (MD) to simulate the qua-
sistatic deformation of the 2D granular pillars. The simu-
lation force model includes three components: the grain-
grain interaction, the grain-bar interaction and the grain-
substrate interaction. Each of these forces will be de-
scribed in the remainder of this subsection.

1. Grain-Grain Interaction

As illustrated in Fig. 3a, the interaction between
two grains includes normal and tangential contact force,
which are denoted by Fn and Ft respectively. Two grains
experience a repulsive normal contact force if the dis-
tance between the particle centers is smaller than the
sum of their radii. For two smooth, elastic cylindrical
particles with parallel axes, the normal contact force as
determined by the Hertzian theory of contact mechanics
is proportional to the indentation depth between the two
particles [13]. For our granular particles, denote by ri
and rj the positions of particles i and j, and denote by
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FIG. 2. Comparison of the radial distribution functions g(r)
for experiment-derived and simulation-generated initial con-
ditions computed using (a) small grains as the central parti-
cles and (b) larger grains as the central particles are shown
respectively. The distance r is scaled by the diameter D of
the large particles.

FIG. 3. (a) Illustrations of grain-grain interaction in the
granular pillar. The contact force between two grains consists
of normal repulsive contact force Fn and tangential shear con-
tact force Ft. (b) Illustration of grain-substrate interaction.
If the velocity of a grain i is non-zero, or the vector sum of
the forces on the grain due to other grains and the bars is
non-zero, the substrate will exert a frictional force f on the
grain, the maximum value of which is migµ, where mi is the
mass of the particle, g is the gravity acceleration constant
and µ denotes the friction coefficient between the grain and
the substrate. Likewise, if the angular velocity of the grain is
non-zero or the torque on the grain due to other interactions
is non-zero, the substrate will induce a frictional torque whose
maximum magnitude is |Tµ,i| = 2

3
migµRi, where Ri is the

radius of the particle.
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rij = ri − rj the distance vector between the two parti-
cles, the indentation depth δij is calculated as

δij = Ri +Rj − rij , (3)

where rij = |rij |. Ri and Rj are the radii of particles
i and j. δij will be zero if the two particles are not in
contact. The normal contact force acting on the particle
i by particle j is then given by

Fnij
= knδijnij , (4)

where nij = rij/rij , and kn is the normal contact stiff-
ness. The corresponding normal contact force on particle
j is given by Newton’s third law, namely, Fnji

= −Fnij
.

In Hertzian theory of contact mechanics [13], the con-
stant kn for two cylinders in contact can be calculated
as

kn =
π

4
E∗l, (5)

where l is the height of the cylinders. E∗ is the normal-
ized contact elastic modulus, which is computed from the
respective elastic modulus of the two cylinders, E1 and
E2, and their Poisson’s ratios, ν1 and ν2:

1

E∗
=

1− ν21
E1

+
1− ν22
E2

. (6)

The existence of a friction force between two particles
in contact is a characteristic feature of granular materi-
als. Appropriate modeling of contact friction is crucial to
the study of granular dynamics. The tangential frictional
force between two grains in contact can be very compli-
cated in reality [14]. We adopt the history-dependent
shear contact model initially developed by Cundall and
Strack [15]. This well-tested model has been used by
many others to model the dynamics of granular assem-
blies [14, 16–24]. The essence of this model is to keep
track of the elastic shear displacement of two particles
throughout the lifetime of their contact, and applying
the Coulomb elastic yield criterion when the displace-
ment reaches a critical value. Our implementation of the
Cundall-Strack model follows Silbert et al. [14]. Specifi-
cally, the tangential contact force between particle i and
j is calculated as:

Ftij = −ktutij , (7)

where the shear displacement utij is obtained by integrat-
ing the tangential relative velocities of the two particles
during the lifetime of their contact [14]. Here kt is the
tangential contact elastic modulus. It is taken to be pro-
portional to the normal contact stiffness kn. Following
Silbert et al., we choose kt = 2

7kn. Previous studies have
shown that the dynamics of system is relatively insen-
sitive to this parameter [14], which is confirmed by our
own simulation.

To model the elastic yield of shear contact, the mag-
nitude of utij is truncated to satisfy the Coulomb yield

criterion |Ftij | ≤ |µgFnij
|, where µg is the friction coef-

ficient between the grains.
The tangential contact force will induce torques on the

two grains in contact, as given by

Tij = −1

2
rij × Ftij . (8)

Here Tij is the torque exerted by grain j on grain i due
to the tangential contact force Ftij .

2. Grain-Bar Interaction

The grain-bar interaction is modeled in a similar way
to the grain-grain interaction. The bar is essentially
treated as a rigid grain with infinitely large radius. When
a grain comes in contact with a bar, the grain can experi-
ence normal and shear contact force induced by the bar,
and the shear contact force is also calculated by track-
ing the elastic shear displacement between the grain and
the bar. The motion of the moving bar is not affected
by the grains. The static bar at the bottom side of the
pillar is always static, while the top bar deforms the pil-
lar at a constant speed vc. Compared to grain-grain in-
teraction, the interaction parameters between the grains
and the bar is slightly modified. The bars are mod-
eled as rigid, undeformable bodies with infinite elastic
modulus. Consequently, the effective interaction modu-
lus E∗ between the bars and the grains, based on Eq. 6,
is twice as large as that between the grains. Therefore,
from Eq. 5, the normal interaction stiffness between the
bars and the grains is twice as large as that between the
grains, i.e., kn(grain-bar) = 2kn(grain-grain). Since the
shear modulus of contact kt is proportional to kn, we
have kt(grain-bar) = 2kt(grain-grain) as well.

3. Grain-Substrate Interaction

The substrate can induce both frictional force and
torque on the grains, as illustrated in Fig. 3b. If a grain is
initially static, unless the magnitude of total force due to
other grains/bars is larger than the maximum frictional
force that can be exerted by the substrate |fi| = migµ,
the substrate frictional force will cancel out other forces
on the grain and the particle will continue to have zero
velocity. Here mi is the mass of the grain i, g is the grav-
itational acceleration and µ denotes the frictional coeffi-
cient between the grains and the substrate. In another
case, if the velocity of the grain is non-zero, the substrate
will induce a frictional force opposite to the direction of
particle motion, with magnitude |fi| = migµ. A similar
algorithm applies to the rotational motion of a particle.
An initially static grain will not start to rotate unless the
torque due to other interactions surpasses the maximum
substrate-induced frictional torque |Tµi

| = 2
3migµRi,

where Ri is the radius of the cylindrical-shape particle.
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The prefactor 2
3 is based on the assumption that fric-

tional force is evenly distributed on the circular contact
interface between a cylindrical-shape grain and the sub-
strate. If the angular velocity of the grain is non-zero, a
frictional torque

Tµ,i = −2

3
migµRiω̂i, (9)

will slow down the rotational motion of the particles,
where ω̂i = ωi/|ωi| and ωi denotes the angular velocity
of particle i.

4. Equations of Motion

Total forces and torques on each grain, determined by
summing contributions discussed in Sec. II B 1-II B 3, are
used to update the velocities of the grains according to
Newtonian equations of motion:

mi
d2ri
dt2

= Fi, Ii
dωi
dt

= Ti, (10)

where Fi and Ti are the total force and torque on the
particle i respectively. Ii = 1

2miR
2
i is the moment of

inertia for grain i. The standard velocity Verlet integra-
tor is used to update the positions and velocities of the
particles, while a finite difference method is used to inte-
grate the first-order differential equation for the angular
velocities.

There is a subtle numerical issue that must be ad-
dressed when modeling velocity and angular velocity
changes of the particles in the presence of the damp-
ing effects of a frictional substrate. In numerical inte-
gration of equation of motion, time is discretized into
small timesteps with each timestep being a small incre-
ment δt. To complete the simulation within a reasonable
time frame, δt cannot be too small, which means that
the changes of velocity and angular velocity of the grains
due to the substrate induced force and torque within
a timestep are not infinitesimal. Hence, the motion of
particles might not be able to be brought to a halt by
the substrate − the velocity and angular velocity of the
particles could oscillate around zero. Consider, for ex-
ample, a stand-alone cylindrical grain with initial veloc-
ity vi and angular velocity ωi. Without other interac-
tions, the substrate will induce friction |fi| = migµ and
frictional torque |Tµ,i| = 2migµ/3 on the grain, which
slows down both the translational and rotational motion
of the grain. According to the equations of motion in
Eq. 10, the translational and rotational acceleration will
be av = gµ and aω = 4gµ/(3Ri), with Ri being the
radius of particle i. Hence, within a timestep δt, the
change of velocity or angular velocity is a finite number:
δv = gµδt, δω = 4gµδt/(3Ri). If the velocity or an-
gular velocity have been damped to values below these
two numbers, they cannot be damped further but instead
oscillate around zero, which is clearly a numerical arti-
fact. To work around this issue, we introduce two small

parameters

ξv = gµδt, ξωi =
4gµ

3Ri
δt, (11)

such that when |vi| < ξv and |
∑
j Fij+Fbar

i | ≤ migµ are
both satisfied, the velocity and total force on the particle
will be set to zero. Here Fij is the force of particle j on
particle i, and Fbar

i is the force of the bars on particle
i. Similarly, for the rotational motion, if |ωi| < ξωi

and
|
∑
j Tij + Tbar

i | ≤ 2
3migµRi, the angular velocity and

total torque of the particle is set to zero.

C. Choice of Simulation Model Parameters

The independent parameters in the interaction model
of our simulation include the grain-grain stiffness kn,
grain-grain friction coefficient µg, grain-substrate fric-
tion coefficient µ, and the timestep for integration of
equations of motion δt. Among these parameters, µ has
been experimentally measured to be around 0.23. Hence
µ = 0.23 will be adopted in our simulations. The grain-
grain friction coefficient µg is unknown. We have carried
out simulation using multiple values of µg, and the re-
sults indicate that choosing µg = 0.2 achieves reasonable
agreement between the experiment and simulation. Due
to the quasistatic nature of the pillar deformation, the in-
cremental force on a grain by the bar within one timestep
δt must be much smaller than the maximum static fric-
tion by the substrate on a grain, namely

2knvcδt� migµ, (12)

where vc is the speed of the top moving bar. Hence, the
smaller the value of δt, the higher the value of kn that
can be explored in simulation. While there is no physi-
cal reason for a lower bound of δt, smaller δt results in
an increased time span to complete simulation. Realistic
consideration leads to our choice of δt = 10−5 second.
The upper bound of allowed kn calculated from Eq. 12
is considered to be smaller than the real contact stiffness
of two particles in experiment. For this reason, we have
systematically studied the influence of kn on the simula-
tion results in a small-sized pillar containing 1000 grains.
The relatively small sized pillar allows us to use δt = 10−6

second and thus access a wider range of kn, from kn =
1 N/mm to kn = 100 N/mm. The results indicate that
the statistical behaviors of deformation dynamics, such
as flow stress and particle-level deformation characteris-
tics, are not significantly influenced by the value of the
kn. We therefore choose kn = 10 N/mm and δt = 10−5

in our simulation.
The results of our study will be expressed in terms of

several characteristic units. Length will be expressed in
the diameter of the large grains D or the radius R = D/2.
The unit of velocity will be the bar speed vc and the unit
of time will be R/vc, which is the time it takes for top
bar to move over a distance equal to R. The units for
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force and stress will be mgµ, mgµ/D respectively, where
for convenience, we will use the symbol m to denote the
mass of a large grain. mgµ is thus the minimum force
to induce the translational motion of a stand-alone large
grain and mgµ/D is the corresponding averaged stress of
the bar on the grain.

III. COMBINED EXPERIMENT AND
SIMULATION ON DEFORMATION OF

SMALL-SIZED PILLARS

Deformation of an N = 1000 pillar has been studied
by both experiment and simulation. The experimental
initial particle arrangement in the pillar is the same as
those depicted in Fig. 1. To facilitate comparison be-
tween experiment and simulation, our parallel simulation
of pillar deformation uses the experimentally measured
initial conditions. In the simulation, the initial condi-
tions are then relaxed via energy minimization to elimi-
nate particle overlap resulting from measurement uncer-
tainty. When the pillar is deformed by the moving bar,
the strain of deformation ε is defined as the change of
pillar height ∆H divided by the original height of the
pillar H0, namely, ε ≡ ∆H/H0. The deformation stress
σ is calculated as the normal force on the top moving bar
Fbar divided by the maximum width of the pillar near the
top edge W , namely σ ≡ Fbar/W .

Fig. 4 shows the experimental and simulation stress-
strain curve of the N = 1000 pillar. The measured stress
shows yielding behavior when the deformation strain ex-
ceeds a very small value εy. From our simulation, we
find that the yield strain εy in general becomes smaller
as the grain-grain stiffness kn or the packing density of
the pillar is increased. The yield stress σy however shows
little dependence on kn. The parameter that affects σy
most is found to be the grain-grain friction coefficient µg.
In the range of µg we have studied (µg from 0 to 0.3),
σy increases monotonically with the increase of µg. The
simulation results presented in this paper use µg = 0.2,
which is found to achieve an overall good match between
the experiment and simulation.

In Fig. 4, we label several stress/strain values and cali-
brate the corresponding particle-level structural changes
in the pillar. The experimental and simulation results
are then compared side-by-side in Fig. 5. Good agree-
ment between experiment and simulation is achieved.
The small differences in the microscopic measurement
can be attributed to the fact that the simulation force
model does not consider the size polydispersity and shape
irregularity of the granular particles, which are present
in the experimental system. Other factors, such as the
choice of certain model parameters (e.g. grain-grain fric-
tion coefficient), inexact match of initial conditions due
to measurement uncertainty in experiment, and the use
of non-zero time steps in simulation, may also contribute.

Fig. 5a shows the mean particle velocity field in the
pillar at six different stages of deformation. The mean
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FIG. 4. Comparison between the (a) experimental and (b)
simulation stress-strain curves for the deformation of a N =
1000 granular pillar. The compressing stress is measured in
units of mgµ/D, while the strain is computed as the change
of pillar height (∆H) divided by the original height of the
pillar H0. The numerical labels (1-6) indicate the stress strain
values at which deformation characteristics in the pillar will
be compared side by side between experiment and simulation.

velocity of a particle i, denoted by vi(t,∆t), is calculated
as the average displacement magnitude of the particle
from current time t to a later time t+ ∆t,

vi(t,∆t) = |ri(t+ ∆t)− ri(t)|/∆t, (13)

where the value of time interval ∆t is chosen to be 2/15
R/vc for the present purpose. vi(t,∆t) contains informa-
tion of the absolute amount of displacement of the parti-
cle i within ∆t. As shown in Fig. 5a, the mean velocities
of the particles near the moving bar are close to vc, which
is expected as the pillar is deformed quasistatically by the
bar. The mean velocity of a particle in general becomes
smaller as the particle is further away from the moving
bar. At the early stages of deformation, particles at the
bottom part of the pillar have not moved and therefore
have zero values of v. A sharp boundary between the
moving and non-moving regions of the pillar often forms
along the the direction that is roughly 45 degree to the
direction of uniaxial deformation.

In the simulations we have access to detailed informa-
tion on the inter-particle interactions. In Fig. 6 we plot
the grain-grain normal force Fn, tangential force Ft and
substrate-induced force frictional force f on the particles
at six stages of deformation corresponding to the numer-
ical labels in Fig. 4. Comparing Fig. 6a with Fig. 6b and
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FIG. 5. Comparison between experiment and simulation of the particle velocity v, deviatoric strain rate J2 and non-affine
displacement D2

min during deformation of a N = 1000 granular pillar. The six stages of deformation (1-6) correspond to the
stress and strain values labeled in Fig. 4. Within each subplot (a), (b) and (c), the top panel corresponds to the experimental
result, while the bottom panel corresponds to the simulation result. (a) Velocities of the particles in the pillar. The magnitude
of the displacement of a particle from the current position after time interval ∆t = (2/15)R/vc is divided by ∆t to obtain
the average velocity across the time interval. (b) Deviatoric strain rate J2 for each particle. J2 is computed by comparing
the current configuration of a particle and its neighbors with the configuration after ∆t, using neighbor sampling distance
Rc = 1.25D. J2 is measured in the unit of vc/R. (c) Non-affine displacement D2

min for each particle in the pillar. The
procedures for calculating D2

min are discussed in the main text. See Supplementary Material for the corresponding movies [25].

Fig. 6c, we find that Fn is in general much larger than
Ft, which is further larger than f , namely Fn � Ft � f .
In particular, Fig. 6a shows that particles with large Fn
are connected with force chains. The magnitude of forces
in these force chains is higher for particles residing in the
interior the pillar. This indicates that the stress in the
pillar is rather inhomogeneous, with larger stresses in the

interior region of the pillars than close to the surface.

We further look at the rearrangement of particles in the
pillar by defining a neighbor sampling distance Rc, and
calculate the affine transformation strains and non-affine
displacements of the particles with respect to their neigh-
bors within Rc. The value of Rc is chosen to be 1.25D,
which roughly corresponds to the average first nearest-
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FIG. 6. Forces in the granular pillar during deformation as obtained from simulation. The numerical labels (1-6) correspond
to the deformation stages labeled in Fig. 4b. (a) Grain-grain normal force Fn; (b) grain-grain tangential force Ft and (c)
grain-substrate friction force f . The normal and tangential forces are measured in the unit of mgµ, which is the largest possible
value of substrate induced friction on a large grain. The substrate friction forces are measured in the unit of migµ. See
Supplementary Material for the corresponding movie [25].

neighbor distance of the particles in the pillar, as can be
seen from the computed radial distribution functions in
Fig. 2. A particle j is considered to be the neighbor of
a particle i if their distance is smaller than Rc, which is
illustrated in Fig. 7. The configurations of the particle
i and its neighbors at a given time t and a subsequent
time t + ∆t will then be used to compute the best-fit
local affine transformation matrix J and the non-affine
displacement D2

min associated with particle i, using the
method introduced by Falk and Langer [9, 26]. Specif-
ically, D2

min,i is obtained by calculating the best affine
transformation matrix Ji that minimizes the error of de-
formation mapping:

D2
min,i(t,∆t) =

1

Ni
min
Ji

∑
j∈Ni

[rji(t+ ∆t)− Jirji(t)]
2
,

(14)
where rji(t) = rj(t)−ri(t) is the distance vector between
particles j and i at time t. rji(t + ∆t) is the distance
vector at a later time t+ ∆t. The summation is over the
neighbors of particle i at time t, whose total number is
given by Ni. The best-fit affine transformation matrix
Ji(t,∆t) is usually non-symmetric due to the presence of
rotational component. A symmetric Lagrangian strain
matrix ηi can be calculated from Ji as

ηi =
1

2

(
JTi Ji − I

)
, (15)

where I is an identity matrix. The hydrostatic invariant
is then computed from ηi as

ηmi =
1

2
Trηi. (16)

The shear (deviatoric) invariant is then given by

ηsi =

√
1

2
Tr (ηi − ηmi I)

2
. (17)

Hereafter we will refer to ηsi (t,∆t) as the deviatoric strain
associated with the particle i from t to t + ∆t. The
deviatoric strain rate, denoted by J2, is the normalization
of ηsi (t,∆t) with respect to ∆t:

J2(t,∆t) = ηs(t,∆t)/∆t (18)

Fig. 5b-c shows the computed deviatoric strain rate J2
and D2

min for each particle in the pillar at six different
stages of deformation, where the experimental and sim-
ulation results are compared side by side. J2(t,∆t) and
D2

min(t,∆t) are computed using ∆t = (2/15)R/vc, which
is the same as the value of ∆t used for computing the
mean velocities of the particles in Fig. 5a. Comparing
Fig. 5b with Fig. 5a, it can be seen that large values of
deviatoric strain rate occur at places where the gradient
of mean velocity, and hence the gradient of particle dis-
placement, is large, which is understandable as strain is
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a b

FIG. 7. (a) Illustration of a particle (colored in green)
and its neighbors (colored in black) within a cut-off distance
Rc = 1.25D at an initial reference configuration. (b) The
same set of particles at a later stage of deformation. We seek
to find the best-affine transformation matrix J that maps the
coordinates of the particles illustrated in (a) to those in (b).
This optimization procedure also gives the non-affine displace-
ment D2

min associated with the central (green) particle, and
the deviatoric strain ηs in the neighborhood, as discussed in
the main text.

a measure of displacement gradient. One can also no-
tice from Fig. 5b the presence of thin shear lines in the
pillars, where particles with large deviatoric strain rate
reside. The width of these shear lines is about twice the
diameter of the particles. These shear lines largely cor-
respond to the moving boundary between the deformed
and undeformed regions in the pillar. The presence of
such shear lines will appear clearer as pillar size increases,
which will be discussed in the later part of the article.

Comparing the D2
min profile in Fig. 5c with deviatoric

strain rate J2 in Fig. 5b, it is clear that particles with
larger values of D2

min are correlated with larger values
of J2, and hence also deviatoric strain ηs (Eq. 18). The
deviatoric strain ηs reflects the local shear component of
affine deformation (shape change), while D2

min measures
additional particle displacement with respect to its neigh-
bors that cannot be described by mere shape change. The
positive correlation between D2

min and ηs is understand-
able because the larger the value of ηs (which usually
drives plastic deformation), the error of describing local
particle rearrangement in terms of purely shape change,
which is the definition of D2

min, will more likely to be
larger.

IV. LOCAL DEVIATORIC STRAIN DRIVEN
PARTICLE DIFFUSION

The positive interdependence between D2
min and ηs

motivates us to map out their correlation quantitatively.
Starting with an initial configuration of the pillar at time
t that corresponds to deformation strain ε = vct/H0,
we fix the neighbor sampling distance Rc = 1.25D and
calculate ηs(t,∆t) and D2

min(t,∆t) for each particle in
the pillar using a logarithmic series of time intervals
∆t ∈ [2, 4, 8, ..., 128]/15 R/vc. This procedure is then

FIG. 8. D2
min/R

2 vs deviatoric strain, ηs, for (a) experiment
and (b) simulation. Gay points show all the data. Blue cir-
cles show the average D2

min/R
2 values within each of 100 ηs

bins, with circle size indicative of the standard error of the
mean within the bin. The blue data are fit to an exponential
crossover equation from quadratic to linear scaling (see main
text and Eq. 19 for details). The black curves in each plot
show the best-fit result for the binned data, and the green
region shows the full range spanned by the 95% confidence
intervals of both fits.

repeated for at least eight values of initial times t equally
spaced by 2

3R/vc. We then plot all the calculated val-

ues of D2
min(t,∆t) with respect to ηs(t,∆t) on a single

plot, using logarithmic axes for both D2
min and ηs. The

results of experiment and simulation are shown together
in Fig. 8. From Fig. 8, it can be seen that while for
a given specific value of ηs, the possible values of D2

min

are scattered, the existence of statistical correlation be-
tween D2

min and ηs is apparent. We find that in the range
of small values of ηs, D2

min scales quadratically with ηs,
which gradually transits to linear scaling at larger values
of ηs. This is reminiscent of the scaling relationship be-
tween the growth of mean squared displacement (MSD)
for a thermally diffusive particle and time t, which is often
explained pedagogically by an unbiased random walker.
Indeed, we find that, by considering D2

min as MSD, and
deviatoric strain ηs as time, the data in Fig. 8 can be fit
very well using the following equation that describes the
exponential crossover of a thermal particle from ballistic
to diffusive motion, expected for a Langevin particle with
no memory [27]:

D2
min(ηs)/R2 = 4Θηs − 4Θηsc [1− exp(−ηs/ηsc)] , (19)



10

where D2
min is scaled by R2 to render it dimensionless.

Θ is the dimensionless effective diffusivity while ηsc takes
meaning of “crossover deviatoric strain”. Our fitting of
the data gives the values of the parameters with 95%
confidence intervals as Θ = 0.19±0.02, ηsc = 0.027±0.004
for the experiment, and Θ = 0.22 ± 0.02, ηsc = 0.038 ±
0.005 for the simulation.

The analogy between D2
min and MSD, and between ηs

and time t, may have deep implications. D2
min describes

the mean-squared non-affine displacement of a particle
with respect to its neighbors and can be naturally iden-
tified as an analogy to MSD. The analogy between de-
viatoric strain ηs and time t implies that, for the gran-
ular packings, where there is no thermal agitation and
the system is deformed heterogeneously, the cumulative
deviatoric strain plays the role of time and drives effec-
tive particle diffusion. Argon had originally used bub-
ble raft deformation to illustrate the concept of shear
transformation zone (STZ) [28, 29], which emphasizes the
affine part of localized stress-driven processes. Recently,
Wang et al. found that cyclic mechanical loading can in-
duce the nano-crystallization of metallic glasses well be-
low the glass transition temperature [7, 8], resulting from
stress-driven accumulation of non-affine displacement of
the atoms in the sample. The concept of shear diffu-
sion transformation zones (SDTZs) was proposed by the
authors to explain the experimental results and to em-
phasize the diffusive character of STZs. Our results lend
support to the concept of SDTZ by showing that, even in
amorphous granular packings, where there is no thermal-
driven diffusion at all, if the accumulated local deviatoric
strain is large enough (above a few percent strain), the
non-affine displacement of a particle with respect to its
neighbors crosses over to the diffusive limit. This sug-
gests that SDTZ may be a key concept for a broad range
of amorphous solids.

The analogy between local cumulative shear transfor-
mation strain in athermal amorphous solids and time in
thermal systems for particle diffusion may be rational-
ized by a “space-time equivalence” argument, as follows.
A finite temperature kBT means temporally random mo-
mentum fluctuations, for crystals and non-crystals alike.
Even in crystals, such random momentum fluctuations
(due to collision of multiple phonons) can drive the ran-
dom walker behavior of a particle, if these temporal fluc-
tuations can be significant compared to the potential en-
ergy barrier. But in amorphous solids without sponta-
neous temporal fluctuations, there will be nonetheless
still another source of randomness, which is the local spa-
tial structure and structural response of the amorphous
solid. This is indeed what motivated the “heteroge-
neously randomized STZ model” [30, 31]. In other words,
even if two “Eshelby inclusions” at different locations
of an amorphous solid transform by exactly the same
transformation strain η, one reasonably would still ex-
pect drastically different internal particles arrangements
and rearrangements inside these zones. This ultimately
is because the local strain η is just a coarse-graining

variable, that represents a key aspect of the structural
transformations of a kinetically frozen random cluster,
but not all of its structural information. (This may not
be true in simple crystals, where η may entirely capture
the entire structure.) Such structural mutations beyond
transformation strain are reflected in D2

min. The fact
that D2

min will accumulate linearly with strain at steady
state means the structural mutations from generation to
generation [30, 31] are largely non-repeating and essen-
tially unpredictable, if starting from a spatially random
configuration at the beginning, even when the stress con-
dition driving these transformations remains largely the
same. Our experiment and simulation on compressing
amorphous granular pillars can thus be seen as a “spatial
random number generator” with the initial configuration
as the “random number seed”, in contrast to more well-
known “temporal random number generator” algorithms;
but both types of algorithms tend to give long-term un-
correlated increments for the random walker.

V. SIMULATION OF SIZE-DEPENDENT
PILLAR DEFORMATION

Having achieved good agreement between experiment
and simulation for the N = 1000 pillar, we now take
advantage of the fact that our simulation can treat
much larger systems than experiment to study the size-
dependent deformation behavior of the granular pillars
by simulation. (The system size that can be accessed
in experiment is limited by the physical dimensions of
the apparatus.) Three large-sized pillars, denoted by
N = 4000, N = 16000 and N = 64000, are deformed
by the top bar moving at the same deformation speed vc.
The aspect ratio of the pillars (2 to 1) is fixed to be the
same value of the N = 1000 pillar. As the initial packing
density of the particles in the pillar is also the same, the
initial width of the pillars W0 scales as

√
N .

We find the macroscopic shape evolution of the
different-sized pillars is self-similar during deformation.
At the same values of deformation strain ε = ∆H/H0,
we extract the boundaries of the pillars, rescale them by
the respective initial pillar width W0, and plot them to-
gether in Fig. 9. The rescaled boundaries of the pillars
are nearly identical to each other. This implies that the
width at the top of a pillar, W , divided by the original
width, W0, does not depend strongly on the pillar size
and is therefore approximately only function of strain ε,
i.e, W/W0 = χ(ε), where the scaling function χ does not
depend on the pillar width W0.

We also find that the average flow stress of the pil-
lars increases linearly with the initial pillar width W0,
as shown in Fig. 10(a-b). Mathematically, this can be
expressed as 〈σ〉 ∝W0, where we define 〈σ〉 to be the av-
erage flow stress for strain ε between 0.05 and 0.2. This
scaling behavior for the flow stress indicates that, for the
2D disordered granular pillars, the behavior of “smaller
is weaker” is exhibited. This is quite different from the
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FIG. 9. Self-similar evolution of pillar shapes during deformation of different-sized pillars. The boundaries of three pillars
(N = 4000, N = 16000 and N = 64000) are rescaled and plotted together at the same strain value.

deformation of free-standing metallic glass pillars, where
“smaller is stronger” is the general trend [32, 33].

To understand the surprising size dependence of flow
stress, we first look at the stress distribution in the pil-
lars. In Fig. 5 we have shown that the grains in the in-
terior region of the pillar experience larger inter-particle
contact forces, resulting in larger local stress in the in-
terior region of the pillar. The rate of increase for local
stress as a function of distance to the lateral edges of the
pillars is found to be very close for different-sized pillars.
Such stress non-uniformity should also be reflected in the
local contact pressure between the moving bar and the
pillar. Indeed, we find that the contact pressure is also
spatially rather non-uniform. Fig. 10c shows that, the lo-
cal contact pressure increases almost linearly from near
zero at the edge of pillar to saturated values around the
center of contact interface. The maximum values of local
contact pressure scale roughly linearly with pillar width,
consistent with the linear scaling of pillar flow stress.

Since the pillars are deformed quasistatically, most of
the deformation work on the pillars will be dissipated
during plastic flow. The flow stress is therefore closely
related to the dissipation of energy in the systems. We
hence study how the energy dissipation in the pillars
changes with pillar size. As the granular particles in the
pillars stand on a substrate, two major mechanisms of
energy dissipation during plastic flow can be identified:
grain-substrate friction and grain-grain friction. The to-
tal external power input by the moving bar into the pillar,
denoted by Pin, can be calculated as

Pin = Fbarvc = σWvc. (20)

We have shown that, compared at the same deformation
strain ε, both the flow stress σ and pillar width W are
proportional to the initial pillar width W0. Hence, the in-
put power by the external force scales quadratically with
W0, namely Pin ∝ W 2

0 . As most of the input power will
be dissipated in the plastic flow regime, the dissipated
power should also scale with W 2

0 .
To study how the dissipated input power is distributed

between the substrate-induced friction and grain-grain
friction, we compute the fraction of input power dissi-
pated by the grain-substrate frictional force and study
its size dependence. The power dissipation by grain-
substrate friction includes contributions from both the
translational sliding and rotational motion of the parti-
cles. We find that the power dissipation due to rotational
motion is more than an order of magnitude smaller than
the dissipation by translational sliding. The contribu-
tion from the rotational motion of the particles is there-
fore not explicitly included in the calculation below. The
amount of power dissipated by the grain-substrate (trans-
lational) friction force, denoted by Pg-s, can be calculated
as

Pg-s =
∑
i

migµvi, (21)

where the particle mean velocity vi has the same defini-
tion as in Eq. 13, namely the average displacement of the
particle i within a small time interval ∆t. The fraction
of power dissipated by the substrate-induced friction, de-
noted by κ, is then given by κ ≡ Pg-s/Pin. We calculate
the values of κ for different sized pillars and plot them
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FIG. 10. Size-dependent flow stress and dissipation of input power. (a) Stress strain curves for different sized pillars. (b)
Linear scaling of average flow stress with respect to pillar width W0. The average flow stress is computed for the range of
strain between 0.05 and 0.2. (c) Local contact pressure p between the moving bar and the pillars as a function of position x
along the contact interface, computed for different sized pillars at the same macroscopic strain value in the plastic flow regime.
The position x is scaled by the width of the pillar W at the contact interface. (d) Fraction of input power dissipated by the
grain-substrate translational friction as a function of deformation strain for different-sized pillars.

as a function of deformation strain in Fig. 10d. The re-
sult indicates that κ is statistically independent of pillar
size. This allows us to conclude that the amount of input
power dissipated by grain-substrate friction, Pg-s = κPin,
also scales quadratically with pillar size W0, and hence
scales linearly with the number of particles in the pillar
N . This effectively means that the number of particles
participating in the plastic flow scales linearly with the
total number of particles in the pillar, which is consistent
with the self-similar shape evolution of the pillars.

The calculated values of κ in Fig. 10d indicate that
the majority of deformation work is dissipated by the
friction between the particles in the pillar and the sub-
strate. Substrate friction therefore must play an impor-
tant role in the linear increase of flow stress with re-
spect to pillar width and the self-similar evolution of
pillar shape, which have been shown to be consistent
with each other. The granular pillars in our study are

not truly two-dimensional due to the presence of grain-
substrate friction. This setup is however necessary for
stable plastic flow of the uniaxially deformed granular
pillars without cohesive interparticle interaction. With-
out the grain-substrate friction, the deformation behavior
of the granular pillars are expected to be quite different,
and the size-dependent deformation behavior observed in
this study (i.e. “smaller is weaker”) may no longer hold.

If the macroscopic shape evolution of the pillars in our
systems is self-similar, then how does the local yield-
ing behavior vary with pillar size? We characterize the
deformation-induced local structural change of the pil-
lar by computing the deviatoric strain rate J2 associ-
ated with each particle between two stages of deforma-
tion, using the same methodology described earlier in
the article. We find that, within a small amount of pil-
lar strain, particles with large values of J2 organize into
thin shear lines, which becomes more evident as pillar
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FIG. 11. Deviatoric strain rate J2 associated with each particle and zoom-in views of the transient shear lines in different-sized
pillars. Four different-sized pillars are compared with each other, which contain 1000, 4000, 16000, 64000 grains (from left to
right). The regions in the pillars for zoom-in views are indicated by squares. For each pillar, the two configurations of pillars
used for J2 calculation are separated by time difference ∆t = 8/15 R/vc. See Supplementary Material for the corresponding
movie [25].

size increases, as shown in Fig. 11. These shear lines
orient along the direction about 45 degree to the direc-
tion of uniaxial compression. Clearly, such shear lines
form along the direction of maximum shear stress. The
sharpest shear lines appear predominantly at the moving
boundary between the deformed and undeformed region
in the pillars, as mentioned in the combined experimen-
tal and simulation study of small-sized pillars in Sec. III.
A close-up view of these shear lines in Fig. 11 indicates
that the width of the shear lines does not change as pil-
lar size increases, maintaining a value about twice the
diameter of a grain. We emphasize that these shear lines
are transient in time. As deformation goes on, new shear
lines will form elsewhere in the pillar, while the particles
in the shear lines formed earlier may not accumulate sig-
nificant amount of shear strain continuously. Evidence
of such transient shear bands in granular materials was
previously reported in the discrete element simulations
by Aharonov and Sparts [34] and Kuhn [35, 36]. Mal-
oney and Lemâıtre [37], and Tanguy et al. [38] observed
transient lines of slip in their athermal, quasistatic simu-
lation of 2D glasses of frictionless particles, and explained
their formation in terms of elastic coupling and cascad-
ing of shear transformation zones. The results of our
combined experiment (Fig. 5) and simulation of uniax-
ial, quasistatic deformation of 2D granular pillars clearly
demonstrate the existence of such transient shear lines,
which carry localized deformation in the granular pillars.

The size-independent width of the transient shear lines
is surprising since the overall macroscopic shape of the
pillar is self-similar in systems of different sizes. Despite
the self-similarity at the macroscopic scale, the system is
not self-similar in how it yields at the microscopic scale.
Since the slip lines are independent of system size, there
must be more of them in larger systems, which is indeed

observed in our simulation. Why the system chooses to
be self-similar at the macroscopic scale but not at the
microscopic scale is an interesting point for future study.

VI. CONCLUDING REMARKS

We have carried out combined experiments and sim-
ulations of the quasistatic, uniaxial deformation of 2D
amorphous granular pillars on a substrate. The simula-
tion model developed in this article achieves good quan-
titative match to the experiment. In particular, we find
that, for the granular packings, the non-affine displace-
ments of the particles exhibit exponential crossover from
ballistic to diffusion-like growth behavior with respect to
local deviatoric strains. This result is a generalization to
inhomogeneous loading of earlier observations of stress-
driven diffusion of particles in simulated 2D molecular
glasses under simple shear or pure shear in the thermal,
quasistatic limit [6, 38–42]. Because in our study the
“time” variable for diffusion, the best-fit deviatoric strain
in a neighborhood, is a local measure of deformation and
shear transformation, we expect that the non-affine dis-
placement should cross over from ballistic to diffusive be-
havior in amorphous solids under any loading conditions.

In metallic glass pillars, the apparent strength of the
pillar and strain localization behavior depends on pillar
diameter, manifesting so-called “size-dependent plastic-
ity” behavior [31]. Often, “smaller is stronger” holds for
metallic glasses [32, 33]. We have shown that for 2D
granular pillars on a substrate, the frictional interaction
between the granular particles and the substrate leads to
the opposite size-dependent response, namely “smaller is
weaker”.

Finally, our combined experiment and simulation
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study clearly demonstrate that transient lines of slip form
in quasistatically deformed amorphous granular pillars
under uniaxial loading condition. These system-spanning
shear lines carry localized shear transformations in 2D
granular pillars, and their width shows no size depen-
dence. Altogether, these results could have important
implications for the plasticity and internal structural evo-

lution of amorphous solids.
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