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We consider the density of states of granular media in which each grain-grain contact is damped with a
damping force proportional to the relative velocity of the two grains, in addition to the usual spring constant.
Under the assumption that the so-called criterion of proportional damping is only weakly violated we are able
to deduce the density of states for undamped frequencies from the measured complex-valued frequencies of
damped oscillations. We deduce a quantitative estimate of the deviation from the proportional criterion. We
consider, specifically, numerical simulations of cases in which the grains are frictionless spheres which interact
via Hertz central forces and all the nonzero contacts are damped with the same damping constant. We show how
these ideas can be applied to data on real granular systems.

PACS numbers: 45.70.-n, 45.50.-j,46.40.Ff

I. INTRODUCTION

In this article we consider the density of states of granu-
lar media in the presence of damping. We develop a theory
which, subject to the validity of the assumed approximation,
allows one to deduce what the density of states of an un-
damped system would be, from the measured complex-valued
frequencies. The density of states of undamped granular me-
dia has received much attention in recent years especially in
its connection with the jamming transition [1–6]. Liu, et al.
[7] have written a review article on the topic. The idea is
that a system jammed under the influence of a static stress in-
duces a static deformation at the grain-grain contacts each of
which thus acquires a nonzero stiffness for subsequent small
amplitude deformations. One may thereby calculate the nor-
mal modes of vibration under the assumption that the system
may be in the linear regime of small amplitude vibrations.
Such calculations assume the force vs. displacement law
for each contact follows from some specific law such as the
Hertz/Hertz-Mindlin, or Hooke, or Lennard-Jones laws. Such
calculations neglect the effects of damping at the grain-grain
contacts. In experiments on real granular media, however,
damping can be a important component of the dynamics [8].
Indeed, granular media can very effectively dampen the vi-
brations of metal structures having grain-filled cavities within
themselves (Reference [9] and references therein). Moreover,
Reference [8] (and references therein) shows how it is possi-
ble to deduce accurate values of the complex-valued normal
mode frequencies of a granular aggregate from measurements
of the so-called effective mass of the granular medium.

The purpose of the present article is to show how it may be
possible to deduce the density of undamped vibrational states
of a granular system from the measured complex-valued nor-
mal mode frequencies that one has for damped systems. We
base our results on our own previously published numerical
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simulations [10, 11] of damped vibrations in granular media,
under stress, in which the grains interact via Hertzian normal
forces and via a damping mechanism proportional to the rel-
ative velocity of the grain centers. Although the intergranu-
lar force is a nonlinear function of contact displacement we
linearize around the equilibrium point to compute the normal
mode frequencies relevant to small amplitude vibrations.

There are situations in which there is no small amplitude
regime whereby strictly linear equations of motion for the de-
parture from equilibrium are valid. Schreck et al. [12] have
pointed out that for granular systems interacting via strictly
one-sided repulsive forces there is always a distribution of
non-contact gaps extending continuously to zero such that in
the thermodynamic limit the smallest amplitude of vibration
will open and close such a gap which is intrinsically nonlin-
ear. In the present article we assume that in damped granu-
lar media this situation does not arise. We assume that the
forces of adhesion, adsorption that are the origin of the damp-
ing also ensure that each grain-grain contact has a linear oper-
ating regime, around the equilibrium configuration.

The article is organized as follows. We review a general
theory of vibrational-libration normal modes of damped gran-
ular media in Section II. Because we intend our results ulti-
mately to be applied to experimental results on real systems
the intergranular forces in this Section include both normal
and tangential components of the elastic and the damping
forces. Here, we also present some previously published exact
results relevant to the present work and we derive a new per-
turbation theory with which we can ultimately compute the
undamped density of states. In Section III we describe how
we performed our calculations of normal mode frequencies in
a system of spherical grains interacting via damped Hertzian
contact forces i.e. normal forces only. The system is com-
pressed under the action of the directional force of gravity.
We present our new results on the density of states in Section
IV. The conclusions are summarized in Section V.
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II. THEORY

In this Section we review the assumed general equations of
motion whose solutions determine the normal modes of the
granular medium. We quote some relevant exact results and
we also show the consequences of assuming the proportional
approximation for the damping matrix. We end this Section
with our derivation of a perturbation theory which we employ
to analyze our numerical simulations.

A. General Considerations

Let Xi be the equilibrium position of the center of mass of
the i-th particle, whose mass is mi, and ui be its displacement
from equilibrium. Similarly, θi is the librational angle of ro-
tation. If two neighboring particles translate or rotate such
that their points of contact would move relative to each other
there will be a restoring force due to the contact forces. The
linearized equation of motion for the i-th particle is

−miω
2ui =

∑
j

Ki j · [u j + θ j × d ji − ui − θi × di j] , (1)

where di j is the vector from Xi to the point of contact with
the j-th grain. It is understood that the tensor Ki j(≡ K ji) is
nonzero only for grains actually in contact with each other.
(For simplicity we assume there is at most one contact per
pair.)

The equation of motion for the angular variables is

−ω2Ii · θi =
∑

j

di j ×Ki j · [u j + θ j × d ji − ui − θi × di j] , (2)

where Ii is the moment of inertia tensor for the i-th particle.
These equations of motion, (1) and (2), were originally em-
ployed in an early attempt to understand the interplay between
rotational and translational degrees of freedom in the normal
modes of granular media [13].

It is understood that, generally, each of the elements of the
tensors Ki j is complex-valued and frequency dependent re-
flecting the microscopic origin of the dissipation. In this arti-
cle we may take

Ki j(ω)→ Ki j − iωξBi j (3)

in which the second term describes an inter-particle force pro-
portional to the difference in velocity of the two grains. K and
B are taken as real-valued and frequency independent. The
parameter ξ monitors the strength of the damping. If we think
of damping as being controlled by the viscosity of a fluid in
the grain-grain contact, ξ is a stand-in for that viscosity. In
this article we investigate how the normal mode frequencies
evolve as ξ is varied. Note that this definition of B differs
slightly from those in References [10] and [11] in that here
we explicitly factor out ξ from the definition.

Eqs. (1) and (2) have non trivial solutions only for specific
complex-valued frequencies ωn. They may be combined as

[−ω2
nM − iωnξB + K]en = 0 (4)

where en is the combined vector of normal mode component
displacements ui and librations θi , M is the inertial tensor
consisting of either the mass of a grain or the relevant com-
ponent of the moment of inertia. B and K have been suitably
generalized to this new notation.

Because the kinetic energy of the grains is always positive
the eigenvalues of M are also all positive. Therefore the ma-
trix M−1/2 can be defined and we can re-write Eq. (4) as

[−ω2
nI − iωnξB̃ + K̃]ẽn = 0 . (5)

Here we have defined: ẽn ≡ M1/2en, B̃ ≡ M−1/2BM−1/2 and
K̃ ≡M−1/2KM−1/2.

Next, we investigate the trajectories of the normal mode
frequencies, ωn, as the damping parameter ξ is varied ωn =

ωn(ξ). Regardless the value of ξ > 0 the imaginary part of
any normal mode frequency is always negative, ={ωn(ξ)} < 0,
corresponding to a mode which exponentially decays in time.
Moreover, for every underdamped normal mode frequency
in the 4th quadrant, ω+

n , there is another in the 3rd quadrant
ω−n = −(ω+

n )∗, where * signifies complex-conjugation, which
is obvious from the structure of Eqs. (4). There may also be
overdamped normal modes for which ω±n are imaginary val-
ued.

B. Exact Results

If there is no damping, ξ = 0, then the real symmetric ma-
trix K̃ has positive eigenvalues ω2

n0 and the undamped fre-
quencies of oscillation for the corresponding normal modes
en0 are ±ωn0. For small enough values of the damping one
may do 1st order perturbation theory with the result [8]:

ω±n = ±ωn0 − i
ξ

2
ẽT

n0B̃ẽn0

ẽT
n0ẽn0

+ O(ξ2) . (6)

Each normal mode frequency initially moves perpendicular to
the real axis from its starting point on the real axis.

For each trajectory, ωn(ξ), there exists a critical value ξnc,
which is finite, such that the mode becomes critically damped
i.e. ωn is purely imaginary. For values of ξ approaching ξnc
one has [10]

lim
ξ→ξnc

ω±n (ξ) = −iλn ± gn(ξnc − ξ)1/2 + O(ξ − ξnc)1 , (7)

where λn and gn are positive real numbers. Thus, the two
branches ω±n (ξ) coalesce onto a single value on the negative
imaginary axis at the critical damping. Their approach to −iλn
as ξ → ξ−nc is perpendicular to that axis. As ξ increases above
the critical value the two roots remain imaginary and move
apart from −iλn.

C. Proportional Damping

In the very special case known as proportional damping
[14] the matrix of damping parameters, B, is everywhere pro-
portional to the matrix of stiffness constants, K. We may sub-
sume this proportionality constant into the definition of ξ and
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write:

B̃ = K̃ . (8)

The distribution of normal stiffness values, kN(xi j), is di-
rectly related to the distribution of interparticle normal forces
via the distribution of deformation values, xi j. Such a force
distribution is well known to display an exponential tail and to
be relatively homogeneous [15]. Therefore, Eq.(8) amounts to
neglecting the inhomogeneities in the force distribution as an
approximation for the elastic and damping matrices. If each
contact stiffness value was replaced by the average thereof,
Eq.(8) would be exact.

If Eq. (8) holds true then the solution to Eq. (5) is simple.
Because ẽno is now an eigenmode of B̃ it is also an eigenmode
of the entire problem. The result is

ω±n (ξ) =
−iξω2

n0

2
± ωn0

√
1 −

(
ξωn0

2

)2

. (9)

This well-known result obeys the exact results presented in
the previous subsection. One has ξnc = 2

ωn0
.

The trajectories of the normal modes under the condition
of proportional damping are perfect circles with center at the
origin up to the point each becomes overdamped:

| ω±n (ξ) |= ωn0 ∀ξ ≤ ξnc =
2
ωn0

(10)

Moreover the locus of all the (underdamped) normal mode
frequencies for a given value of ξ is also a circle. The radius
is 1/ξ and the center is at −i/ξ[8, 10]:

| ω±n (ξ) + i/ξ |= 1/ξ ∀n s.t. ξ ≤ ξnc =
2
ωn0

(11)

D. Perturbation Theory

We now consider a situation, relevant to our numerical re-
sults, in which the proportional damping criterion, Eq. (8),
is approximately true in the sense that departures from it are
small:

B = K + ∆B . (12)

We consider the effects of ∆B to 1st order in perturbation the-
ory. We make the substitutions en0 → en0 + ∆en;ωn(ξ) →
ωn(ξ) + ∆ωn(ξ) in Eq. (4) or, equivalently, (5) and collect all
the terms which are 1st order in ∆B. We have

0 = (−ω2
n−iωnξK̃+K̃)∆ẽn +∆ωn(−2ωn−iξK̃)ẽn0−iωnξ∆B̃ẽn0

(13)
Because the matrix K is real-symmetric so is K̃ which means
that ẽT

n0 is a left eigenvector of K̃, having the same eigenvalue,
ω2

n0. If we multiply Eq. (13) on the left by ẽT
n0 the first term on

the RHS vanishes identically and we have our desired result:

∆ω±n (ξ) = −
iω±n (ξ)ξ∆B̃n,n

2ω±n (ξ) + iξω2
n0

+ O(∆B̃)2 , (14)

where

∆B̃n,n =
ẽT

n0∆B̃ẽn0

ẽT
n0ẽn0

. (15)

With the use of Eq. (9) we may re-write this in the form

∆ω±n (ξ) = iω±n (ξ)∆θ±n (16)

where

∆θ±n = ∓
ξ∆B̃n,n

2ωn0

√
1 −

(
ξωn0

2

)2
. (17)

Eqs. (16) and (17) show that to 1st order in ∆B an under-
damped normal mode frequency moves by an angular amount
∆θ±n along the same circular trajectory defined by Eq. (10):

| ω±n (ξ) + ∆ω±n (ξ) |= ωn0 + O(∆B)2 . (18)

We shall use Eq. (18) to deduce information about the distri-
bution of undamped frequenciesωn0 from our data in the pres-
ence of damping under the assumption that deviations from
the proportional damping criterion are weak.

We note in passing that for any of the overdamped modes
Eq. (16) still holds but both ω±n and ∆θ±n are imaginary with
the result that ∆ω±n is also imaginary, which makes intuitive
sense.

III. NUMERICAL SIMULATIONS

In previous publications [10, 11] we reported the results
of normal mode calculations of ensembles of granular media
confined to a container. It is these results on damped granu-
lar media which we will use to deduce the density of states of
the undamped system and so we recap them here. Our inter-
ests then were to gain some understanding of the properties of
the so-called effective mass of granular media [8], [16]. Ac-
cordingly, the particles in the simulations were not subjected
to an isotropic confining pressure but, rather, they were sub-
jected to a directional gravitational field, as per the experi-
ments. The particles were identical spheres of mass m. We
assumed the particles were frictionless and that they interact
with their neighbors via the Hertz force [17]:

FN =
2
3

knR1/2x3/2
i j , (19)

where R is the radius and xi j > 0 is the degree of compression
of the center-to-center distance between sphere i and sphere j.
(There is no force between non-contacting spheres.) After
the spheres have settled into their equilibrium configuration
each contact has a different value of the static compression
xi j; those near the top of the container are compressed less
than those near the bottom. Each contact responds to an in-
finitesimal additional distortion by means of a spring constant
which is given by

kN(xi j) =
dFN

dxi j
= knR1/2x1/2

i j . (20)
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FIG. 1: (Color online) The complex-valued normal mode frequencies
of the model granular medium for different values of the damping pa-
rameter, ξ. The legend gives the values of 2πξ in milliseconds. The
solid curves are circles of radius 1/(2πξ) as per Eq. (11). The dashed
lines are the trajectories of three of the normal mode frequencies as
ξ is increased from zero to ξnc and beyond. All the modes are un-
derdamped for the smallest three values of ξ whereas for the others
some of the modes are overdamped.

In tensor notation, then, the expression for the 3 × 3 stiffness
matrix between two contacting spheres is

Ki j = kN(xi j)d̂i jd̂i j , (21)

where d̂i j is a unit vector pointing from one sphere center to
the other and we are using dyadic notation.

We assumed the damping matrix B is of the same general
form as Eq. (21) except that we assumed all the damping con-
stants were the same for any two spheres in contact.

Bi j = 〈kN〉di jd̂i j , (22)

where 〈kN〉 is the average of all the nonzero kN(xi j) values.
The motivation behind this assumption was that we were at-
tempting to understand the damping effects of adsorbed fluids
at the grain-grain contacts which are presumably insensitive
to to the degree of compression of the two grains.

The complex-valued resonance frequencies of Eq. (4) are
now computed from the eigenvalues {λn} of the matrix A

which is given in block form as

A =

(
0 I

−M−1K −ξM−1B

)
. (23)

We have ωn = iλn. More details of the simulations may be
found in References [10] or [11]. In the limit of no damping,
ξB → 0, it is easy to prove that the eigenvalues are λn =

±iωn0. In the absence of damping, then, we retrieve exactly
the same result as diagonalizing the dynamic matrix K̃, as one
would intuitively expect.

The results of our simulations, for different assumed val-
ues of ξ, are shown in Figure 1 for a situation in which we
simulated 314 spheres, giving rise to 1884 normal mode fre-
quencies, the underdamped of which occur as pairs in the 3rd
and 4th quadrant. This figure is a more complete version of
similar plots shown in References [10] and [11]. Of these
1884 normal mode frequencies 22 of them are essentially zero
frequency modes (| ωn0 |< 3 × 10−7kHz), which we do not in-
clude in the analysis. It is clear that B , K. Nonetheless the
consequences of Eq. (8) are reasonably well attained. Each
trajectory is roughly a circle as per Eq. (10) and each obeys
the exact results Eqs. (6) and (7). The loci of all the frequen-
cies is also approximately a circle, Eq. (11). All of the modes
are underdamped for the three smallest values of ξ. Some of
the modes are overdamped (ωn is purely imaginary) for the
other three values of ξ. (See the Supplemental Material [18]
for a movie which shows the evolution of all the complex fre-
quencies as ξ is continuously increased starting from zero.)
The data lend themselves to an analysis with the perturbation
theory described in Section II D.

IV. DENSITY OF STATES

Assuming the approximate validity of Eq. (18) it is easy
to compute the density of undamped states, N(ωn0), from the
measured underdamped frequencies. The number of states
which would have an undamped frequency between ωn0 and
ωn0 + ∆ωn0 is equal to the number of actual modes for which
| ωn | lies within these limits, for the underdamped modes.
Corrections to this are of order O(∆B)2. We have binned all
the underdamped frequencies shown in Figure 1 accordingly.
The results are shown in Figure 2. For the three smallest val-
ues of ξ all of the normal modes are underdamped and the
resultant density of states for each of these data sets agrees
with the others. The partial density of states computed from
the simulations corresponding to the three largest values of ξ
are also in agreement with the other three. This agreement is
due, evidently, to the perturbation theory result, Eq. (18).

We note that our results for the undamped density of states
do not exhibit the well-known low frequency plateau charac-
teristic of the density of states in jammed systems reported by
others [1–7]. We attribute this to the several differences be-
tween our calculations and theirs. Our system is not intended
to model a macroscopically infinite system. Rather, we are
modelling the normal modes of a rigid cup, loosely filled with
grains. There is a rigid bottom plane and the top has a finite
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FIG. 2: (Color online) Density of undamped frequencies deduced
from the underdamped frequencies of Figure 1. All the modes for
the smallest three values of ξ give results which essentially agree
with each other. The partial densities of states for the remaining three
overlap these results for low frequencies where ωn0 < 2/ξ .

extent. Two of the side walls are also rigid; the remaining di-
rection has periodic boundary conditions. Perhaps the most
obvious difference is that we have included a constant down-
ward force on each sphere, intended to mimic the force of
gravity. Thus, the spheres toward the bottom are compressed
more than those near the top and the system is macroscopi-
cally heterogeneous. So to say, the distance from the so-called
J point varies continuously from top to bottom.

At this point we may push our luck and compute the contri-
bution to the densities of undamped states from all the over-
damped states i.e. those on the negative imaginary axis. From
Eq. (9) we have

ξ > ξnc : | ω±n (ξ) |=
ξω2

n0

2
∓ωn0

√(
ξωn0

2

)2

− 1+O(∆B)1 , (24)

which can be inverted:

ωn0 =
| ω±n (ξ) |√

ξ | ω±n (ξ) | −1
+ O(∆B)1 . (25)

The overdamped modal frequencies order as | ω+
n (ξ) |< 2/ξ <|

ω−n (ξ) |. We convert each value of | ω−n (ξ) | into its undamped
value according to Eq. (25) and compute the contributions of

FIG. 3: (Color online) Density of undamped frequencies deduced
from the overdamped frequencies of Figure 1. Only three of the
data sets, corresponding to the largest values of ξ, have overdamped
modes.

these frequencies to a partial density of states. The results for
the three data sets which have overdamped modes are shown
in Fig. 3. They agree with each other for frequencies ωn0 >
2/ξ . This is quite surprising because Eq. (24) has errors of
order (∆B)1, unlike Eq. (18).

Pushing our luck further again we plot the total density of
states Ntotal = N + Noverdamped in Figure 4. Remarkably, all
six data sets, corresponding to damping parameters ξ which
range over a factor of 2000, stack on top of each other. We
conclude that we have identified a way to deduce the density
of undamped states from measurements of those states which
are possibly heavily damped.

Finally, we use Eq. (17) to deduce some information about
the degree to which the proportional damping condition, Eq.
(8), is violated. The situation is demonstrated graphically in
Figure 5 where we have highlighted one datum for analysis;
the data set corresponds to 2πξ = 0.4 from Figure 1 . Were
the proportional damping criterion to hold exactly this point
would lie on the intersection of the two circles given by Eq.
(10) (the dashed curve) and Eq. (11) (the solid curve). (For
some of the underdamped frequencies the two curves do not
intersect and are excluded from the analysis.) The angular
deviation, ∆θn, between this point and the actual location is
related to the deviation from the proportional criterion by Eq.
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FIG. 4: (Color online) Total density of states of the modes whose
complex-valued frequencies are shown in Figure 1. Each curve is the
sum of the relevant curves in Figures 2 and 3. These six curves are
essentially all the same.

(18), to 1st order. It is simple enough to solve for ∆B̃nn for
each data point. The results are plotted in Figure 6 as a func-
tion of the presumed value of ωn0 for each trajectory, for each
of the six data sets.

We have plotted the results for the three least damped sys-
tems in the top panel; the other three are plotted in the bottom
panel. There are several interesting features to these results.
First, we see that the results for 2πξ = 0.0008 and 2πξ = 0.008
virtually overlie each other. That for 2πξ = 0.08 is consistent
with these two but has a larger spread in apparent ∆B̃nn values.
This may indicate the breakdown of the 1st order perturbation
theory, though we have already seen that the density of states
calculation is still robust. The spread is noticeably smaller for
ωn0 less than 5kHz in all three data sets. There is a noticeable
systematic variation of ∆B̃nn with ωn0 in all three sets.

The situation is significantly different for the case of the
three largest values of the damping parameter, ξ, which are
shown in the lower panel of Figure 6. Obviously, only those
underdamped modes for which the two circles, Eqs. (10) and
(11), have an intersection are those which can be analyzed.
Even so it is surprising to us that the surviving values of ∆B̃nn
are so much smaller than those in the top panel of the figure.
In almost all cases we have B̃nn � K̃nn = ω2

n0 as would be a
necessary condition for the validity of first order perturbation

FIG. 5: (Color online) Graphical illustration of ∆θn. The data set
corresponds to 2πξ = 0.4 from Figure 1 and one of those data points
is isolated. The dashed curve is a circle of radius | ωn | passing
through that point. The solid curve is a circle of radius (2πξ)−1 as per
Eq. (11). The difference between the actual location of the normal
mode frequency and the intersection of these two circles defines ∆θn,
as indicated. In this example ∆θn < 0.

theory.
We note, however, from Eq. (9) that there is a simple rela-

tion between the polar angle, θn, and the damping parameter,
ξ, when the proportional damping criterion holds:

sin(θ±n ) = −
ξωn0

2
. (26)

This, in turn, implies θ±n (ξ) → −π/2 with infinite slope as
ξ → ξnc = 2/ωn0. But Eq. (17) indicates that corrections to
Eq. (26) due to the breakdown of the proportional damping
approximation themselves diverge in this limit. Thus, a more
appropriate condition for the validity of 1st order perturbation
theory might be the more restrictive relation | d∆θ±n

dξ |�|
dθ±n
dξ |.

This restriction would imply that the validity of Eq. (17)
should be restricted to ξ � ξnc. We see from Eq. (17) that
solving for B̃nn from the measured ∆θn values will tend to col-
lapse B̃nn to small values, for heavily damped systems.

It is clear from Figure 5 and Eq. (17) that if ∆B̃nn is large
enough the computed ∆θn would mean the resonance fre-
quency would lie on the negative imaginary axis. For larger
values of ∆B̃nn the modes would be overdamped and Eq. (17)
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FIG. 6: (Color) Deduced values of ∆B̃nn cross-plotted against | ωn |≈

ωn0. (a) The lowest three values of damping, ξ, for which all the
modes are underdamped. (b) The remaining three values of ξ for
which some of the modes are overdamped. For these data sets we
can deduce ∆B̃nn only for the underdamped of those modes. Note
the change of scale in the axes for the two plots. The dashed curves
demonstrate the maximum value of B̃nn that can be deduced with our
technique.

would be meaningless. These boundaries are indicated with
the dashed lines in Figure 6.

These ideas can, at least in principle, be applied to real
experimental data on granular systems. If the number of

measurable frequencies is large enough a cross-plot of
those frequencies in the complex plane could allow one to
deduce the approximate value of ξ, assuming the propor-
tional damping model has approximate validity. This was
partially accomplished in Figure 7 of Reference [10] in
which previously published experimental data were shown
to cluster around the circle defined by Eq. (11), although
the existing data covered only a small fraction of that circle.
The contribution to the undamped density of states from the
underdamped modes does not require a knowledge of ξ but
the contribution from the overdamped modes does require
it as does any estimate of the deviation, ∆B̃nn, from the
proportional damping criterion.

V. CONCLUSIONS

We have presented a way of analyzing normal mode fre-
quencies of granular media in situations where these frequen-
cies are complex-valued due to damping. We have argued that
in cases in which the so-called proportional damping crite-
rion is weakly violated one may reconstruct the density of
undamped states from the measured complex-valued frequen-
cies. Furthermore, we have shown how one may deduce spe-
cific information about the relevant matrix elements of the
damping matrix that relate to deviations from strictly propor-
tional behavior. The ideas presented here work reasonably
well on numerical simulations of the normal modes of a col-
lection of spheres interacting via Hertz contacts for the stiff-
ness and with the assumption that all the contacts are damped
the same. We have shown how these ideas can be applied to
data on real granular systems, assuming one is able to measure
a significant number of those frequencies.
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