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We explore the dynamics of the entanglement entropy near equilibrium in highly-entangled pure
states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the
relaxation to equilibrium from initial states with either less or more entanglement entropy than
the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement
that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an
extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration.
Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time
and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is
responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system.

I. INTRODUCTION

Quantum entanglement has recently been a central
topic in theoretical physics. Many aspects of the dynam-
ics of entanglement have been recently studied, such as
ballistic spreading of the entanglement in integrable [1–4]
and nonintegrable [5, 6] systems, logarithmic spreading
in many-body localized systems [7, 8], and sub-ballistic
spreading due to quantum Griffiths effects [9]. In many of
these examples, the entanglement spreads more rapidly
than conserved quantities that must be transported by
currents.

Much of the previous work on the dynamics of entan-
glement, however, has emphasized far-from-equilibrium
regimes, particularly those following a quantum quench.
Here, we instead explore the entanglement dynamics near
equilibrium in nonintegrable, thermalizing spin chains
[10] of finite length. For example, if we start in a
nonentangled initial pure state, the entanglement entropy
grows linearly with time at early time due to the “ballis-
tic” spreading of entanglement [5, 6], but then saturates
to its “volume-law” equilibrium value at long time. The
lower two data sets in Fig. 1 illustrate this. In the limit
of a long spin chain, this isolated system is reservoir that
thermalizes all of its subsystems. Then the extensive
part of the final equilibrium value of the entanglement
entropy is equal to the thermal equilibrium entropy at
the corresponding temperature, and that temperature is
set by the total energy of the initial state. We call this
process, in which the entanglement entropy approaches
the thermal equilibrium entropy, the “thermalization of
entanglement” [11].

In this paper we focus on the late time, near equilib-
rium regime of the entanglement dynamics, as well as the
spontaneous fluctuations of entanglement in pure states
sampled from the equilibrium density operator. In sec-
tion II, we introduce a nonintegrable, quantum-chaotic
model Hamiltonian and its corresponding Floquet op-
erator, where the extensive energy conservation is re-
moved. In section III, we first examine the distribution of
entanglement entropy of eigenstates of the Hamiltonian
and the Floquet operators, finding that the presence of
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FIG. 1: (color online) Time evolution of the entanglement
entropy for L = 14 for: product random (PR) initial states
under Floquet dynamics (2) with τ = 0.8 (red line with cir-
cles) as well as Hamiltonian dynamics (1) (blue line with down
triangles); “generalized Bell” initial states made from pairs of
random pure (RP) states (green line with up triangles) and
from “oppositely paired” (OP) states (purple line with dia-
monds) both under Hamiltonian dynamics. Each case is aver-
aged over 400 initial pure states, and the error estimates are
too small to be visible in this figure. See main text for more
details.

the conservation law affects the distribution. In section
IV, we study the dynamics of entanglement entropy near
equilibrium. We study three scenarios: starting from a
product state of two random pure states, starting from
generalized Bell states with two different pairing schemes,
and the autocorrelation of the spontaneous fluctuations
of the entanglement entropy. In all cases, we find the
Floquet system thermalizes entanglement faster than the
Hamiltonian system. In section V, we summarize our
findings.
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II. MODELS

To study a system that is robustly nonintegrable and
strongly thermalizing, we choose the spin-1/2 Ising chain
with both longitudinal and transverse fields. Its Hamil-
tonian is

H =

L∑
i=1

gσxi +

L∑
i=1

hσzi +

L−1∑
i=1

Jσzi σ
z
i+1 , (1)

where σxi and σzi are Pauli matrices at site i. We use
open boundary conditions and set the parameters to
(g, h, J) = (0.9045, 0.8090, 1.0), for which this model has
been shown to be robustly nonintegrable and strongly
thermalizing for system sizes readily accessible to exact
diagonalization studies [5, 12]. The only conservation
laws that this system is known to have at this param-
eter choice [13] (other than projections on to its exact
eigenstates) are total energy, and parity under spatial re-
flection of the chain (i → (L + 1 − i)). This system’s
“hydrodynamics” are simply its conserved energy mov-
ing diffusively and subject to random local currents due
to the system’s quantum-chaotic unitary dynamics. We
set the Planck constant ~ to unity so that time and en-
ergy have inverse units of each other, and all energies and
frequencies are in units of the interaction J = 1.

To explore the effects of removing the conservation of
total energy, we also study a Floquet system that is a
modification of (1). We decompose the Hamiltonian into
two parts, Hz =

∑
i(hσ

z
i + σzi σ

z
i+1) and Hx =

∑
i gσ

x
i .

We periodically drive the system with a time-dependent
Hamiltonian that is in turn H(t) = 2Hz for a time inter-
val of τ/2 and then H(t) = 2Hx for the next τ/2, and re-
peat. The time-averaged Hamiltonian is thus unchanged,
but the periodic switching changes the energy conserva-
tion from conservation of the extensive total energy to
conservation of energy only modulo (2π/τ). This change
removes the diffusive transport of energy as a slow “hy-
drodynamic” mode while otherwise changing the model
as little as possible. The Floquet operator that produces
the unitary time evolution through one full period is

UF (τ) = e−iHxτe−iHzτ . (2)

We choose time step τ = 0.8, which was found in Ref.
[12] to produce a rapid relaxation of the total energy
within a few time steps as shown in the Appendix. The
eigenvalues of UF (τ) are complex numbers of magnitude
one. Note that time is in a certain sense discrete (integer
multiples of τ) for this Floquet system. The Hamiltonian
system, with conserved total energy, is effectively the case
τ = 0, which we contrast here with the Floquet system
with τ = 0.8 where the total energy is not conserved and
relaxes very quickly. Of course, there is an interesting
crossover between these two limits [14], but we do not
explore that crossover in this paper.

Throughout this paper, we consider the bipartite en-
tanglement entropy of pure states, quantified by the von
Neumann entropy of the reduced density operator of a

half chain: S = −Tr{ρL log2 ρL} = −Tr{ρR log2 ρR}. We
study chains of even length, and ρL and ρR are the re-
duced density operators of the left and right half chains,
respectively. Note that we measure the entropy in bits.

III. ENTANGLEMENT ENTROPIES OF
EIGENSTATES

We first look at the entanglement entropy of the eigen-
states of the Hamiltonian (1) and of the Floquet operator
(2), compared to random pure states of the full chain.
Figure 2 shows the distributions of these entanglement
entropies for L = 16.

We can see that the entanglement of the eigenstates
of the Floquet operator is close to that of random pure
states, first derived by Page [15]:

SR(L) =
L

2
− 1

2 ln 2
−O

(
1

2L

)
. (3)

This is consistent with previous studies which have shown
that a Floquet dynamics thermalizes a subsystem to in-
finite temperature [12, 14, 16, 17]. The eigenstates of the
Hamiltonian, on the other hand, all have entanglement
entropies that are a fraction of a bit or more less than
random pure states. What is the source of this difference?
It is because the Hamiltonian eigenstates are eigenstates
of the extensive conserved total energy, while the ran-
dom pure states and the Floquet eigenstates are not con-
strained by an extensive conserved quantity. This causes
the probability distribution of the energy of a half chain
to be narrower for the Hamiltonian system, since if one
half chain has a high energy (compared to its share of the
eigenenergy) then the other half chain has to have an en-
ergy that is low by the same amount. This suppresses the
volume of the possible space of half-chain states whose
energy is either high or low, resulting in a reduced en-
tropy of the half-chain and thus reduced entanglement
entropy, even for the Hamiltonian eigenstates at energies
that correspond to infinite temperature. This goes along
with the recent observation that the finite-size deviations
of the eigenstates of the Hamiltonian from the Eigenstate
Thermalization Hypothesis are larger than those of the
eigenstates of the Floquet operator [12]: energy conser-
vation somewhat impedes thermalization.

IV. DYNAMICS OF ENTANGLEMENT NEAR
EQUILIBRIUM

Now we turn to the dynamics of the entanglement en-
tropy. The dynamics of a linear operator is set by the
matrix elements of the operator between energy eigen-
states (or eigenstates of the Floquet operator) and the
eigenenergies. But the entanglement is not a linear op-
erator, so its dynamics cannot be determined so simply.
We explore the near-equilibrium dynamics of the entan-
glement in two different ways. First we study the relax-
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FIG. 2: (color online) Normalized histogram of the entangle-
ment entropy for L = 16 for: (dashed blue line) the eigen-
states of the Hamiltonian (1); the eigenstates of the Floquet
operator (Eq. (2)) with τ = 0.8 (solid green line); and for
random pure states of the full chain (very narrow red distri-
bution), where the histogram is over 2000 randomly generated
pure states.

ation of the entanglement to its equilibrium value from
particular initial states with either low or high entangle-
ment. We then explore the dynamics of the spontaneous
fluctuations of the entanglement entropy during the uni-
tary time evolution of a random pure state of the full
spin chain. From these studies we can clearly show that
the entanglement dynamics is slower for the Hamiltonian
system, since some of the entanglement entropy is con-
nected to the slow diffusion of energy between the two
half-chains. In the Floquet system, on the other hand,
near equilibrium the entanglement relaxes to equilibrium
with a simple-exponential behavior in time, with a relax-
ation time that is apparently independent of the system
size.

A. Product of Random Pure states

For initial states with zero entanglement between the
two half chains, we use a product of random (PR in Fig.
1) half-chain pure states |ψ(t = 0)〉 = |ψL〉⊗ |ψR〉, where
|ψL〉 and |ψR〉 are picked from the ensemble of random
pure states of the left and the right half chain, respec-
tively. On average these states have energy close to 0, so
the system is near infinite temperature and starts with
zero entanglement entropy. As random pure states are
chosen for the half chains, the expected energy distribu-
tion between left and right halves is close to the equi-
librium distribution (at infinite temperature), indicat-
ing only a small energy transport between two halves
is required for thermalization. Fig. 1 plots the time-
dependent entanglement entropy under Hamiltonian and
Floquet dynamics for L = 14. The long-time average
S(∞) is estimated by averaging S(t) from t = 2500τ to

t = 2999τ .
It is clear from Fig. 1 that the Floquet system has

faster relaxation of the entanglement entropy towards its
saturation value at long times, even though the initial
spreading rate of the entanglement is the same for these
two systems. Since the only significant difference between
these two unitary dynamics is whether or not energy con-
servation and thus energy transport is present, Fig. 1
suggests that the slow dynamical modes of this system
associated with energy transport do also slow down the
long-time thermalization of the entanglement.

B. Generalized Bell States

To explore the thermalization of the entanglement
from initial states with higher entanglement than equi-
librium, we use initial states that maximize the entan-
glement entropy; we call these “generalized Bell states”.
These states have Schmidt decomposition

|ψB〉 =
1√

2L/2

2L/2∑
i=1

|Li〉 ⊗ |Ri〉 , (4)

where the sets {|Li〉} and {|Ri〉} are respectively com-
plete orthonormal bases for left and right half chains.
Since these initial states have higher entanglement en-
tropy than equilibrium, their entropy decreases as it ther-
malizes. This is an amusing apparent “violation” of the
second law of thermodynamics, but it is actually not ther-
modynamics, since the decrease is by less than one bit
(very close to 1/(2 ln 2) by Eq. (3)) , and thus far from
extensive.

The random pure (RP) Bell states are made by inde-
pendently choosing a random orthonormal basis for each
half-chain. To make initial Bell states that also have very
large energy differences between the two half-chains, we
make the opposite paired (OP) states that can be written
as

|ψ(t = 0)〉 =
1√

2L/2

2L/2∑
i=1

eiθi |Ehi 〉left ⊗ |Eh2L/2+1−i〉right ,

(5)
where the |Ehi 〉 are the eigenstates of the half-chain
Hamiltonian (Hamiltonian (1) with L/2 sites), with their
eigenenergies ordered according to Ehi ≤ Ehi+1. There-
fore, by construction, many Schmidt pairs in these op-
posite paired Bell states have large energy imbalance
between the two half-chains, unlike the random pure
Bell states where the energy imbalance between the two
halves is small. The contrast between them shows how
the slow diffusive relaxation of the energy imbalance af-
fects entanglement thermalization. The ensemble of OP
states that we average over is obtained by choosing ran-
dom phases {θi}.

The time evolution of the entanglement entropy for a
L = 14 spin chain starting from generalized Bell states of
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pairs of random pure (RP) states as well as generalized
Bell states with opposite pairing (OP) under Hamiltonian
dynamics are shown in Fig. 1, with the estimated long
time average subtracted. For the opposite paired (OP)
initial states, the initial large energy differences between
the two half-chains in many of the Schmidt pairs make
the excess entanglement long-lived, since the relaxation
of these energy differences requires diffusion of the energy
over the full length of the chain. For the RP initial states,
on the other hand, the half-chain states are random so
do not show nonequilibrium energy correlations, and the
excess entanglement relaxes to equilibrium much more
rapidly than it does for the OP states. This observation
hence provides additional evidence of the coupling be-
tween entanglement entropy relaxation and energy trans-
port under Hamiltonian dynamics.

Fig. 3 gives a more detailed view of the thermalization
of the excess entanglement entropy starting from these
generalized Bell initial states. Here RP initial states un-
der Floquet dynamics are also shown; since the Floquet
system does not have conserved energy we cannot con-
struct an OP initial state for it. This figure again shows
the clear importance of energy transport for entangle-
ment thermalization. The excess entropy of the RP ini-
tial states decays away faster for the Floquet system as
compared to the Hamiltonian system, since the thermal-
ization of the Floquet system is not constrained by an
extensive conserved energy. The strong initial anticorre-
lation between the energies of the two half-chains greatly
slows down the thermalization of the entanglement for
the OP initial states under Hamiltonian dynamics.

C. Autocorrelation of entanglement

Next we examine the dynamics of the spontaneous fluc-
tuations of the entanglement entropy at equilibrium at
infinite temperature, where all pure states are equally
likely. Therefore, we simply pick many random pure
states of the full chain and calculate the unitary time
evolution of each initial state over many time steps. We
measure the autocorrelation of the entropy for each real-
ization (indexed by i) as

Ri(t) =
1

M

M∑
m=1

[
Si(tm)− S̄i

] [
Si(tm + t)− S̄i

]
, (6)

where each run has in total 30000 time points tm, equally
spaced in time by ∆t, and Si(T ) is the entropy at time T .
Thus we measure the autocorrelation at integer multiples
of the time step: t = n∆t. M is the maximum number
of pairs that can be extracted from the time series. Each
random initial state gives slightly different time-averaged
entropies S̄i, and thus for each run we subtract its average
in Eq. (6). Then we average over runs and normalize the
autocorrelation to be one at time difference t = 0. The
statistical errors are estimated from this averaging over
runs.
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FIG. 3: (color online) Thermalization of entanglement en-
tropy in three cases for L = 14 (log-log scale): from random
pure (RP) generalized Bell states under Hamiltonian dynam-
ics (circular markers, green); from RP generalized Bell states
under Floquet dynamics (square markers, blue); and from
oppositely paired (OP) generalized Bell states under Hamil-
tonian dynamics (triangular markers, red). Within Hamil-
tonian dynamics, the larger initial energy imbalance for the
OP initial states dictates a slower thermalization of the en-
tanglement, while the absence of energy conservation for the
Floquet system allows the fastest thermalization of entangle-
ment entropy among all cases considered. See main text for
description of initial states.
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FIG. 4: (color online) Autocorrelation of the entanglement
entropy vs. time for random pure states under Hamiltonian
(solid lines) as well as Floquet dynamics (dashed lines) with
different system sizes L in log-linear scale. For each case, the
autocorrelation is normalized to be one at time zero. Un-
der Floquet dynamics, the autocorrelation decays as a simple
exponential function of time, and faster than under Hamilto-
nian dynamics. Only weak size dependence of this normalized
autocorrelation is observed under either dynamics.
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Fig. 4 plots the autocorrelation under Hamiltonian and
Floquet dynamics with systems of different sizes: L = 10,
L = 12 and L = 14. For L = 10 the number of indepen-
dent runs in each case is N = 400, while for L = 12 and
L = 14 we chose N = 100. With τ = 0.8 as before, our
time points are spaced by ∆t = 3τ for Hamiltonian dy-
namics and ∆t = 2τ for Floquet dynamics. It can be eas-
ily seen from Fig. 4 that the relaxation of autocorrelations
under Floquet dynamics is systematically faster. Particu-
larly, the autocorrelation in the Floquet system assumes
a simple exponential decay. This observation indicates
that under the Floquet dynamics a random state “re-
laxes” to equilibrium by independent and unconstrained
local relaxation. In the Hamiltonian system, on the other
hand, a spontaneous fluctuation that rearranges the en-
ergy density on a long length scale is necessarily slow,
due to the slow energy diffusion. Thus any influence of
such fluctuations on the entanglement must relax slowly.
Clearly we are seeing such an influence that is causing the
slower long-time relaxation of the entanglement autocor-
relation in the Hamiltonian system. Fig. 5 suggests that
the autocorrelation under Hamiltonian dynamics decays
exponentially in square root of time, as curves become
roughly straight when plotted against

√
t in a semi-log

plot, and the straightness increases as system size in-
creases. This scaling may be understood as fluctuation
of entanglement entropy coupled to operators on the spin
chain. At time t the fluctuation couples to the O(4l) op-
erators on a size of l ∼

√
t by diffusion, of which only

O(1) operators are slow, so only O(1/4l) ∼ exp(−c
√
t)

fraction of the information about the initial fluctuation
is left at time t, where c is some constant, resulting in
an exponential decay of autocorrelation in

√
t. The same

reasoning may also be applied to the Floquet system,
where the slowest modes instead have [18] l ∼ t, thus
leading to a the observed simple exponential decay as is
shown in Figure 4.

One may also note here that under either dynamics,
the relaxation of these autocorrelations has little depen-
dence on system size. This indicates that the fluctuations
that are contributing here are on length scales smaller
than the L = 10 systems. For the Floquet system this
is consistent with the relaxation being simply local, so
any longer length scale slow operators [18] apparently
do not couple substantially to the entanglement fluctua-
tions. For the Hamiltonian systems this absence of size
dependence suggests that over the time range probed
here, the energy fluctuations that couple to the entan-
glement are on length scales smaller than the length of
the smaller L = 10 system. But the substantially slower
relaxation as compared to the Floquet system suggests
that energy transport over a few lattice spacings does

couple to the entanglement fluctuations.
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FIG. 5: (color online) Autocorrelation of the entanglement
entropy under Hamiltonian dynamics vs. square root of time
for random pure states with different system sizes L. On this
semi-log scale, all three curves roughly follow a straight line
and the tail becomes more straight as system size increases.

V. CONCLUSION

In conclusion, we have investigated the thermalization
of the entanglement entropy by comparing state evolu-
tion of spin chains under Hamiltonian dynamics and Flo-
quet dynamics, with the two systems having the same
time-averaged Hamiltonian. Eigenstates of these two dy-
namics have quite different distributions of the entan-
glement entropy. The Floquet eigenstates all have en-
tanglement close to that of random pure states, while
the Hamiltonian eigenstates all have significantly less en-
tanglement due to the constraint of total energy conser-
vation. We show that the entanglement entropy relaxes
to equilibrium more slowly under Hamiltonian dynamics,
both for initial states well away from equilibrium and for
the spontaneous fluctuations of the entanglement entropy
at equilibrium. The Hamiltonian system has slow diffu-
sive energy transport, while the Floquet system does not.
This slow diffusive relaxation of the energy distribution
in the Hamiltonian system results in slow relaxation near
equilibrium of the entanglement entropy.
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FIG. 6: (color online) Relaxation of total energy under Flo-
quet dynamics for L = 12 with different choices of driving
period τ .

Appendix

To choose the time step τ for our Floquet system, we
investigated the relaxation of the total energy under dif-
ferent choices of τ for L = 12, as is shown in Fig. 6.
Particularly, it demonstrates how the autocorrelation of
the total energy decays under discrete Floquet dynam-

ics: Tr{HU†F (nτ)HUF (nτ)}. Both τ = 0.8 and τ = 1
relax the total energy very quickly so that the system
approaches infinite temperature within of order one time
step, while for τ = 0.6 the energy relaxation has a much
slower component. τ = 1 leads to a more oscillatory
behaviour compared with τ = 0.8. Therefore τ = 0.8
emerges as a nice choice for our studies and those of
Refs.[12, 18].
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