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A statistical model for the fragmentation of a conserved quantity is analyzed, using the principle
of maximum entropy and the theory of partitions. Upper and lower bounds for the restricted
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I. INRODUCTION

Given an arbitrary set of numerical data, can one pre-
dict what the distribution of numbers will be? It would
be fanciful to think the answer is yes, but consider the
following rationale. Any experiment in nature involves
partitioning some part of the universe (in mass, energy,
volume, or some other physical quantity) from the rest.
The sizes of the resulting numbers are then subject to
the conservation laws of physics (mass-energy, momen-
tum, angular momentum). Such a situation commonly
arises in statistical physics, in which there is a funda-
mental distribution of energy E, the celebrated Boltz-
mann distribution e−E/kT , where T is the temperature
and k is Boltzmann’s constant. This distribution, while
fully justified only in certain thermodynamic limits [1], is
an extraordinarily powerful tool for analyzing many sys-
tems. Could there be such a fundamental distribution of
numbers?

Surprisingly, many data sets in nature, economics, and
sociology exhibit a characteristic distribution, but these
are given by power laws, such as Zipf’s law, rather than
an exponential Boltzmann-like distribution. Such power
laws have inspired a wide variety of explanations and ar-
guments over the years [2]. Most recently, arguments
based on information theory known as random group [3]
or community [4] formation have shown how long-tailed
distributions with general power laws can be derived from
a small parameter model. These are written in terms of a
maximum entropy principle [5] given simple constraints.
In physics, however, such a procedure [6], using the con-
straint of energy conservation, leads to the Boltzmann
distribution. How then could a physical conservation law
lead to a power-law distribution?

In this paper we argue that, under certain conditions
similar to energy conservation, there is indeed a universal
distribution that is intimately related to the statistics of
quantum harmonic oscillators. In an appropriate limit
we call the equipartition limit, this distribution tends
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to the simplest inverse power law. We further provide
a concrete combinatorial proof of this limit, and verify
it against numerical simulations. Most importantly, we
show how this limit has, as a simple consequence, Ben-
ford’s law for the leading digit distribution [7]. A data
set is Benford if the probability of observing a first digit
of d in 1, 2, ..., 9 is log10(1+1/d). This property has been
observed in a wide variety of data sets from economics,
sociology, mathematics, physics, geology, among others
[8]. While many mathematical processes are known to
exhibit the Benford property [9], we believe that this ar-
gument, originally due to Lemons [10], is one of the sim-
plest. In short, a conservation law implies a power law
that directly leads to Benford’s law.

This paper is organized as follows. We begin in Sec-
tion II by showing how the principle of maximum en-
tropy, when applied to the partition of numbers, leads to
a power law for the average number of parts of a given
size. This is extended in Section III, in which the the-
ory of partitions is used to justify this result, in an ap-
propriate limit. The implication of this power law for
Benford’s law is presented in Section IV, while an exten-
sion to more general power laws is presented in Section
V. We conclude in Section VI, and provide additional
mathematical details in the Appendix.

II. POWER LAW FROM MAXIMUM ENTROPY

The main topic of this paper is the distribution of parts
subject to an overall conservation law. Such a distri-
bution could arise from a fragmentation process. For
example, in nuclear physics [11] one encounters compli-
cated decay chains in which a large nucleus fragments
into many smaller nuclei. The total number of nucleons
in such a process is conserved. Similarly, in the fragmen-
tation of a large object [12], the total mass of the system
is conserved.

As a general model of such processes, we consider the
distribution of N numbers nj , corresponding to piece
sizes xj , so that the total pieces add up to some given
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quantity X:

X =

N∑
j=1

njxj . (1)

Here the part set {x1, x2, . . . , xN} is fixed, but the num-
ber nj of parts (or fragments) of a given size xj is not.
The numbers nj specify a partition of X. In the ex-
amples above, X and xj would be the atomic numbers
(or masses) of the original object and fragments, respec-
tively, and the partitioning results from the details of the
fragmentation process.

We consider the set of all such partitions of a quantity
X, subject to Eq. (1). The distribution we seek corre-
sponds to the average number of parts 〈nj〉 of size xj ,
when averaged over the set of partitions. The essence of
this argument was originally given by Lemons [10], using
heuristic arguments for a continuous set of parts. In this
section we will derive the probability distribution and
average number for a discrete part set by using meth-
ods from statistical physics, namely Jaynes’s principle of
maximum entropy [6]. A similar approach, specific to the
fragmentation of solids, can be found in [12], while an al-
ternative application of maximum entropy to Benford’s
law can be found in [13].

In this formulation, we look for the probability distri-
bution p(~n) for finding n1 pieces of size x1, n2 pieces of
size x2, etc., that maximizes the entropy

S = −
∑
~n

p(~n) ln p(~n)− α

(∑
~n

p(~n)− 1

)

−β

∑
~n

p(~n)

∑
j

njxj −X

 , (2)

where ~n is the vector of integers (n1, n2, . . . , nN ) and the
summations are over all possible values of these integers:

∑
~n

=

∞∑
n1=0

∞∑
n2=0

· · ·
∞∑

nN=0

. (3)

Maximizing the entropy, we find

p(~n) =

N∏
j=1

(1− e−βxj )e−βnjxj , (4)

where β is a Lagrange multiplier, to be specified below.
This result conforms with the usual expectation that the
distribution associated with a conserved quantity is ex-
ponential.

Given the probability distribution for ~n, we now con-
sider how frequently each part xj occurs. That is, when
we observe a given partitioning of a system, we find a
number of parts n1 of size x1, n2 of size x2, n3 of size
x3, etc. The distribution of observed part sizes (or frag-
ments) xj will be proportional to the number of occur-
rences of a given part xj , namely nj . Thus, we compute
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FIG. 1: Average number of parts 〈nj〉 when partitioning a
number X into the set {xj} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, for
various values of X = {25, 50, 100, 200, 400, 800} (increasing
X from bottom to top). The dots are exact calculations using
all partitions and the solid lines the maximum entropy result
using Eq. (5). Also shown is the equipartition result of Eq.
(7), for X = 1600 (dashed).

the expectation value of nj as a function of xj :

〈nj〉 =
∑
~n

njp(~n) =
1

eβxj − 1
, (5)

where the Lagrange multiplier is found by the conserva-
tion equation∑

j

〈nj〉xj =
∑
j

xj
eβxj − 1

= X. (6)

This form of the fragment distribution is formally equiva-
lent to the average number of quanta for a set of harmonic
oscillators with energies xj = ~ωj and inverse tempera-
ture β = 1/kT [1].

In the limit when X � 1, as is usually the case in real-
world data, we expect that β � 1; this corresponds to
a high-temperature limit. In this case we can solve the
conservation equation perturbatively in β to find β ≈
N/X and thus

〈nj〉 ≈
1

βxj
≈ X

Nxj
. (7)

We call this the equipartition limit, by analogy with the
high-temperature limit for quantum harmonic oscillators,
in which each oscillator has the same average energy
〈nj〉~ωj = kT .

This derivation provides solid evidence for Lemons’
original argument [10] that the number of parts of size
x, when subject to a conservation law of the form Eq.
(1), satisfies the power law n(x) ∼ 1/x. The approach
given here also applies to more general partitions, includ-
ing those with a continuous set of parts. It can also be
tested numerically. We have calculated the exact set of
partitions for various values of X between 25 and 800 into
the part set {xj} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (the largest
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with over 100 trillion partitions) and the corresponding
average values for 〈nj〉. The results, shown in Fig. 1,
are well described by the maximum entropy result Eq.
(5), provided we numerically solve Eq. (6) for β. Finally,
these results converge to the equipartition result Eq. (7)
for large X.

III. PARTITION NUMBER CALCULATION

In the previous section we presented what could be
termed a “canonical ensemble” calculation of the frag-
ment distribution n(x). Such a calculation applies to the
behavior of a set of systems for which the conservation
law holds on average. An alternative calculation uses the
“microcanonical ensemble”, a set of systems for which
the conservation law holds exactly [1]. In this section we
consider such a calculation of the equipartition limit of
Eq. (7), using the theory of integer partitions [14]. In
this framework we can find the average number of parts
by exactly averaging over all partitions of the conserved
quantity.

We note that unrestricted partition problems have
been used previously to analyze fragmentation of nu-
clei [11, 15–18]. By contrast, here we consider the re-
stricted partition number PH(X), that is, the number of
ways to partition an integer X into the set of integers
H = {x1 = 1, x2, . . . , xN}, as in Eq. (1). Note that set-
ting x1 = 1 ensures that a partition will exist for every
X.

We begin by introducing the generating function

∞∑
k=0

PH(k)qk =
∏
x∈H

(1− qx)−1. (8)

This generating function can be understood by expand-
ing each (1− qx)−1 as a power series and grouping those
terms with a given qk. The number of such terms is
precisely the number of partitions of k into the part set
H. Using the generating function, any desired partition
number can be obtained by multiple differentiation:

PH(X) =
1

X!
×
(
∂

∂q

)X ∏
x∈H

(1− qx)−1
∣∣∣∣
q=0

. (9)

Evaluating this partition number is a hard problem, but
useful approximations [19, 20] and bounds [21, 22] exist.

The average number of parts of size xj can be found
by manipulating the partition functions PH(X) and
PH(X;nj):

〈nj〉 =
1

PH(X)

∑
nj

njPH(X;nj), (10)

where PH(X;nj) is the number of partitions of X with
exactly nj parts of size xj . Using its generating function,

∞∑
k=0

PH(k;nj)q
k = qnjxj

∏
x 6=xj

(1− qx)−1 (11)

and performing the sum over nj , we have∑
nj

njPH(X;nj) =
1

X!
×
(
∂

∂q

)X
qxj

1− qxj

∏
x∈H

(1−qx)−1
∣∣∣∣
q=0

.

(12)
This last expression can be simplified by using the Leib-
niz Rule for differentiation, so that

〈nj〉 =
1

PH(X)

bX/xjc∑
`=1

PH(X − `xj). (13)

This provides an exact expression for the average number
of parts.

To proceed, we use a well-known approximation [19,
20] for the restricted partition number

PH(X) ≈ 1

(N − 1)!

XN−1

x2 · · ·xN
, (14)

valid for large X. Substituting this approximation into
Eq. (13), removing the floor function and replacing the
summations by integrals, we find

〈nj〉 ≈
1

XN−1

∫ X/xj

1

(X − zxj)N−1dz

=
1

Nxj

(X − xj)N

XN−1

≈ X

Nxj

[
1 +O(X−1)

]
. (15)

A rigorous calculation (including the dependence of the
error term on the part set H), found by bounding the
partition number more precisely, is presented in the Ap-
pendix.

IV. BENFORD’S LAW

As described above, power laws, such as Zipf’s law, or
other “fat” or “long-tailed” distributions have been stud-
ied intensively [2]. Here we have found the simplest power
law for the number of parts of a given size, in the equipar-
tition limit Eq. (7). Note that the power law is for the
average number of parts, as opposed to the probability
distribution for the number of each part (which is expo-
nential). In some sense, this can be seen as the simplest
possible distribution, as only one conservation constraint
has been imposed on the number of parts. Most impor-
tantly, this simplest power law leads directly to Benford’s
law [10], which we reproduce here for completeness.

Specifically, if we extend the equipartition result Eq.
(7) to a system in which we can sample from a continuous
set of pieces of size x, each occurring with probability
proportional to 1/x, the expected digit distribution (over
any interval 10p → 10p+1 in x) will be Benford:

Pd =

∫ (d+1)10p

d10p
dx/x∫ 10p+1

10p
dx/x

=
ln(1 + 1/d)

ln 10
= log10

(
1 +

1

d

)
.

(16)
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We note that other long-tailed distributions may exhibit
Benford-like behavior [23], and thus many of the distri-
butions recently studied [3–5] may also be candidates to
describe how Benford-like data sets emerge, but the in-
verse power law shown here uniquely leads to the exact
Benford distribution.

As an example of an almost Benford distribution, we
consider the maximum entropy result Eq. (5), for con-
tinuous x. For this distribution we can perform a similar
calculation to find Pd, and find that

Pd =
ln
[
(1− e−β(d+1)10p)(1− e−βd10p)−1

]
ln
[
(1− e−β10p+1)(1− e−β10p)−1

]
≈ log10

(
1 +

1

d

)
+β

10p

2 ln 10

[
9 log10

(
1 +

1

d

)
− 1

]
for β � 10−p,

(17)

so that, in the equipartition limit β → 0, we recover the
Benford digit distribution. For large β, the digit distri-
bution tends to the exponential form e−β10

pd. Thus, the
maximum entropy model, for general values of β, can lead
to both Benford and non-Benford digit distributions.

V. BEYOND BENFORD: GENERAL POWER
LAWS

We now consider an extension of the maximum entropy
principle to allow for arbitrary power-law distributions,
along with natural cutoffs. First, we modify the conser-
vation law of Eq. (1) to a more general form

X =

N∑
j=1

njx
a
j . (18)

This equation can be interpreted geometrically, so that
a = 1 is like the partitioning of a line, a = 2 the partition-
ing of an area, and general a would correspond to more
graph-like fractal geometries. In addition to this gener-
alization, we add a chemical potential µ, corresponding
to an average total number of fragments N = 〈n1 + · · · 〉:

S = −
∑
~n

p(~n) ln p(~n)− α

(∑
~n

p(~n)− 1

)

−β

∑
~n

p(~n)

∑
j

njx
a
j −X


−µ

∑
~n

p(~n)

∑
j

nj −N

 . (19)

Maximizing this entropy yields the probability distri-
bution

p(~n) =

N∏
j=1

(1− e−βx
a
j−µ)e−βnjx

a
j−njµ. (20)
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FIG. 2: Example fragment distributions using the generalized
power law Eq. (21), with x1 = 1, x2 = 1000 (see text) and a =
1 (black) and a = 2 (gray). Also shown are the corresponding
power laws (dashed).

When we calculate the fragment distribution for this
probability, we now find

〈nj〉 =
1

eβx
a
j+µ − 1

. (21)

This function, a generalized distribution n(x) for frag-
ments of size x, can be used to study many empirical
data sets with power-law regions. Specifically, this func-
tion has the following properties, as shown in Fig. 2.
First, when x � x1 ≡ (µ/β)1/a, the fragment distribu-
tion becomes a constant n(x) ≈ 1/(eµ−1), which will be
finite for µ > 0. Second, for x1 < x < x2 ≡ β−1/a,
n(x) is approximately a power law n(x) ∼ x−a. Fi-
nally, for x � x2, the distribution falls exponentially
n(x) ≈ e−βx

a

. Thus, this is a normalizable distribution
with three characteristic regions generalizing both the
exponential and power-law distributions.

This generalized power-law distribution has many sim-
ilarities to those derived from maximum entropy subject
to alternative constraints [3–5]. However, instead of di-
rectly constructing a probability distribution, we use the
probability of obtaining a particular part set [given by
Eq. (20)] to find the average number of parts [given by
Eq. (21)]. It is the latter which produces a generalized
power law. This alternative route to generalized power
laws may be appropriate for data found by averaging over
many realizations.

VI. CONCLUSION

In this paper we have explored the question of the dis-
tribution of numbers arising from the partitioning of a
quantity X into a set of pieces xj . We have found, using
maximum entropy and exact counting, that the average
number of parts of size xj tends to the equipartition re-
sult 〈nj〉 = X/(Nxj) when X � 1. This result is inti-
mately related to the statistical mechanics of quantum
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oscillators and their high-temperature limit. Extending
this result to a continuous set of parts provides an at-
tractive route to Benford’s law, an empirical observa-
tion regarding the first digits of many real-world data
sets. Finally, this type of model can be used to generate
long-tailed distributions using a small number of param-
eters, also relevant to many real-world data sets. Here
we consider the open questions regarding the application
to Benford’s law.

First, the limiting process to go from a discrete set of
N parts to a continuous set requires us to specify how
both X and N tend to infinity. The rigorous bounds de-
rived in the Appendix require that X � N2xN , while
careful analysis of the maximum entropy result suggests
that a weaker condition of X � NxN may be possible.
Understanding exactly when the equipartition result and
Benford’s law is truly applicable remains an open ques-
tion. This is relevant to whether the model presented
here is truly applicable to real-world data sets such as
the division of large population (X) into groups of vari-
ous sizes ({xj}).

Second, the character of the generalized power laws re-
mains obscure. It would be nice to have a more physical
interpretation of the conservation law, and whether it has
connection to the other generalized power laws discussed
in the literature [2–5]. The variety of these results sug-
gests that there may be many processes underlying these
distributions. This raises two final questions: How and
when can a given data set be mapped to a random par-
titioning of a conserved quantity? and Does the fully
random partitioning considered here correspond to any
real-world process?

Regarding this final point, we have recently ana-
lyzed multiple random fragmentation scenarios for a one-
dimensional object, similar to those studied in [24, 25],
and find that the resulting fragments obey Benford’s law
in the long-time limit [26]. Indeed, we have confirmed
an earlier result that even a deterministic fragmentation
process can yield Benford’s law [27]. The convergence
of such processes are currently under investigation. We
hope that continued analysis of these problems will help
shed light on how power laws and Benford’s law emerge
in such varied phenomena in nature.
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Appendix: Partition Number Bounds

In this Appendix, we provide bounds on the partition
number PH(X) and the average number of parts 〈nj〉.
We begin by observing that the exact restricted partition
number can be written as an explicit sum over all possible

partitions:

PH(X) =

bLNc∑
nN=0

bLN−1b∑
nN−1=0

· · ·
bL2c∑
n2=0

bL1c∑
n1=0

δ

(
X,
∑
h∈H

nhxh

)
,

(A.1)
where the upper limits bLkc denote the maximum num-
ber of nk that can be subtracted from the remainder of
X, namely

Lk =
X −

∑N
j=k+1 njxj

xk
. (A.2)

For this calculation, we will only consider those sets H
such that x1 = 1. This ensures that a partition will exist
for every X and allows us to sum over the delta function.
We then can disregard the sum over n1, as once the other
nj are determined, it will only have one possible value.
Thus we consider

PH(X) =

bLNc∑
nN=0

bLN−1c∑
nN−1=0

· · ·
bL2c∑
n2=0

1. (A.3)

We now find upper and lower bounds for PH(X).
We begin with a lower bound. Given that our sum-

mands f(nj) are all positive and non-increasing, we have
the inequality (A.12 in [28])

bLc∑
n=0

f(n) ≥
∫ bLc+1

0

f(n)dn >

∫ L

0

f(n)dn, (A.4)

where we have used the fact that bLc > L− 1. It follows,
then, that

PH(X) >

∫ LN

nN=0

∫ LN−1

nN−1=0

...

∫ L2

n2=0

dn2 · · · dnN . (A.5)

It is fairly straightforward to integrate this expression,
using a recursion relation [from Eq. (A.2)]

Lk =
xk+1

xk
(Lk+1 − nk+1), k = 2→ N − 1, (A.6)

to find

PH(X) >
1

(N − 1)!

XN−1

x2 · · ·xN
. (A.7)

For the upper bound, we again convert our sums into
integrals. Here, however, we use the alternative inequal-
ity (A.12 in [28])

bLc∑
n=0

f(n) ≤
∫ bLc
−1

f(n)dn

≤
∫ L

−1
f(n)dn

=

∫ L+1

0

f(n′ − 1)dn′, (A.8)
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where bLc ≤ L and we have changed variables n′ = n+1.
In terms of these variables, we note that

Lk + 1 =
1

xk

X +

N∑
j=k

xj −
N∑

j=k+1

n′jxj

 . (A.9)

We thus use one more inequality

Lk + 1 ≤ L′k ≡
1

xk

X ′ − N∑
j=k+1

n′jxj

 , (A.10)

where

X ′ = X +

N∑
j=2

xj (A.11)

and the equality occurs for k = 2. Altogether we find

PH(X) <

∫ L′N

n′N=0

∫ L′N−1

n′N−1=0

· · ·
∫ L′2

n′2=0

dn′2 · · · dn′N .

(A.12)
These integrals can be evaluated as in the lower bound
case to yield

PH(X) <
1

(N − 1)!

X ′
N−1

x2 · · ·xN

=
1

(N − 1)!

1

x2 · · ·xN

X +

N∑
j=2

xj

N−1

.

(A.13)

Having bounded the partition number, we can provide
upper and lower bounds for 〈nj〉, using

〈nj〉 =
1

PH(X)

bX/xjc∑
`=1

PH(X − `xj). (A.14)

To get a lower bound for 〈nj〉, we use the upper bound
for PH(X) in the denominator and the lower bound for
PH(X) in the sum. Using Eqs. (A.7) and (A.13) in Eq.
(A.14), we get

〈nj〉 >
1

X ′N−1

bX/xjc∑
`=1

(X − `xj)N−1

>
X

Nxj

(
1− xj

X
− 1

X

N∑
k=2

xk

)N
, (A.15)

where we have used the inequalities (1 + x)−1 > 1 − x
and Eq. (A.4) for the summation.

To get an upper bound for 〈nj〉, we use the lower bound
for PH(X) in the denominator and the upper bound for
PH(X) in the sum. Again, using Eqs. (A.7) and (A.13)
in Eq. (A.14), we have

〈nj〉 <
1

XN−1

bX/xjc∑
`=1

(X ′ − `xj)N−1

<
X

Nxj

(
1 +

xj
X

+
1

X

N∑
k=2

xk

)N
, (A.16)

where here we have used the inequality of Eq. (A.8) for
the summation.

Taking Equations (A.15) and (A.16) together, we conclude that

X

Nxj

(
1− xj

X
− 1

X

N∑
k=2

xk

)N
< 〈nj〉 <

X

Nxj

(
1 +

xj
X

+
1

X

N∑
k=2

xk

)N
. (A.17)

In the large X limit, we Taylor expand each side of Eq. (A.17) to find

X

Nxj

(
1− Nxj

X
− N

X

N∑
k=2

xk + · · ·

)
< 〈nj〉 <

X

Nxj

(
1 +

Nxj
X

+
N

X

N∑
k=2

xk + · · ·

)
.

We conclude that

〈nj〉 =
X

Nxj

[
1 +O(X−1)

]
, (A.18)

in agreement with the calculations presented in the text.
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