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2Department of Physics and Astronomy, University of California at Riverside, Riverside, CA 92521, USA

Percolation plays an important role in fields and phenomena as diverse as the study of social networks, the
dynamics of epidemics, the robustness of electricity grids, conduction in disordered media, and geometric prop-
erties in statistical physics. We analyse a new percolation problem in which the first order nature of an equi-
librium percolation transition can be established analytically and verified numerically. The rules for this site
percolation model are physical and very simple, requiring only the introduction of a weight W (n) = n+ 1 for
a cluster of size n. This establishes that a discontinuous percolation transition can occur with qualitatively more
local interactions than in all currently considered examples of explosive percolation; and that, unlike these, it
can be reversible. This greatly extends both the applicability of such percolation models in principle, and their
reach in practice.

PACS numbers: 71.10.Fd, 64.60.De

I. INTRODUCTION

The percolation transition involves fundamentally geomet-
ric properties, manifest in non-local observables such as an
onset of conductivity in a dirty metal, a breakdown of an elec-
trical grid or an epidemic disease outbreak [1–4]. This is at
odds with the more standard phase transitions in statistical
physics which are described by a local order parameter, such
as the magnetisation in a bar magnet. It thus involves a con-
ceptually fundamentally distinct set of issues. Its wide appli-
cability coupled with this fundamental importance have gen-
erated much interest in defining various types of percolation
problems and analysing their concomitant phase transitions.
One enterprise has been the quest for a first-order percola-
tion transition, where the percolating cluster sets in discon-
tinuously, corresponding to a particularly violent transition,
which can qualitatively amplify desirable properties in appli-
cations. Such a transition has remained remarkably elusive but
the development which has taken place under the heading of
explosive percolation has finally – after the eponymous model
[5] had been proven to exhibit a continuous transition after
all [6, 7] – yielded one, via a mechanism in which an infinite
number of nonlocal interactions need to occur simultaneously
[8–13].

Here, we study Pauli percolation – a site percolation prob-
lem with its origin in correlated quantum magnetism, charac-
terized by a number of novel striking and desirable properties.
First of all, it exhibits a first-order phase transition invoking
only a minimal amount of non-locality, in the form of an in-
teraction solely between adjacent clusters, depending only on
their respective sizes. Secondly, such an interaction can be
very easily generated from perfectly local ones, for instance
either via a simple classical colouring rule, or via a quantum-
statistical interaction between Fermionic particles. Thirdly,
it describes an equilibrium phase transition, and is hence re-
versible; at the same time, it can be thought of and analysed
as a stochastic dynamical process and thus may – but need not
– exhibit hysteresis. Finally, Pauli percolation lends itself to
investigations using the toolbox of equilibrium classical sta-
tistical mechanics; we are thus able to solve its properties an-
alytically on a regular random graph, and verify this solution
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FIG. 1. (color online) (a) In Pauli percolation, weightW = n+ 1 of
a cluster can be reproduced by imposing a simple two-color ‘con-
tagion’ rule shown here for the graph of 5 sites with the white
sites being empty: the whole cluster of occupied sites can be ei-
ther healthy (green) or have a single infected site (red). Different
cluster configurations appear with different statistical weightsWC =∏

i(n(Ci)+1). (b) The explosive nature of a Pauli-percolation transi-
tion on a regular random graph of N = 400 sites: two representative
configurations, without and with a giant cluster at the same site fu-
gacity corresponding to p̃ = 0.45 are shown side by side. The largest
cluster is colored blue; unoccupied sites are not shown.

via numerical Monte Carlo simulations.

II. PAULI PERCOLATION

The main feature of the Pauli percolation is the statistical
weight (n + 1) associated with every cluster of size n. The
model first arose in a quantum many-body problem of itiner-
ant electrons on lattices with flat energy bands. Such a sys-
tem can exhibit flat-band ferromagnetism: the Pauli exclusion
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principle mandates that in the ground state the electron spins
in a cluster order ferromagnetically in order to minimize the
energy of repulsive on-site interactions [14]. Thus a weight of
(n+1) reflects the number of possible orientations of the total
spin of a ferromagnetic cluster of n electrons [15].

The corresponding statistical-mechanical problem de-
scribes M particles occupying random sites of a lattice. Ev-
ery configuration C = ∪iCi appears with statistical weight
WC =

∏
i(n(Ci) + 1), with n(Ci) being the size of cluster Ci.

The partition function is therefore Z =
∑
{C}WC .

Merging two clusters of size m and n reduces their overall
weight from (m + 1)(n + 1) to (m + n + 1) – a dramatic
reduction for large clusters resulting in an effective repulsive
interaction between them. This is reminiscent of the ‘product
rule’ leading to explosive percolation suggested by Achlioptas
[5] and developed in [12, 13, 16] but there are fundamental
differences, see discussion below.

Rather then fixing the number of occupied sites, we can
study the grand canonical ensemble by letting each site of the
lattice be occupied with an a priori probability p or left empty
with an a priori probability 1 − p. The grand canonical parti-
tion function is then

Z =
∑
{C}

(
p

1− p

)n(C)
WC (1)

where ln [p/(1− p)] plays the role of a chemical potential
controlling the density of occupied sites and letting it fluc-
tuate. Note that a priori probability p, unlike a regular site
percolation, is not equal to the density of occupied sites.

This model also has a simple representation as a particu-
lar classical two-color, or contagion, percolation problem. It
is a mild variation of regular percolation: sites can come in
two colors, green (uninfected) or red (infected). Specifically,
each site of a lattice is occupied and colored either green or
red with an a priori probability p̃ each, or left empty with an
a priori probability 1 − 2p̃. Only configurations {G} where
every cluster contains no more than one red site are taken into
account. The partition function of this model is then simply

Zgr=
∑
{G}

(
p̃

1− 2p̃

)n(G)
(2)

It is straightforward to see that tracing over all possible site
colors consistent with fixed site occupations renders Eq. (2)
identical to Eq. (1) (with the identification of p̃ = p/(p+ 1)):
each cluster may have either all sites green (uninfected), or at
most one red (infected) site. Therefore a cluster of n sites has
weight (n+ 1) after the sum over possible locations of red
sites is taken into account. The utility of the formulation as
a two-color percolation problem lies in the fact that the need
ever to compute cluster sizes is obviated: the choice of loca-
tion of the infected site takes care of that.

III. ANALYTIC AND NUMERICAL RESULTS

We show that Pauli percolation exhibits a discontinuous
percolation transition in infinite dimensions by studying it an-
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FIG. 2. (color online) (a) Properties of a regular random graph make
it locally equivalent to the neighborhood of an internal site of a
Bethe lattice obtained by connecting roots of independent Cayley
trees via site or edge addition. Here the sites colors (red/dark grey
and green/light grey) represent one instance allowed by the two-color
contagion percolation rules. (b) The upper pane shows the probabil-
ity P∞ that a site belongs to a giant cluster as a function of p̃. The
blue diamond marks p̃ = 4/9 at which the nonzero solution appears.
The lower pane shows the ‘bulk’ free energy per site of a 3-regular
random graph corresponding to each of these solutions (see text for
details). The red pentagon indicates the transition point. Bold parts
of the lines in both panels indicate the actual solution.

alytically and numerically on a regular random graph of N
sites. Such graphs are often used to approximate random net-
works [17]. They have a vanishing density of short cycles
and mostly contain loops of size lnN ; hence they are locally
tree-like [18, 19]. This property enables us to develop an ex-
act solution via a so-called cavity method widely used in spin
glass and optimization problems [18, 20–23]. In the cavity
method, adding a site or an edge to a z-regular random graph
is equivalent to connecting z or z−1 roots (here referred to as
cavity sites) of independent Cayley trees (see Figure 2 (a)) via
that site or edge. To complete the correspondence and get the
correct set of solutions we introduce ‘wired’ boundary condi-
tions which connect the outer sites (‘leaves’) with one another
thus allowing the formation of loops.

The recursive structure of calculations on Cayley trees
makes the mean-field treatment exact in these systems. Care
must be taken to correctly calculate the bulk thermodynamic
potentials on such structures [22, 24–26]. For instance, the
bulk free energy is computed as a change in free energy due
to the addition of a site and the corresponding links emanating
from this site F = limk→∞

[
− lnZ/Z3

k + (z/2) ln Z̃/Z2
k

]
,

whereZ and Z̃ are the partition functions for a uniform Bethe
lattice obtained by connecting either z or z − 1 root sites of
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independent trees via a new site or edge. Zk is the partition
function for a level-k tree [18, 20–23].

In the first instance we are interested in the existence of a
giant cluster (i.e. a cluster occupying a finite fraction of the
lattice), in the simplest case of z = 3. We define P∞ to be the
probability that a given site belongs to such giant cluster (See
Appendix A). For p̃ < 4/9, the only solution of the resulting
equations is P0

∞ = 0 – in other words, there is no percola-
tion. For p̃ ≥ 4/9 two more solutions appear with P±∞ 6= 0
as shown in Figure 2 (b) (with the lower branch being un-
physical) . Note that there is never a percolating uninfected
cluster: the probability that a given cluster of size n remains
uninfected is 1/(n+ 1).

The topology of the plot for P∞ already demonstrates the
first order nature of the percolation transition: the curve which
yields the solution P+

∞ = 1 (i.e. all sites are occupied) for
p̃→ 1/2 never crosses the non-percolating solution P0

∞ = 0,
which in turn is unique for p̃ → 0. The transition from one
to the other therefore implies a jump in P∞! To determine
when the actual transition takes place we analyze the bulk free
energy of the problem (See Appendix C). The solution which
minimizes this quantity maximizes the partition function and
thus is selected. This selects the solution of P+

∞ 6= 0 at p̃c =
0.451606...(See Figure 2 (b)) indicating a discontinuous jump
as soon as p̃ = p̃c. We note that this is in agreement with
other quantities such as cluster size distribution and average
cluster size which show no signature of power-law distribution
or divergence at the transition point (See Appendix D).

We support our analytic results by Monte-Carlo simulations
of Eq. (1) on a regular random graph. The algorithm we use
is intrinsically reversible and allows both occupying and emp-
tying sites in the graph. Hence, we observe both appearance
and disappearance of the giant component depending on the
sweep direction (See [15] and Appendix E). We analyze den-
sity of occupied sites ρ as well as histograms of its distribu-
tion along with the fourth-order Binder cumulant U as stan-
dard indicators of phase transitions. In all the quantities the
extrapolation to N → ∞ is consistent with the exact solu-
tion. Below and above the transition the numerical data fol-
lows the branches of the exact solution for the uniform Bethe
lattice. The histograms of the density distribution give a clear
double peak structure – the hallmark of a discontinuous tran-
sition – and in Figure 3 (b) we provide an extrapolation of
the point at which these two peaks are of equal weight. This
p̃c = 0.452(3) nicely extrapolates to the analytic result for the
transition point. Finally the density Binder cumulant U devel-
ops a minimum at the transition point – a typical behavior for
a discontinuous transition; its extrapolation to the thermody-
namic limit is also in good agreement with the transition point
obtained analytically.

IV. DISCUSSION

The attractiveness of Pauli percolation is manifold. Firstly,
it is underpinned by a simple and transparent physical mecha-
nisms. Secondly, it is amenable to detailed numerical and an-
alytical analyses. Thirdly, and crucially, it exhibits a remark-

 0.6

 0.7

 0.8

 0.41  0.42  0.43  0.44  0.45 p
∼

ρexact
ρMC

 0.442
 0.444
 0.446
 0.448
 0.45

p
∼

c

 0  0.001  0.002  0.003  0.004 1/N

P(ρ)
U

(a)

(b)

FIG. 3. (color online) (a) Density ρ versus a priori probability
p̃. Red line indicates the exact solution while the dots represent
Monte-Carlo results for 3-regular random graphs of sizes N =
50, 100, 200, 300, 400, 600, 800. As the system size increases the
first-order jump becomes more pronounced. (b) Finite size extrapo-
lation of the minimum of the fourth-order Binder cumulant of den-
sity U and point of equally weighed peaks of histograms of density
P (ρ). The red pentagon marks the point at which the infinite cluster
appears in the thermodynamic limit, at a density distinct from where
the solutions P±∞ first appear, indicated by the blue diamond.

able phenomenology featuring a reversible first-order perco-
lation transition. In the following, we discuss the import of
these items, and embed them in a broader zoology of percola-
tion problems.

The notion of explosive first-order percolation [5] has been
met with much excitement, yet the initial approach proved
to be deficient [7]. A discontinuous transition has finally
been found in several variants of explosive percolation mod-
els which, however, require a very elevated degree of non-
locality: a dynamical process defining these models involves
a comparison between an extensive number of degrees of free-
dom before a configuration change occurs [6, 7, 10, 12]. Re-
cent studies also considered suppressing the onset of perco-
lation through a rule explicitly inhibiting bond addition if it
leads to the formation of a spanning cluster [13]. Not only
such a process involves an extensive number of local degrees
of freedom, it also makes the ‘microscopic’ dynamics of the
model – a placement of a particular bond – explicitly depend
on the onset of a global phenomenon, percolation.

Pauli percolation, by contrast, considers one site at a time,
with a minimal amount of non-locality entering only via the
sizes of the clusters impinging on the site in question. In
other words, Pauli percolation is non-local only up to the size
of the clusters present locally. The Pauli principle of quan-
tum mechanics presents a straightforward physical origin for
such a weight: quantum statistical interactions are intrinsi-
cally non-local on this level. A classical route to the same
weights involves permitting at most one site of each cluster to
be infected, again a simple and intuitive description involving
clusters only locally and individually.

Nor does Pauli percolation require the irreversibility of ex-
plosive percolation. Based on statistical weights of configu-
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rations rather than rules for cluster growth, Pauli percolation
provides an equilibrium first-order transition. It in particular
allows for shrinking, as well as growing, clusters. It therefore
naturally accommodates healing/repairing processes, in e.g.
network applications which, notably, can remove percolation
discontinuously. The growth process encoded by the “product
rule” in explosive percolation is reminiscent of the weights of
Pauli percolation: the latter, however, provides a natural pre-
scription for removing particles as well. We should note that
another route to a reversible first-order percolation transition,
although not normally thought of in these terms, is provided
by the Fortuin–Kasteleyn (FK) representation of the q-state
Potts model [27]. In this mapping, the ordering transition of
the Potts model corresponds to a correlated bond percolation
problem. For q > qc(d) (with qc = 2 for d ≥ 4), the ordering
transition of the Potts model is of first order, and hence so is
the concomitant FK bond percolation transition. Another type
of percolation models with a known first order transition are
so-called k-core and closely related rigidity percolation prob-
lems [28–30]. Here, despite local update rules, the percolation
phenomenon itself cannot be detected without “postprocess-
ing”, which both requires an extensive number of checks and
complicates a reversible dynamical process interpretation.

Pauli percolation can be easily generalized to a non-
equilibrium growth process, e.g. by simply removing the de-
tailed balance implied by the configuration weights, and re-
taining only the relative rates for particle addition. In general,
there is a huge family of non-equilibrium prescriptions which
“generalize” a given equilibrium distribution. The equilibrium
process – besides widening the purview of applications from
the exclusively non-equilibrium cases – leads to a great sim-
plification in the analysis. It can be efficiently studied numer-
ically on a wide range of graphs and lattices, and therefore
incorporates geometric structures and inhomogeneities which
may be called for in real-life applications. On sufficiently reg-
ular graphs, it can be studied exactly with standard analytical
methods. This in particular obviates worries about crossovers
on absurdly long lengthscales or anomalously small critical
exponents [6, 10]. Approximations such as geometry-free pre-
scriptions for product-rule percolation also become unneces-
sary.

In summary, Pauli percolation is a simple, physical, natural,
transparent and tractable novel percolation problem exhibit-
ing an intriguing phenomenology. It holds great promise as a
benchmark problem across the range of disciplines interested
in percolation problems, ranging from condensed matter via
biological systems and real-world networks to epidemic dis-
ease outbreaks.
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Appendix A: Exact solution for Pauli percolation on a Cayley
tree

We will use the following definitions: a level-k Cayley tree
of coordination number z is constructed recursively by con-
necting a root site to z − 1 identical level-(k − 1) trees – until
level 0 is reached. We will refer to level-0 sites as leaves;
they constitute the outer boundary of the Cayley tree. The so-
called wired boundary conditions which we will consider here
are equivalent to establishing additional connections between
all boundary sites [31, 32]. On the other hand, the free bound-
ary conditions correspond to the leaves having only a single
neighbor, the one at the next level.

We write the partition function of the two-color percolation
problem for a level-k Cayley tree (here we present the case of
z = 3) as a sum of contributions corresponding to the ‘fate’
of its root site:

Zk = Ek + F u
k + F i

k + Uk + Ik, (A1)

where Ek, F u/i
k , Uk and Ik account for all configurations in

which the root site at level k is, respectively, empty or belongs
to a finite uninfected/infected, giant uninfected (U ) or giant
infected (I) cluster. We call a cluster infected if it contains a
single red site; a cluster is referred to as giant if it contains
both the root and a boundary site, or as finite otherwise. By
attaching two level-k trees to a new root site at level k+1 and
denoting Hk = Ek + F u

k we arrive at the following recursion
relations

Ek+1 = (1− 2p̃)Z2
k ,

F u
k+1 = p̃H2

k , F i
k+1 = p̃(H2

k + 2F i
kHk),

Uk+1 = p̃
[
2UkHk + U2

k

]
,

Ik+1 = p̃
[
2IkHk + 2UkHk + 2UkF

i
k + U2

k + I2k
]
,

(A2)

where p̃ is a priori probability of site being occupied and col-
ored red or green as follows from the main text. Note that the
term containing I2k in the last line implies, somewhat counter-
intuitively, that two giant infected clusters can be merged. In
fact, this is a consequence of the ’wired’ boundary conditions:
these are two parts of the same cluster which are already con-
nected via boundary sites. Essentially, wired boundaries im-
ply that there may only exist a single giant cluster. For the
same reason, no UkIk terms are possible. (Note that this situ-
ation is reversed for free boundary conditions.) The partition
function of a (k + 1)-level tree is

Zk+1 = (1−2p̃)Z2
k+2p̃Zk (Hk + Uk)−2p̃IkUk+p̃I

2
k (A3)

We define P u
∞ = lim

k→∞
Uk/Zk and P i

∞ = lim
k→∞

Ik/Zk to be

probabilities that the root site of a large tree is connected to its
boundary via an uninfected and infected clusters respectively.
If p̃ < 4/9, the only real solution of the resulting equations is
P u
∞ = P i

∞ = 0 – in other words, there is no percolation. If
p̃ ≥ 4/9, however, two additional solutions emerge:

P±∞ = P i,±
∞ =

1

2
± 3

2

√
1− 4

9p̃
, P u

∞ = 0. (A4)
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As has been pointed in the main text, the fact that P u
∞ remains

zero even after the onset of percolation is rather obvious since
the probability of a large cluster to remain uninfected tends to
zero with its size.

In the same manner we can compute other quantities
such as the probability of a given site being empty Pe =
limk→∞Ek/Zk, as well well as being occupied and belong-
ing to either an uninfected or infected finite cluster, P u,i

f =

limk→∞ F u,i
k /Zk. If there is no percolation (P u

∞ = P i
∞ = 0),

these expressions are given by

Pe =

√
1− 4p̃2

2p̃+ 1

P u
f =

4p̃2 +
√
1− 4p̃2 − 1

2p̃(2p̃+ 1)

P i
f =

1

2p̃

(
1−

√
1− 4p̃2

)
. (A5)

Above the percolation threshold, P i
∞ 6= 0, the expressions

become rather cumbersome:

Pe =

√
2(1− 2p̃)

θ±(p̃)

P u
f =

1

4p̃(14p̃− 9)

[
9p̃− 14p̃2 + 3

√
2 (p̃− 1) θ±(p̃)

±
√
p̃
√
9p̃− 4

(
9−
√
2θ±(p̃)− 14p̃

)]
P i

f =
3p̃∓

√
p̃ (9p̃− 4)−

√
2θ±(p̃)

4p̃
(A6)

with

θ±(p̃) =

√
p̃
(
6− 11p̃±

√
p̃ (9p̃− 4)

)
.

These solutions are used in the derivation of the corresponding
probabilities for the z-regular random graph.

Appendix B: Site/Edge addition to a z-regular random graph

Using the cavity method we can now obtain the results for
the full-space z-regular random graph. In the cavity method
the addition of a bulk site or edge is equivalent to connecting
z or z − 1 roots of independent level-k Cayley trees (see Fig-
ure 2 (a)). In other words the bulk site or edge of z-regular
random graph is equivalent to the central site or edge of a uni-
form Bethe lattice. The quantities for the site-centered case,
analogous to those given by Eqs. (A2) for a rooted tree, can
be written as

E = (1− 2p̃)Z3
k , Fu = p̃H3

k , F i = p̃
(
H3

k + 3F i
kH

2
k

)
,

I = 3p̃IkH
2
k + 3p̃I2kHk + p̃I3k (B1)

where we have discounted all configurations where the giant
cluster is uninfected – we have already seen that they have
vanishing relative contribution. The partition function is then

Z = E + Fu + F i + I
= (1− 2p̃)Z3

k + 3p̃ZkH
2
k − p̃H3

k + 3p̃I2kHk + p̃I3k (B2)

Another way of constructing a uniform lattice is by adding
an edge between two root sites of Cayley trees. The corre-
sponding quantities in this case become:

H̃ = H2
k , F̃ i = 2F i

kHk, Ĩ = 2IkHk + I2k . (B3)

The meaning of these quantities in the case of edge addition is
as follows: H̃ is the number of all configurations where each
of the (former root) sites connected by the new edge was either
empty or belonged to a finite uninfected cluster; F̃ i counts all
configurations where one of these sites belonged to a finite
infected cluster while the other was either empty or a part of a
finite uninfected cluster; Ĩ counts configurations where either
one or both sites belonged to a giant (infected) cluster. Once
again, we discount the configurations where the giant cluster
is uninfected. The corresponding partition function is

Z̃ = H̃+ F̃ i + Ĩ = 2ZkHk −H2
k + I2k . (B4)

Using these quantities, we can calculate various probabil-
ities in the same fashion as in the previous section for the
root site – see Eqs. (A5,A6). Note that the value of param-
eter p̃ = 4/9 at which the percolation solution P∞ 6= 0 first
emerges is not affected by such calculation, albeit the value of
the percolation probability itself changes: P∞ 6= P∞.

The importance of merging the rooted Cayley trees into a
Bethe lattice in these two different ways will become clear in
the next section dedicated to calculating the free energy. This
will allow us to circumvent the inherent problem of evaluat-
ing extensive thermodynamic potentials on the Bethe lattice,
where the number of boundary sites is a finite fraction of the
total system.

Appendix C: Bulk free energy

In contrast with continuous phase transitions, first order
transitions do not occur when the non-trivial solution for the
order parameter first appears as this normally signifies only
the emergence of a metastable state. Therefore, in order to
determine the actual transition point in this case, one needs
to study the free energy; the transition occurs when the free
energy associated with an ordered state becomes smaller than
that for the disordered state. This seemingly straightforward
test becomes problematic on a Bethe lattice due to the afore-
mentioned issue of an extensive size of the boundary. While
this problem had been widely discussed in the literature –
see e.g. [29, 33–37] – none of the recipes proposed there are
applicable (or even meaningful) for the case of percolation.
Specifically, our percolation model is a counting problem and
does not have any sensible notion of energy associated with it,
hence no derivatives with respect to external fields can be used
to define any thermodynamic potentials here, unlike, e.g. in
the context of the Potts model [36]. One could define the limit
of the free energy per internal site following the approach of
Ref. 37, yet this quantity is not helpful either: not only is such
free energy always minimized in the percolating phase, it is
not even continuous across the (putative) transition into this
phase. Since the actual free energy must be continuous across
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any phase transitions, it is clear that the aforementioned free
energy per internal site is not the right quantity to look at in
our case. (Naturally, the total free energy defined via the log-
arithm of the partition function is a continuous function of
its parameters but contains an extensive boundary contribu-
tion.) In short, the failure of this approach signifies a simple
fact that the free energy cannot be associated solely with an
internal site or an internal bond of a Bethe lattice, and the
presence of an extensive boundary prevents one from mean-
ingfully distributing its ‘shares’ between them. Specifically,
a choice of boundary conditions (e.g. free vs. wired) dra-
matically changes the ratio between the number of bonds and
the number of sites in the system. Note that this issue does not
arise in the context of continuous phase transitions since those
always coincide with the emergence of a non-trivial solution
for the order parameter.

The problem with a meaningful definition of the free en-
ergy is cured by considering a z-regular random graph in-
stead of a Bethe lattice. The two are locally equivalent to
one another, yet the random graph lacks a distinct bound-
ary. This in turn fixes the bond to site ratio of in the
system to z/2. We can then use the prescription out-
lined in Ref. [22] to write the free energy per added site
as F = limk→∞

[
− lnZ/Z3

k + z/2 ln Z̃/Z2
k

]
where the first

term corresponds to the the free energy of an internal site of
a Bethe lattice defined similarly to Ref. [37] while the second
term corrects for the fact that adding a site to a z-regular graph
creates z new edges, and hence z/2 existing edges should be
removed to maintain the graph’s regularity.

Using expressions for Z , Z̃ and Zk given by Eqs. (B2) and
(B4) of the previous section, we find the expressions for free
energy corresponding to all three solutions for P∞ on a 3-
regular random graph:

F0 = −1

2
ln 2− ln p̃+

1

2
ln

(
1√

1− 4p̃2
− 1

)
(C1a)

F± = −3

2
ln 2− ln

[
26∓ 6

√
p̃(9p̃− 4)− 46p̃

+
√
2 (11− 6/p̃) θ±(p̃)±

√
9− 4/p̃

(
6−
√
2θ±(p̃)

)]
+

3

2
ln

[
22 +

5
√
2θ±(p̃)− 12

p̃

±
√
9− 4/p̃

(√
2θ±(p̃)/p̃− 2

)]
. (C1b)

These expressions are plotted in Figure 2 (b).

Appendix D: Average cluster size and cluster size distribution

Having obtained the solutions of the recursion relations for
a single rooted Cayley tree, we have access to other physical
quantities of interest such as the average cluster size or the
cluster size distribution in the same recursive manner. For

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0  0.1  0.2  0.3  0.4 p
∼

χ

 0.01
 0.1

 1

 1  10  100

un+in

FIG. 4. Average size of a finite cluster χ(p̃). The inset shows the
cluster size distribution f(n) = un + in below percolation, at p̃ =
0.45 < p̃c (red) and above percolation, p̃ = 0.452 > p̃c (blue).

example, the expected size of a cluster containing the root site
but not any leaves is given by

χk =
fkFk

Zk
=
f i
kF

i
k + f u

kF
u
k

Zk
, (D1)

where fk is the average cluster size in non-percolating con-
figurations, Fk is the weight of corresponding configurations.
As before, labels ‘i’ and ‘u’ indicate infected or uninfected
clusters. The k → ∞ limit of this quantity plays the role
of susceptibility in conventional percolation problems. With
minimal effort, it also can be found for the uniform Bethe lat-
tice; the result is shown in Figure 4. Since in our case the
transition is first order, this quantity does not diverge at the
transition p̃ = p̃c.

The cluster size distribution for a rooted tree can be ob-
tained from the total weight of configurations where the site
at level k belongs to a finite cluster

Fk = F i
k + F u

k =
∑
n

F i
k(n) +

∑
n

F u
k(n). (D2)

Here F u,i
k (n) are the weights of configurations where the root

site belongs to a cluster of size n. The corresponding prob-
abilities for a site to belong to an uninfected/infected n-site
cluster are (u, i)n = lim

k→∞
F u,i
k (n)/Zk and may be also found

from recursion relations

un = p̃η

n−2∑
k≥1

ukun−k−1 + 2un−1Pe

 , (D3a)

in = p̃η

(
n−2∑
k=1

ukun−k−1 + 2

n−2∑
k=1

ikun−k−1

+ 2Pein−1 + 2Peun−1

)
. (D3b)

Here the probabilities for a site to form an isolated cluster or
to remain unoccupied are, respectively,

u1 = i1 = p̃ηP 2
e , u0 = i0 = Pe (D4)

and η = limk→∞ Z2
k/Zk+1.
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FIG. 5. (a) Fourth-order Binder cumulant of density. (b) Histograms
of density at point where peaks are equally weighed; lines indicate
fit to a pair of Gaussian functions.

The generating functions for both sequences are

Gu(x) =
∑
n≥0

unx
n =

1−√1− 4xp̃ηPe

2xp̃η
(D5)

and

G i(x) =
∑
n≥0

inx
n =

Pe + xp̃η [Gu(x)]
2

1− 2xp̃ηGu(x)
, (D6)

and its series expansion yields un and in.
The cluster size distribution (inset of Figure 4) has an expo-

nential cutoff for large clusters both below and above the per-
colation transition. After the appearance of the giant compo-
nent the cutoff discontinuously shifts to smaller cluster sizes.

A similar cluster size distribution can in principle be obtained
for a uniform Bethe lattice yet in practice the recursion rela-
tions become extremely unwieldy.

Appendix E: Details of numerical simulations

We use a Metropolis Monte-Carlo algorithm developed in
[15] on graphs with up toN = 820 sites. The algorithm works
in the grand-canonical picture where a chemical potential µ
controls the density of particles ρ and allows it to fluctuate.
The statistical weight is W = exp (µn)

∏
(n(Ci) + 1). The

chemical potential µ is directly related to the a priori proba-
bility p̃ via µ = ln [p̃/(1− 2p̃)]. At every step we randomly
choose a site (or group of sites) and if it is empty (occupied),
propose to occupy (empty) it. The new configuration is ac-
cepted with a Metropolis probability. We use up to 2 × 106

steps for equilibration which are then followed by 2 × 106

steps for every measurement round. The plots presented in
the paper are based on averaging over up to 30 measurements
with a new realisation of random graph for every measure-
ment. The expander nature of the graph and the long range
of underlying interactions lead to strong hysteresis. To reduce
hysteresis, we have employed an exchange Monte-Carlo pro-
cedure by simulating the system at different values of p̃ and
allowing exchanges of configurations between them. To con-
trol hysteresis effects, we have performed simulations start-
ing from empty or occupied lattices as initial conditions. We
present results for system sizes which show no hysteresis. In
Figure 5 we present a fourth-order Binder cumulant U defined
as.

U = 1− 〈ρ4〉
3〈ρ2〉2 (E1)

Minima of this quantity indicates the location of a phase tran-
sition, their extrapolation to the thermodynamic limit is plot-
ted in the main text.
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[18] M. Mézard and G. Parisi, Eur. Phys. J. B 20, 233 (2001).
[19] S. Janson, T. Luczak, and A. Rucinski, Random Graphs (Wiley,

New York, 2000).
[20] C. Laumann, A. Scardicchio, and S. L. Sondhi, Phys. Rev. B

78, 134424 (2008).



8

[21] O. Rivoire, J. Stat. Mech. 2005, P07004 (2005).
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