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Rheological properties of dense flows of hard particles are singular as one approaches the jamming
threshold where flow ceases, both for aerial granular flows dominated by inertia, and for over-damped
suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge
at jamming. Here we introduce a theoretical framework that proposes a tentative, but potentially
complete scaling description of stationary flows. Our analysis, which focuses on frictionless particles,
applies both to suspensions and inertial flows of hard particles. We compare our predictions with the
empirical literature, as well as with novel numerical data. Overall we find a very good agreement
between theory and observations, except for frictional inertial flows whose scaling properties clearly
differ from frictionless systems. For over-damped flows, more observations are needed to decide if
friction is a relevant perturbation or not. Our analysis makes several new predictions on microscopic
dynamical quantities that should be accessible experimentally.

I. INTRODUCTION

Microscopic description of particulate materials such as grains, emulsions or suspensions is complicated by the
presence of disorder, and by the fact that these systems are often out-of-equilibrium. One of the most vexing problems
is how these materials transition between a flowing and a solid phase. When this transition is driven by temperature,
it corresponds to the glass transition where a liquid becomes a glass, an amorphous structure that cannot flow on
experimental time scales. Here we focus instead on athermal systems driven by an imposed stress, such as granular
flows, and consider both the case where inertia is important (such as in aerial granular flows) or not (such as over-
damped suspensions). We focus primarily on the case of hard particles.

Empirical constitutive relations have been proposed to describe such dense flows in the limit of hard particles [1–3].
Two important dimensionless quantities are the packing fraction φ and the stress anisotropy µ ≡ σ/p (also called
the effective friction), where σ is the applied shear stress and p the pressure carried by the particles. For inertial
flow, dimensional analysis implies that both quantities can only depend on the strain rate ε̇, p, the particle diameter
D and the mass density of the hard particles ρ via the inertial number I ≡ ε̇D

√
ρ/p. One finds empirically that

the constitutive relations µ(I) and φ(I) converge to a constant as I → 0, corresponding to the jamming transition
where flow stops. We define µ(0) ≡ µc and φ(0) ≡ φc, which are system-specific and will depend on particle shape,
poly-dispersity, friction coefficient, etc. Near jamming, the constitutive relations are observed to be singular with:

δµ ≡ µ(I)− µc ∝ Iαµ (1)

δφ ≡ φc − φ(I) ∝ Iαφ (2)

As jamming is approached the dynamics becomes increasingly correlated in space [4, 5]. By considering the dominant
decay [6] of the velocity correlation function, one can define a length scale `c:

`c ∼ I−α` (3)

Similar dimensional arguments have been made for dense suspensions of non-Brownian particles [7, 8]. In that case the
relevant dimensionless number is the viscous number J = η0ε̇/p, where η0 is the viscosity of the solvent. Empirically
one finds similar relations:

δµ ≡ µ(J )− µc ∝ J γµ (4)

δφ ≡ φc − φ(J ) ∝ J γφ (5)

`c ∼ J−γ` (6)

† These authors contributed equally to this work.
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These relations imply that the viscosity η = σ/ε̇ of the suspension diverges as jamming is approached. Indeed Eq.(4)
implies that σ ∼ p near jamming (in our scaling arguments below we may thus exchange freely σ and p), so that
J ∝ η0/η. Eq.(5) then implies that:

η

η0
∝ (φc − φ)−1/γφ (7)

When both viscosity and inertia are present, a transition from viscous to inertial flow occurs as strain rate ε̇ is
increased at fixed volume fraction [9–11]. This defines a cross-over strain rate

ε̇v→i ∝
η0

ρD2
(φc − φ)γε̇ , (8)

where the prefactors follow from a dimensional analysis.
Empirical values found for the exponents in Eqs.(1-7) are reported in Table 1. They seem not to depend on

dimension, which we thus did not report in our table. In the case of inertial flow they appear to depend on the
presence of friction, whereas for suspended particles exponents appear to be similar with and without friction. In this
work we focus on frictionless particles, and discuss open questions on frictional systems in the conclusion.

Currently there is no accepted microscopic theory describing quantitatively these singular behaviors, in particular
Eqs.(1-7). Various works [13–15] propose to describe dense flows by a perturbation around the dilute limit φ → 0.
In the case of dense suspensions, this corresponds to extending the work of Einstein and Batchelor, who computed
the first corrections to the viscosity at larger density. For dry granular flows, this corresponds to an extension of
kinetic theory (a priori valid in the gas phase) to the dense regime. However, observations support that as jamming
is approached, particles form an extended network of contacts, and that the stress is dominated by contact forces
[2, 8, 16]. In this work we propose a framework to describe flow in such situations.

We attack the problem in two steps. First, we isolate the microscopic quantities that control flow. Then, we
compute the scaling properties of these quantities by performing a perturbation around the solid phase. The idea
is to consider the solid in the critical state, i.e. carrying the maximal anisotropy possible µ = µc, corresponding to
a packing fraction φ = φc. Next, one adds an additional kick to the system, corresponding to a small additional
stress anisotropy δµ. As a result, some contacts between particles will open, forces will be unbalanced, and the
system will start to flow (see Fig. 1). Our key assumption is that flowing configurations are similar to a solid that
is thus destabilized. As we will see, this approach enables us to propose a full scaling description of the problem,
and to predict the exponents entering Eqs.(1-7) in good agreement with observations in the absence of static friction.
Moreover, our approach predicts several other properties singular near jamming: the speed of the particles, the strain
scale beyond which a particle loses memory of its velocity, and the coordination of the contact network. The first two
quantities are accessible experimentally, and provide an additional experimental test of our views.

In [17] three of us have already proposed to perform a perturbation around the solid. However, this argument was
limited to over-damped suspensions, and did not predict the scaling relations entering in the constitutive relations
Eqs.(1-7). Moreover, a key aspect of the argument turned out to be incorrect: it was assumed that when an additional
stress anisotropy is imposed, the contacts carrying the smallest forces open. This assumption led to a scaling descrip-
tion for the viscosity and several microscopic quantities in terms of an exponent θ`, characterizing the distribution of
weak forces in packings. Later it was realized that only a vanishingly small fraction of weak contacts are significantly
coupled to external stresses [12]. We call them extended contacts, because perturbing such contacts mechanically lead
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FIG. 1: (Color online) Illustration of solid destabilization: several weak contacts, indicated by red dashed lines, are opened.
This induces a space of extended, disordered floppy modes, one of which is shown (arrows). Line thickness indicates force
magnitude in the original, stable solid.
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FIG. 2: (Color online) Extended vs localized contacts. When a contact is opened from an isostatic packing, the resulting
deformation (arrows) can either be extended, as shown at left, or localized, as shown at right. Localized contacts are more
numerous, but only extended contacts couple strongly to an imposed shear stress. Reproduced from [12] by permission of The
Royal Society of Chemistry (RSC).

to a spatially extended response in the system, as shown in Figure 2 [12, 18]. In a packing only those contacts lead to
plasticity when stress is increased, or when a shock (say a collision) occurs in the bulk of the material [12, 19]. The

density of extended contacts as a function of the rescaled force f̃ = f/p in the contact follows:

P (f̃) ∝ f̃θe . (9)

Numerically it is found that θe ≈ 0.44 both in two and three dimensions [12, 18], suggesting that this quantity
may be independent of dimension. Moreover, its value does not depend on the preparation protocol of the isostatic
state: up to error bars, equal values are found from compression of hard spheres [12], shear-jammed hard disks [17],
and decompression of soft spheres [18, 20] [69]. The exponent θe can be shown to control the stability of the solid
phase [12, 21, 22]. Recently replica calculations in infinite dimension on the force distribution [20, 23, 24] led to the
prediction [18]:

θe = 0.423..., (10)

within the error bar of our measurements. In our proposed scaling description all exponents can be expressed in terms
of θe, in particular:

αµ = αφ = γµ = γφ =
3 + θe
8 + 4θe

≈ 0.35 (11)

γε̇ =
8 + 4θe
3 + θe

≈ 2.83 (12)

α` = γ` =
1 + θe
8 + 4θe

≈ 0.15 (13)

Empirically it was noticed that γµ = γφ and that αµ = αφ, which our arguments rationalize.

A. General approach

We argue that several dimensionless quantities that characterize the microscopic dynamics under flow critically
affect rheological properties. As jamming is approached, the assembly of particles acts as a lever: due to steric
hindrance, the typical relative velocity between adjacent particles Vr becomes much larger than the characteristic
velocity ε̇D where ε̇ is the strain rate and D the mean radius of the particles [25, 26]. We thus define the amplitude
of this lever effect L as:

L =
Vr
ε̇D

. (14)

Another fundamental quantity, particularly relevant for inertial flow, is the strain scale εv beyond which a particle
loses memory of its direction relative to its neighbors. εv can be extracted from the decay of the autocorrelation
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FIG. 3: Outline of logical relationships between main macroscopic and microscopic quantities, showing the key role that L
and δz have in relating control parameters to the shear rate. Dashed lines indicate arguments that use an ansatz of flowing
configurations being similar to destabilized isostatic ones, whereas solid lines indicate arguments independent of this assumption.

function 〈V αr (0)V αr (ε)〉, where the average is made over all pairs of adjacent particles α. A similar quantity was
extracted numerically in [27]. As the packing fraction φ increases toward jamming, collisions are more frequent per
unit strain (due to the increase of relative particle motion L), and each collision affects the motion of the particles on
a growing length scale. These two effects implies that εv vanishes rapidly near jamming.

We now argue that dissipation is entirely governed by L in overdamped suspensions, and by both L and εv in
inertial flows. In both cases the power injected into the system at the boundaries, which is simply P = Ωσε̇ at
constant volume, must be dissipated in the bulk.

In a dense suspension we expect dissipation to be governed by local mechanisms such as lubrication. Lubrication
forces are singular for the ideal case of perfectly smooth spheres, but not for rough particles where they must be
cut off. Thus the viscous force exchanged by two neighboring particles must dimensionally follow F ∼ η0VrD

d−2,
leading to a power dissipated P/N = Cη0V

2
r D

d−2 where d is the spatial dimension, C is a dimensionless constant
that depends on the particle shape and roughness, and N is the number of particles. Equating the power dissipated
to the power injected, one gets that for a given choice of particles:

η

η0
∝ 1/J ∝ L2 (15)

implying that the divergence of viscosity is governed by L. This result holds by construction in simple models of
dissipation in suspension flows [25, 26, 28].

Concerning inertial flows, we suppose that the restitution coefficient characterizing a collision between two particles
is smaller than one, and that collisions dominate dissipation. Then each time two neighboring particles change relative
direction, a finite fraction of their relative kinetic energy Ec ∼ MV 2

r must be dissipated, where M is the particle
mass. Then the total power dissipated must follow P ∝ Nε̇Ec/εv. Using Eq.(14) and balancing power injected and
dissipated, one gets σ/(ε̇2D2ρ) ∼ L2/εv where ρ is the mass density of the particles, so that the inertial number I
follows:

I ∼
√
εv
L (16)

To our knowledge Eq.(16) has not been proposed before, and could be tested empirically.

B. Organization of the manuscript

To obtain a complete description of flow, one must therefore express L and εv in terms of control parameters such as
δµ or δφ. To achieve this goal, we make the assumption that the contact network of configurations in flow is similar to
that of jammed configurations at µc immediately after increasing the stress anisotropy by δµ > 0. The coordination
z of the network of contacts is a key microscopic quantity that distinguishes flowing from jammed configurations. At
jamming the coordination is just sufficient to forbid motion, corresponding to zc = 2d for frictionless spheres [29–31].
As illustrated in Fig.(1), the kick of amplitude δµ opens a fraction δz ≡ zc − z of the contacts, allowing collective
motions of the particles for which particles do not overlap, but simply stay in contact, the so-called called floppy
modes. In Section II, we argue based on simple geometrical considerations that the lever amplitude is directly related
to the density of floppy modes δz, and obtain:

L ∼ δz−(2+θe)/(1+θe) (17)

In Section III we consider the evolution of contact forces with stress anisotropy in a jammed packing, and argue that
the number of contacts that open follows:

δz ∼ δµ(2+2θe)/(3+θe) (18)
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Jointly Eqs.(17,18) predict a relationship between level amplitude and stress anisotropy:

L ∼ δµ−(4+2θe)/(3+θe) ∼ δµ−1.41 (19)

Eqs.(15,19) lead to a prediction for the exponent γµ entering in the constitutive relation µ(J ). Together with previous

results showing that `c ∼ 1/
√
δz [6, 32], one obtains expressions for γ` and α`, corresponding to:

`c ∼ δµ−(1+θe)/(3+θe) ∼ δµ−0.41 (20)

both for inertial and viscous flows. In Section IV we investigate the characteristic strain scale εv at which velocities
decorrelate. We compute the decay of stress occurring in between collisions at fixed packing fraction, as well as the
positive jump of stress that occur when new contacts are formed. Stationarity then implies that these two quantities
must be equal in average, leading to the prediction that in steady state:

εv ∼ 1/L2. (21)

Together with Eqs.(16,19) this result leads to a prediction for the exponent αµ characterizing the constitutive relation
µ(I). One missing link to obtain a full scaling description of the problem is how the packing fraction depends on other
control parameters. In section V we make the additional assumption that isotropic packings of frictionless particles in
the thermodynamic limit have a finite (although presumably small) dilatancy. We show that this hypothesis implies
the scaling relation δφ ∼ δµ, known to agree well with observations. This result enables us to predict the exponents
αφ and γφ entering the constitutive relation for φ(I) and φ(J ), leading to a complete scaling description of rheological
properties near jamming for frictionless particles. In particular the divergence of viscosity with packing fraction in
suspensions is expected to follow:

η

η0
∼ (φc − φ)−(8+4θe)/(3+θe) ∼ (φc − φ)−2.83 (22)

An outline of the logical relationships between the main macroscopic and microscopic quantities is shown in Fig. 3.
In Section VI we study the transition from viscous to inertial flow. In Section VII we compare our results with

previous empirical and numerical observations. Overall we find a very good agreement between observations and
predictions for frictionless particles. We conclude by discussing open problems, such as the influence of friction, which
appears to change exponents for inertial flows.

II. LEVER EFFECT L AND COORDINATION

To compute how the lever effect L depends on the deficit in coordination δz, we again consider an anisotropic jammed
packing with z = zc, and remove the δz weakest extended contacts (our procedure is equivalent to instantaneously
eroding the surfaces of the particles making those contacts, allowing particles to flow toward each other). The system
can now flow along floppy modes, i.e. collective motions along which particles in contact remain at the same distance.
These floppy modes pervade the system [25].

Before the contacts were removed, forces were balanced on every particle. A formal way to write force balance is

the virtual work theorem, recalled in Appendix A. It states that for any displacement field {δ ~Ri}, the work of external
forces is equal to the work of contact forces:∑

i

~F exti · δ ~Ri = −
∑
ij

fijδrij (23)

where fij > 0 is the contact force in the contact ij, and δrij is the change of distance between particles in contact,

δrij ≡ (δ ~Rj − δ ~Ri) · ~nij where ~nij ≡ (~Rj − ~Ri)/||~Ri − ~Rj || and ~Ri is the position of particle i. We can use Eq.(23)
for the floppy modes that would appear if contacts were removed. For floppy modes, δrij = 0 except for the fraction
δz of the contacts removed for which δrij < 0. On the other hand external forces are only present at the boundaries,
and the left-hand side of Eq.(23) corresponds to the work of the applied stress, which for a simple shear reads Ωσδε,
where Ω is the volume, and δε is shear strain. Overall we get:

Ωσδε = −
∑
α

fαδrα ∼ Nδzδrf(δz) (24)
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where the sum is on the Nδz contacts that were removed, labeled by α. In Eq.(24) we estimated this sum by
introducing the characteristic magnitude of displacements in a floppy mode, δr, and the characteristic force, f(δz),
of the contacts removed. It satisfies: ∫ f(δz)/p

0

P (f ′/p)d(f ′/p) ∼ δz (25)

leading to f(δz) ∼ pδz1/(1+θe). Together with Eq.(24) and using that p ∼ σ near jamming, we get:

L ∼ δr

δε
∼ δz−(2+θe)/(1+θe) (26)

Eq.(26) was first derived by some of us for some specific models [70], a result that will be published elsewhere [19]. It
is important to note that our derivation should hold true for any deficit in coordination δz, up to the smallest values
it can take, i.e. δz ∼ 1/N (corresponding to O(1) contacts removed). The same situation occurs for soft particles
above jamming, where it was argued that the shear modulus G vanishes as G ∼ δz with a scaling that holds up to
δz ∼ 1/N [33], as confirmed numerically [34]. In both cases this behavior traces back to the fact that near isostaticity
(i.e. z = zc), the physics is governed by counting arguments (for example the summation in Eq.(24)), which apply
irrespective of the magnitude of δz. Henceforth we assume that it is the case for quantities of interest.

III. RELATION BETWEEN COORDINATION AND STRESS ANISOTROPY

We now seek to determine the relationship between the coordination deficit δz and the increment of stress anisotropy
δµ. In particular we define the exponent:

δµ ∼ δzyµ (27)

To compute the exponent yµ we consider jammed configurations, and estimate the increment of stress anisotropy δµN
required to open one contact, thus corresponding to δz ∼ 1/N . For simplicity we consider isotropic packings, and use
the fact that at jamming the shear modulus of soft particles is of order G ∼ 1/N [33–35]. We show in Appendix B
that this argument is unchanged for anisotropic packings. In Appendix C, we provide another argument which does
not assume the behavior of G, and considers strictly hard particles. It uses simple geometrical considerations and an
assumption on the randomness of contact forces in packings.

Consider a packing of hard particles. For our purpose it is convenient to approximate such hard particles by soft
harmonic particles of stiffness k, in the limit where they are not deformed, i.e. p/k → 0. A shear modulus can then
be defined, that follows G ∼ k/N [33–35]. If a shear stress increment δσ = p δµ is imposed at the boundaries, contact
forces will change by some characteristic amount δf , leading to a characteristic change of energy δf2/k in contacts.
The energy per particle δE stored in the system is thus of the order δf2/k. By definition of the shear modulus, one
must also have δE ∼ δσ2/G ∼ Nδσ2/k ∼ Np2δµ2/k. Comparing these expressions we obtain

δf ∼ pδµ
√
N. (28)

The first contact opens when δf becomes of order of the smallest force in the system, fs, which satisfies∫ fs/p

0

P (f ′/p)d(f ′/p) ∼ 1/N, (29)

where P (x) ∼ xθe , leading to fs ∼ pN−1/(1+θe). Equating this expression with δf implies

δµN ∼ N−1/2−1/(1+θe), (30)

a result in excellent agreement with the numerics of [36]. Comparing Eqs.(27,30) for δz = 1/N we get

yµ =
3 + θe

2(1 + θe)
. (31)
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IV. STRAIN SCALE IN FLOW

A. Connection between lever amplitude and force unbalance

It is useful to realize that the lever amplitude L directly connects to the ability of the contact network to balance
forces. Denoting f the characteristic amplitude of the force in the contacts between particles, and F the characteristic
amplitude of the sum of these forces on one particle, we define the dimensionless quantity:

U =
F

f
. (32)

If forces are balanced as in a static granular assembly, then obviously U = 0, a limit that is reached continuously as
jamming is approached. Using the fact that a flowing configuration has deformation modes permeating the system,
it is possible to show (see Appendix A) that independent of the presence of inertia, the power done in deformation
can be written as

P =
∑
i

~Fi · ~Vi, (33)

where ~Fi is the vectorial sum of the contact forces on particle i, and ~Vi its velocity. It is useful to decompose ~Vi into

the motion of the particle relative to its neighbors ~V ri , and the convection ~V ci of the region of the system surrounding
particle i– which includes in particular the mean velocity of the flow, the so-called affine velocity. Galilean invariance
and isotropy of space imply that the local force and the affine velocity are not correlated on average, and we expect

in general that 〈~Fi · ~V ci 〉 ≈ 0 [71]. However for generic dissipation mechanisms, ~Fi and ~V ri are correlated, so that on

average ~Fi · ~V ri > 0. Eq.(33) thus implies P ∼ NFV r ∼ NUfLε̇D. Recall that the power injected at the boundary is
P = Ωσε̇. Using f ∝ σDd−1 we get P ∼ Ωf ε̇D1−d. Comparing these two expressions for the dissipated power leads
to

L ∼ 1/U . (34)

B. Decay of L at fixed coordination

The force unbalance U increases with strain as the particles are convected with no contact creation at fixed volume,
as long as contact forces are positive (which is always true for purely repulsive particles). This effect can be illustrated
in the simple example of a nearly straight line of connected rigid rods. U = 0 if the line is completely straight, but
increases as the line is compressed and forms a zig-zag. However if the line is pulled, contact forces are then negative,
and U decreases toward zero. The explanation for this fact stems from a simple geometrical consideration: as one
particle i moves, the direction of its contacts ~nij tends to turn away from the direction of motion. Since the resultant of

the contact force is ~Fi = −∑ij fij~nij , the projection of the force on the direction of motion increases if contact forces

are positive. Because for generic dissipation mechanism, one expects that ~Fi and the particle velocity with respect to

its neighbors ~V ri are correlated, the norm of the unbalanced force grows in average. This effect is proportional to the

change of orientation of the contact, itself proportional to ~V ri and thus to the lever amplitude L, leading to:

∂U
∂ε
∼ L, (35)

which simply means that the faster the motion, the faster forces become unbalanced. Eqs.(35,34) then imply

∂L
∂ε
∼ −L3. (36)

C. Consequence of stationarity

Eq.(36) was argued for in [6] for a specific model of suspension flow, where it was noticed that Eq.(36) indicates
the presence of a characteristic strain scale εη ∼ 1/L2, for which the viscosity would decay by a finite amount if
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no contacts were created. At fixed volume, this effect leads to a decrease of stress between collisions apparent in
simulation, see Fig.(4). We now use a finite-size scaling argument to argue that the velocities decorrelate on the same
strain scale, i.e εv ∼ εη (we will give elsewhere an alternative derivation of this result for a specific model of flow [19]).

To do so we consider a system with only a few floppy modes, corresponding to δz ∼ 1/N . As discussed above we
still expect scaling relations to hold in that situation. In such a system, the lever amplitude L decreases in between
collisions, as described by Eq.(36). However, a collision can decrease the number of floppy modes by adding one
contact, and thus increases L. Since the relative fluctuations of the number of floppy modes in a subsystem are of
order one, and using that this number and L have a power-law relation (26), a collision must locally change L by
∆L ∼ L. In a stationary state, any such increase of L must be compensated by the decrease of L in between collisions.
According to Eq.(36), this can occur only if the collision rate in the subsystem is εη ∼ 1/L2. Collisions result in a
change in the nature of floppy modes, and must therefore decorrelate the particles velocities by some finite fraction
[72], implying εv ∼ εη and therefore Eq.(21). This prediction agrees very well with numerical models of suspension
flows [27], as we shall confirm with new data in Section VII.

V. PACKING FRACTION

We now provide a finite size scaling argument supporting that δφ ∼ δµ. In Eq.(30) we computed the increment of
stress anisotropy required to open one contact in a jammed solid, δµN . We will argue that on average, opening one
contact triggers an avalanche leading to a mean change of packing fraction:

〈δφN 〉 ∼ δµN . (37)

From this result we argue that δφ ∼ δµ as follows. Consider an infinitely large packing at µc, and increase the stress
anisotropy by some δµ > 0. As argued in Eqs.(27,31) this will open δz contacts. We may next cut the system in
subsystems of volume ΩFS ∼ 1/δz. Following the opening of ∼ O(1) contact, each subsystem will change its packing
fraction by some amount δφΩFS . The average of this quantity will determine the change of packing fraction δφ in the
entire system. According to Eq.(37) this average is simply δµ, leading to the desired result δφ ∼ δµ.

To prove Eq.(37) we consider the plasticity of a stable packing of N hard particles, i.e. with µ < µc. Let us assume
that the stress anisotropy cycles adiabatically between −µ1 and µ1, where µ1 is smaller than, but of order, µc. We
expect that in the thermodynamic limit, the packing fraction will be minimal at µ = 0, and we shall assume that it
rises to a finite (although presumably numerically small [16]) amount ∆φ for µ = µ1. As µ is changed adiabatically,
avalanches will be triggered when the force in a contact vanishes, as numerically investigated in [36]. There must be
of the order Na ∼ µ1/δµN ∼ 1/δµN avalanches between µ = 0 and µ1. Thus an avalanche leads to an average change
of packing fraction 〈δφN 〉 ∼ ∆φ/Na ∼ δµN , i.e. Eq.(37).

Note that Eqs.(27,31,37) imply a relationship between coordination and packing fraction:

δz ∼ δφ1/yµ , (38)

with 1/yµ ≈ 0.83.

VI. VISCOUS TO INERTIAL TRANSITION

Experiments [9] and simulations [10, 11, 37, 38] report a transition from viscous to inertial flows as the strain rate
ε̇ is increased at fixed packing fraction. For hard frictionless particles, the location of this transition can be computed
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FIG. 4: (Color online) Typical stress vs strain curve for flow of rigid particles, showing intervals where stress relaxes smoothly,
punctuated by instantaneous collisions (vertical segments).
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precisely in our framework. The total power dissipated Ptot has a contribution from the viscous drag (P ∝ Nη0L2ε̇2,
as discussed in the introduction) and from collisions (P ∝ Nε̇Ec/εv ∼ Nε̇3ML4, where we used εv ∼ 1/L2). Thus
one gets

Ptot ≈ NC1η0D
d−2L2ε̇2 +NC2Mε̇3L4, (39)

leading to a crossover strain rate ε̇v→i above which dissipation is dominated by collisions:

ε̇v→i ∝
η0D

d−2

ML2
∝ η0D

d−2

M
δφ1/γφ ∼ η0

D2ρ
δφ2.83 (40)

The stress scale σv→i at which this cross over occurs is thus σv→i ∼ η(φ)ε̇v→i ∼ η2
0/(D

2ρ), which is independent of φ.
Thus the regime of strain rate where inertia is negligible vanishes rapidly when the jamming transition is approached
[37]. Equating the total power dissipated of Eq.(39) with the power injected P ∼ Ωσε̇, one gets the following scaling
form for the viscosity η ≡ σ/ε̇:

η

η0
= δφ−1/γφf

(
ε̇

ε̇v→i

)
(41)

where the scaling function f satisfies f(x) ∼ x0 as x→ 0 and f(x) ∼ x as x→∞.

Regime Relation Prediction Experiment Frictionless Sim’n Frictional Sim’n

δµ ∼ Iαµ αµ = 0.35 1 [39] 0.38(4) [16] 0.81(3) [40], 1 [41], 1 [42], 1 [10]

Inertial δφ ∼ Iαφ αφ = 0.35 1 [39] 0.39(1) [16] 0.87(2) [40], 1 [42], 1 [10]

δµ ∼ N−αN αN = 1.19 1.16(4) [36]

L ∼ I−1/2 1/2 0.7 [4], 0.7 [1] 0.48 [16] 0.5 [1]

η ∼ |δφ|−1/γφ γ−1
φ = 2.83 2 [8], 2 [43]

2.6(1) [44], 2.77(20) [45],
2.2 [26], 2.5 [40], 2.77

Viscous δµ ∼ J γµ γµ = 0.35 0.38 [46], 0.42 [46, 47], 0.5 [8] 0.37 [40], 0.25 [45], 0.32 0.5 [10]

δz ∼ J γz γz = 0.30 0.30

`c ∼ |δφ|−γ`/γφ γ`/γφ = 0.43 0.6(1) [5]

dL/dγ ∼ −L3 3 3

General εv ∼ L−2 ∼ J (-2,1) εv ∼ L−2, εv ∼ J [27]

ε̇v→i ∼ δφγε̇ γε̇ = 2.83 1 [9]

TABLE I: Predicted critical exponents vs. values from experiments and numerical simulations, with and without frictional
interactions. Underlined values correspond to the simulations presented in this paper. The values extracted in Ref.[40]
correspond to simulations closest to hard spheres (the “roughness parameter” of that reference is 10−4). When available,
error bars are indicated by the notation 0.38(4) = 0.38± 0.04, 2.77(20) = 2.77± 0.20, etc.

VII. COMPARISON WITH OBSERVATIONS

A. Suspension Flows

Simulations: Scaling behavior described by Eqs.(4,5,7) has been precisely characterized in simple numerical models
of suspension flow, in particular for frictionless particles [5, 25, 26, 44, 45]. The divergence of viscosity yields an
exponent 1/γφ ∈ [2.5, 2.8] for the most recent data with the largest system size, in quantitative agreement with our
prediction 1/γφ = 2.83. The exponent γµ characterizing the stress anisotropy lies between γµ ∈ [0.25, 0.37] consistent
with our prediction γµ = 0.35. Measurements of the correlation length exponent in terms of the packing fraction are
scarce and not very recent (see [6] for measurement of length scale vs coordination), and it would be valuable to have
more accurate measurements. Olsson and Teitel reported γ`/γφ = 0.6(1), in reasonable agreement with our prediction
γ`/γφ = 0.43. Coordination was measured in a quasistatic simulation using soft particles [48], finding δz ∼ δφ. This
observation, which was performed over a very limited range, is consistent with our prediction δz ∼ δφ0.83 (Eq.38).
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FIG. 5: (Color online) Numerical verification of scaling relations in the ASM. (a) Stress anisotropy µ vs. viscous number
J . Theory predicts an exponent 0.35. (b) Volume fraction φ vs. viscous number J . Theory predicts an exponent 0.35. (c)
Coordination deficit δz vs. viscous number J . Theory predicts an exponent (1 + θe)/(4 + 2θe) ≈ 0.30.
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FIG. 6: (Color online) Numerical verification of kinematic scaling relations in the ASM. (a) Lever amplitude L vs. viscous
number J . Theory predicts an exponent −1/2. (b) Relaxation of lever amplitude in between collisions. Theory predicts
dL/dγ ∼ −L3. (c,d) Autocorrelation of relative velocities C(γ) vs. strain γ. Panel (d) shows a scaling collapse of C(γ),
indicating the presence of a strain scale εη ∼ L−2, as predicted.

To supplement these results, and to show that we correctly describe the scaling behavior of microscopic observables
not easily measured in experiments, we have performed simulations in a simple model of suspension flow. This model
is used by various authors, and is a variant of the bubble model of Durian, except that particles are hard. We dubbed
it the Affine Solvent Model (ASM) [25], as in this model the solvent is assumed to flow in an affine way, unperturbed
by the particles. Thus hydrodynamic interactions are neglected, and damping occurs when particles move with respect
to the solvent. Observations indicate that the singular behavior is preserved when more realistic lubrication forces are
considered [16, 26, 28], in agreement with our framework. We simulated steady-state shear of 50:50 binary mixtures
of N = 1000 particles in three dimensions, with the ratio of diameters of the large and small particles chosen to be 1.4.
We collected data under both constant pressure and constant volume setups; see [49] for details about the simulation
methods. Our most accurate results on the exponents γµ and γφ, shown in Fig. 5ab, give exponents γµ = 0.32 and
γµ = 0.36, within error bars of our prediction 0.35. In Fig. 5c we show that the coordination deficit δz ∼ J 0.30 is also
quantitatively predicted.

In Fig. 6 we show the fundamental relations between microscopic quantities L,J , εv and dL/dγ. As predicted,
these show that in the ASM L ∼ J−1/2 and dL/dγ ∼ L3. In Fig. 6c we show the autocorrelation function C(γ) =
〈Vr(0)Vr(γ)〉, a function of shear strain γ, for various values of dimensionless pressure p = 1/J . These data are
collapsed in Fig. 6d by plotting vs γL2, indicating that relative velocities lose their memory after a strain scale
εv ∼ L−2, as predicted.

In the literature, a wide variety of drag models have been considered. To be in the overdamped universality class,
motion along floppy modes must be damped. When the drag is purely associated to longitudinal motion between
particles in contact, or nearly in contact, the flow curves depend on the gap cutoff below which this drag is applied:
inertial when only touching particles dissipate energy [11], and viscous otherwise [37]. This observation, which has
been interpreted as a failure of universality, is natural from the present approach, since motion transverse to contacts
dominates near jamming. Thus model hc = 0 in [37] and model CDn in [11] are inertial, while the other models
considered therein are viscous.
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Experiments: Experiments on frictionless hard particle systems near jamming are scarce, but this regime is accessible
in foams. Foams are good systems to test result on hard spheres, as long as the shear stress is not sufficient to deform
them significantly. In inverse avalanches it was that observed γµ = 0.38 [46], consistent with our prediction γµ = 0.35.

Most experiments are done with grains, i.e. frictional particles. It is often reported that the divergence of viscosity
give an exponent 1/γφ ≈ 2 [8, 43], which may differ from our prediction 2.83. However, a re-analysis of the data,
shown in Fig. 7, suggests that the exponent 2 may simply reflect corrections to scaling: 2.83 appears to work for
φ >∼ 0.53. Measurements of the exponents γµ yield γµ = 0.42 [46, 47], rather close to our prediction γµ = 0.35.
Frictional simulations suggest γµ = γφ = 0.5 [10], but these measurements are lacking error bars. Thus for non-
Brownian suspensions more accurate measurements are required to decide if frictional and frictionless particles behave
identically, or not.
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FIG. 7: Divergence of suspension viscosity as measured in experiments of Ovarlez et al [43] and Bonnoit et al [50] (symbols),
compared to our prediction η ∼ δφ−2.83 (solid). In these works the best-fit exponent was ≈ 2 when fitted on a large range of
packing fraction. However, the prediction 2.83 appears consistent with data close enough to φc.

B. Dry Flows

Dry granular flows, where inertia dominates, have been simulated with varying degrees of realism [16, 36, 40, 48, 51–
54]. In a simple quasistatic (I = 0) model using hard frictionless particles poised near isostaticity [36], Combe and
Roux have measured explicitly the system-size dependence of stress increments needed to cause instability. The result
is δµ ∼ N−αN with αN = 1.16(4), in very good agreement with our prediction αN = 1.19.

At finite I, but still with frictionless particles, Refs.([16, 40]) measured the exponents αµ and αφ, finding αµ =
0.38(4) and αφ = 0.39(1), again apparently in quantitative agreement with our prediction αµ = αφ = 0.35. Moreover,
assuming that relative velocities scale as non-affine velocities, our prediction on L also appears correct: L ∼ I−0.48

is observed in [16], in agreement with our prediction L ∼ I−1/2. Finally, although these authors have observed that
the coordination converges to isostaticity at jamming, no exponent is reported. Measuring coordination precisely in
the inertial regime may, however, be more difficult to perform than in the viscous case [73].

Friction appears to have a strong effect on dry inertial flow: simulations with Coulomb friction coefficients ≈ 0.5
indicate that αµ ≈ αφ ∈ (0.8, 1) [10, 40–42], definitely distinct from our prediction αµ = αφ = 0.35. In experiments
on dry granular flow, it is likewise found that αµ ≈ αφ ≈ 1 [39]. These data suggest that the present theory needs to
be modified for frictional particles, at least in the inertial case. Consistent with these remarks, the viscous-to-inertial
crossover is observed to satisfy γε̇ ≈ 1 in a frictional system [9], off from our prediction γε̇ = 2.83. Nevertheless our
prediction on velocity fluctuations appears to be more accurate, as non-affine velocities are found to scale as I−0.5

in simulations [1] as we predict for relative velocities. In experiments the reported exponent is slightly larger, ≈ 0.7
[1, 4].
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VIII. CONCLUSION

A. Summary

In a first step, we related the power dissipated in flow of frictionless particles to certain microscopic kinetic quantities.
The latter control singularities in the rheological properties near jamming. In a second step, we have computed these
quantities, using a perturbation around the solid phase. Our main hypothesis is that configurations in flow are similar
to jammed configurations at maximum stress anisotropy µc, destabilized by an additional stress increment δµ. In this
approach, the properties of the solid phase are central, in particular the fact that the density of contacts which can
couple to external forces is singular at small forces, and characterized by a non-trivial exponent θe. Our description
of flow can thus be thought as that of a jammed solid, populated by elementary excitations corresponding to the
opening of weak contacts, of density δz.

Our work is part of a more general approach seeking to describe in real space the excitations that govern particulate
materials and their response. The excitations studied here are associated to the rewiring of the contact network.
Beyond flow, we have argued previously that these excitations control the stability of the solid phase: if the exponent
θe were smaller, packings would collapse and have extensive rearrangements as soon as they are perturbed [12, 21, 22].
Thus the value θe is fixed by stability constraints in the solid phase, and in turn affects flow properties. A similar
situation occurs for soft vibrational modes, which are known to be present in amorphous solids (where they are
referred to as the boson peak). We have argued [18, 55–57] that the structure of amorphous solids near jamming is
such that soft vibrational modes are stable, but barely so, a view also supported by recent calculations in infinite
dimensions [23, 24]. Once again this situation leads to a singular density of excitations (in that case the density of
vibrational modes D(ω)), causing anomalous elastic and transport properties [18, 58]. Similar cases where stability
is marginally satisfied and where the density of excitations is singular occur in other glassy systems (such as spin and
Coulomb glasses), and is expected if interactions are sufficiently long-range [22].

B. Some open questions

Although we believe that our assumption on the nature of flowing configurations is essentially correct, it would be
very valuable to justify it from purely dynamical considerations. Work in that direction is in progress [19]. Another
challenge concerns length scales. Physically the length `n.l. that characterizes non-local effects in flow when a boundary
is present [41, 59–61] is visible in many experiments, and of practical importance. It is presently unclear if this length
scale corresponds to `c, which characterizes the main decay of the velocity correlation function. Indeed other length
scales can be defined in flow [74]. This question would benefit from more accurate measurements.

Finally, one central remaining question is the role played by friction. As discussed in Section VII, and visible in
Table 1, friction strongly affects critical exponents in the inertial case, but only weakly, if at all, in the viscous case.
One key assumption of our approach, proximity to isostaticity, appears to be valid in the problematic inertial case:
under constant stress boundary conditions, the steady state of simple shear dry granular flow is very nearly isostatic
[62]. In our view, a central question for the future is what controls the stability of such isostatic frictional systems, how
these respond to an additional stress anisotropy δµ, and how the combination of finite softness, inertia and friction
qualitatively affects the flow curves [53].

Acknowledgments

We thank B. Andreotti, M. Cates, Y. Forterre, J. Lin, B. Metzger, M. Mueller, O. Pouliquen, A. Rosso, L. Yan, and
F. Zamponi for discussions and B. Andreotti for providing the compilation of data used in Fig.(7). MW acknowledges
support from NSF CBET Grant 1236378, NSF DMR Grant 1105387, and MRSEC Program of the NSF DMR-0820341
for partial funding. GD acknowledges support from CONICYT PAI/Apoyo al Retorno 82130057.

[1] G. MiDi, The European Physical Journal E: Soft Matter and Biological Physics 14, 341 (2004-08-01).
[2] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, and F. m. c. Chevoir, Phys. Rev. E 72, 021309 (2005).
[3] P. Jop, Y. Forterre, and O. Pouliquen, Nature 441, 727 (2006).
[4] O. Pouliquen, Physical review letters 93, 248001 (2004).
[5] P. Olsson and S. Teitel, Phys. Rev. Lett. 99, 178001 (2007).



13
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[32] G. Düring, E. Lerner, and M. Wyart, Soft Matter 9, 146 (2013).
[33] M. Wyart, Annales de Phys 30, 1 (2005).
[34] C. P. Goodrich, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. 109, 095704 (2012).
[35] M. Wyart, in Microgels: Synthesis, Properties and Applications, edited by A. Fernandez, J. Mattsson, H. Wyss, and

D. Weitz (to be published by Wiley & Sons, 2010).
[36] G. Combe and J.-N. Roux, Phys. Rev. Lett. 85, 3628 (2000).
[37] M. Maiti and C. Heussinger, Physical Review E 89, 052308 (2014).
[38] T. Kawasaki, A. Ikeda, and L. Berthier, Europhys. Lett. 107, 28009 (2014).
[39] Y. Forterre and O. Pouliquen, Annual Review of Fluid Mechanics 40, 1 (2008).
[40] P.-E. Peyneau, Ph.D. thesis, Ecole des Ponts ParisTech (2009).
[41] M. Bouzid, M. Trulsson, P. Claudin, E. Clément, and B. Andreotti, Phys. Rev. Lett. 111, 238301 (2013).
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[46] R. Lespiat, S. Cohen-Addad, and R. Höhler, Phys. Rev. Lett. 106, 148302 (2011).
[47] C. Cassar, M. Nicolas, and O. Pouliquen, Physics of fluids 17 (2005).
[48] C. Heussinger and J.-L. Barrat, Phys. Rev. Lett. 102, 218303 (2009).
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IX. APPENDIX

A. Virtual Work Theorems

In the main text we make use of two work theorems, which we derive here in the frictionless case [31]. We also
derive the microscopic expression for the stress tensor.

The first work theorem applies to any jammed packing (z > zc) and begins with the equations for force balance,

~F exti =
∑
ij

fij~nij , (42)

where ~F exti is the external force on particle i, and fij is the contact force in contact ij. Contracting this equation

along an arbitrary (“virtual”) displacement field δ ~Ri, and summing over all particles, we find∑
i

δ ~Ri · ~F exti =
∑
i

δ ~Ri ·
∑
ij

fij~nij

= −
∑
ij

fijδrij , (43)

where δrij = (δ ~Rj−δ ~Ri) ·~nij is the normal displacement at contact ij. This statement is called the theorem of virtual
work. When a packing is jammed, there exists solutions to (42) where all the forces are applied at the boundary of

the packing. In this case we identify
∑
i δ
~Ri · ~F exti = W as the work injected in the displacement {δ ~Ri}. The work

can be written W = Ω
↔
σ :

↔
ε = −Ωd pεV + Ωσε, where

↔
σ is the stress tensor,

↔
ε is the strain tensor, ε is shear strain,

and εV is the volumetric strain (zero if constant-volume boundary conditions are imposed, and positive for dilation).
Therefore for a jammed packing

W = −
∑
ij

fijδrij . (44)

A similar relation holds in an unjammed system. When z < zc, there are floppy modes that pervade the system, i.e.,
any velocities imposed at boundaries can be accommodated by motions that maintain all contacts. Let us suppose that
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the list of contacts {ij} includes some contacts with walls at the boundary of the domain. The previous statements
imply that the set of equations

uij = (~Vj − ~Vi) · ~nij (45)

has a solution for the velocities {~Vi} when the uij are nonzero only at boundaries. Contracting these equations of
“geometric balance” along an arbitrary force field gives∑

ij

fijuij = −
∑
i

~Vi ·
∑
ij

~nijfij =
∑
i

~Vi · ~Fi, (46)

where ~Fi is the vectorial sum of contact forces incident on i; this is the theorem of complementary virtual work. In
this case the LHS of (46) is nonzero only at boundaries, and inspection of this at a contact ij shows that if the {fij}
are taken as the true contact forces in contacts, then this is the power injected in the imposed velocity field {uij}.
Therefore the LHS is the power P.

Finally, let us show how the microscopic expression for the stress tensor can be obtained. In the jammed case, we

multiply (42) with the particle positions ~Ri and sum the resulting the equations (without contracting the vectors).
This gives ∑

i

~F exti
~Ri = −

∑
ij

fij~nij~rij , (47)

where ~rij = ~Rj − ~Ri. The LHS of (47) is a discretization of a boundary integral −
∫
∂Ω
~n · ↔σ~r dS, where ~n is an

outward-facing normal to the boundary. By the divergence theorem, this is equal to −
∫

Ω
∇· (↔

σ~r ) dV . But then force

balance implies ∇ · ↔σ = 0 so that
∫

Ω
∇ · (↔

σ~r ) dV =
∫

Ω

↔
σtdV ≡ Ω

↔
σt and

↔
σ =

1

Ω

∑
ij

fij~rij~nij . (48)

Similar equations hold in the more general frictional case, including the effect of rotations [65].

B. Shear modulus and anisotropy

In weakly coordinated packings of elastic particles, generic elastic moduli are small and scale as ∼ z − zc, a
scaling that holds up to δz = 1/N . This is true except in the direction of the applied stress, where the modulus is
large: it is not vanishing and goes as (z − zc)0 [35, 66]. This result explains why the bulk modulus is always large
for purely repulsive particles, as observed numerically [67]. In an anisotropic packing carrying a shear stress σ of
order of the pressure p, the stiff mode of deformation is not a pure compression, as it now has a shear component.
However, imposing some additional stress on the system δσ and δp will generically couple to the soft moduli, except if
δσ/δp = σ/p = µ. In our case we impose an additional shear stress increment with no additional compression: there
is thus a finite coupling to the weak elastic moduli leading to a large particle displacement, as we have assumed in
the text to derive Eq.(28).

C. Derivation of δµN for strictly hard particles

For a simple shear in the xy-plane, it is useful to write Eq.(48) in a compact notation as

σ =
1

Ω
〈f |l〉 (49)

p =
d

Ω
〈f |r〉, (50)

where σ =
↔
σxy, |f〉 is the vector of contact forces fij (of dimension Nc, the number of contacts), |r〉 is the vector of

the distances rij between particles in contact, and |l〉 has components lij = (~rij · x̂)(~nij · ŷ). We denote by |δf〉 the
change of contact forces induced by increasing the shear stress by δσ. It must obey the conditions:

1

Ω
〈δf |l〉 = δσ (51)

〈δf |r〉 = 0 (52)
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If hard particles are compressed homogeneously from a loose state, say by reducing the linear size L of a cubic
box containing them, the system will eventually jam into an isostatic configuration: there are just enough contacts
to forbid floppy modes, which involve the Nd degrees of freedom of the particles, as well as the dimension L of the
box. At that point, there is a single set of contact forces that satisfies force balance on each particle, i.e. Eq.(42) with
no LHS. However if the system is then allowed to shear (for example by deforming the square box into a rectangle),
there is then one floppy mode associated to this additional degree of freedom, see e.g. [68]. It will disappear once
a new contact is formed. At that point, the space of contact forces satisfying force balance is of dimension two.
This situation is generic in practical situations, for example when the shear stress is adiabatically increased to study
plasticity in packings [36].

We denote by |f1〉 and |f2〉 an orthonormal basis of this space. The components of these vectors thus scale as 1/
√
N .

We choose |f1〉 to be in the direction of the true contact forces before the stress increment. Eq.(50) then implies for
a purely repulsive system (where all contact forces must have the same sign) the following system-size dependence:

〈f1|r〉 ∼
√
N (53)

〈f1|l〉 ∼
√
N (54)

where the second relation stems from Eq.(49) and the assumption that σ ∼ p, i.e µ 6= 0. Our central assumption is
that |f2〉 is essentially a random vector with limited spatial correlations. More precisely we assume that:

〈f2|r〉 ∼ 1 (55)

〈f2|l〉 ∼ 1 (56)

as follows from the central limit theorem if the sums in Eqs.(55,56) concerns weakly-correlated variables.
Writing |δf〉 = β1|f1〉+β2|f2〉, one readily gets expressions for β1 and β2 from Eqs.(51,52). Using Eqs.(53,54,55,56)

one finds β1 � β2 and β2 ∼ δσN . We seek to compute the characteristic change of force in a contact δf , which then
must follow:

δf2 =
〈δf |δf〉
Nc

=
β2

1 + β2
2

Nc
∼ Nδσ2 (57)

which is equivalent to Eq.(28).
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