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Near the critical point of fluids, critical opalescence results in light attenuation, or turbidity
increase, that can be used to probe universality of critical behavior. Turbidity measurements in
SF6 under weightlessness conditions on board the International Space Station are performed to
appraise such behavior in terms of both temperature and density distances from the critical point.
Data is obtained in a temperature range, far (1K) from and extremely close (few µK) to the phase
transition, unattainable from previous experiments on Earth. Data is analyzed with renormalization
group matching, classical-to-critical crossover models of the universal equation-of-state. It results
that the data in the unexplored region, which is a minute deviant from the critical value, still shows
adverse effects for testing true asymptotic nature of the critical point phenomena.
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Thermodynamic and transport properties show singu-
larities asymptotically close to the critical points of many
different systems. The current theoretical paradigm on
critical phenomena using renormalization group (RG) ap-
proach [1] has ordered these systems in well-defined uni-
versality classes [2] and has characterized the asymptotic
singularities in terms of power laws of only two relevant
scaling fields [3]. The modern theory of critical phenom-
ena has been reasonably well validated in earlier exper-
imental studies, in particular along the so-called critical
paths where one expects that only a single field variable
determines the distance to the critical point (see for ex-
ample the studies of the specific heat singular behaviors
in Refs. [4] and [5] for the O (1) and O (2) universal-
ity classes [6], respectively). Simultaneously, the quest of
such a true asymptotic behavior has been a conundrum to
the experimentalists performing experiments closer and
closer to the critical point, especially for the case of the
gas-liquid critical point of simple fluid-systems. For ex-
ample, gravity effects on Earth’s and long density equi-
libration times are some of the encountered experimen-
tal difficulties in studying the fluid’s asymptotic critical
behavior [7], which belongs to the universality class of
the N = 1-vector model of three-dimensional (3D) Ising-

like systems and the O (1) symmetric
(

Φ2
)2

field theory
[2, 6, 8]. In fact, Earth’s-based experiments are typically
restricted to a temperature range ∆τ∗ = T

Tc
− 1 ≥ 10−4,

with (Tc) T being the (critical) temperature. In this
situation, the analytical backgrounds and the classical-
to-critical crossover behavior due to the mean-field-like
critical point, further hindered the test of the asymptotic
Ising-like fluid behavior. Such difficulties are intrinsically
unavoidable, even along the true critical paths where the
crossover contribution due to one additional non-relevant
field [9] can be accounted for correctly in the field theory
framework [10, 11]. This intrinsic difficulty associated
with the above limited finite temperature range has been

shown in the recent re-analysis of critical xenon data [12]
from the Earth’s experiment performed by Güttinger and
Cannell [13].

Practically, the experiments performed even in micro-
gravity environments to avoid gravity effects, are never
exactly on these critical paths. Even though the temper-
ature can be made much closer to Tc, the mean density
of the fluid cell is never at its exact critical density value.
The error-bar related to this latter critical parameter
was never contributing to the discussion of the results in
terms of true experimental distance to the critical point.
As a result, the experimental control of the exact value
of the second relevant field was never carefully accounted
for in the expected asymptotic Ising-like behavior of the
fluid in the close vicinity of its gas-liquid critical point.
For instance, in our previous light transmission and tur-
bidity (τ) measurements [14] performed in near-critical
SF6 under microgravity environments, it was noted that
the finite small value (∼ 0.8%) of the off-density critical-
ity could be one of the reasons to explain the increasing
small differences between the experimental data and the
theoretical estimates referring to the so-called Ornstein-
Zernike (OZ) theory [15] along the critical isochoric path.

Here we would like to probe critical point universal-
ity along a non-critical path by using over three hundred
data points obtained in twelve runs of near-critical SF6

turbidity measurements in weightless condition. More
precisely, the 327 new turbidity data were obtained from
March 2011 to February 2014 using the SF6 sample at
constant (∼ 1%) off-critical density (see below) of the
ALI insert in the CNES-NASA DECLIC facility onboard
the International Space Station (ISS). This cell was pur-
posefully filled at off-critical, liquid-like density for study-
ing boiling phenomena in the two-phase range (see [16]
for details), taking thus benefit of the liquid wettability
on the cell walls and sapphire windows. Nonetheless, the
light transmission and turbidity (τ) measurements on the
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one-phase domain have provided a new unique set of data
valuable to check our novel approach of the theoretical
estimates referring to the fluid singular behavior along
a non-critical path. The DECLIC instrument [17] is an
advanced optical, thermal, and mechanical facility which
uses different inserts dedicated to the studies, without
the gravity effects, of the critical point phenomena and
the boiling, the solvatation-precipitation, or the solidifi-
cation mechanisms in transparent media.

The ALI-DECLIC turbidity measurements were per-
formed very close to the critical point, nearly three orders
of magnitude in temperature distance beyond what has
been achieved previously on Earth’s, by taking advan-
tages of the high level performances of the facility. These
turbidity measurements along a non-critical path, com-
parable to the ones reported in Ref. [14], can now be an-
alyzed with a much improved theoretical understanding
than in earlier OZ framework studies. The two data sets
are in fact different and independently essential in test-
ing our novel crossover models of the equation-of-state
[12] based on the RG approaches of the critical phe-
nomena universality. Indeed, the crossover parametric
model (CPM) [18] of the equation of state, although phe-
nomenological, presents the main advantage in calculat-
ing the singular thermodynamic properties in any point
of the density-temperature phase surface in the close
vicinity of the gas-liquid critical point. Despite small
numerical differences between universal quantities, the
massive renormalization crossover functions and CPM,
both showed similar Ising-like critical behaviors, only
characterized by three fluid-dependent parameters (de
facto Ising-like in nature). Moreover, it was also shown
in critical xenon case [12] that CPM can be modified into
the crossover master model (CMM) with no adjustable
Ising-like critical parameter, since the phenomenological
master forms of the crossover functions and CMM only
involves the known critical point coordinates [11]. CMM
can then also be used to predict the asymptotic singu-
lar behaviors in the near-critical phase region surround-
ing a well-localized gas-liquid critical point of any one-
component fluid.

Turbidity measurements. We briefly recall that the
ALI-DECLIC turbidity experiments used the attenuation
of the intensity of the DECLIC laser light (wavelength
λ0 = 632.8 nm, focal beam size 0.3mm, maximum at-
tenuation of the 1mW power), crossing the central axis
of the direct observation cell (DOC) of the ALI insert.

Therefore, τexp = − ln(RI)
e

+Bτ expresses the light inten-
sity attenuation per unit length through the measure-
ments of the intensity ratio RI = I2/I1, where I1 is
the incident laser light intensity from the entrance op-
tics, I2 is the related transmitted one through the fluid
layer, and e is the fluid layer thickness. Bτ is an ad-
justable constant that accounts for components in the
optical path (Bτ ≃ 100 ± 0.5m−1 for the DECLIC op-
tical design). The DOC (ten years old at near-critical
density filling) was described in [16]. Three main DOC
characteristics are of present interest. (i) DOC has a

fixed cylindrical-like fluid volume of D = 10.6mm in di-
ameter and e = 4.115mm in thickness. (ii) The fluid
under study was SF6 of electronic quality, correspond-
ing to a 99.98% purity (from Alpha Gaz - Air Liquide);
(ii) DOC was initially filled at a mean liquid-like density
〈ρ〉, i.e., 〈ρ〉 > ρc, with well-controlled relative off-critical

density 〈δρ̃〉 = 〈ρ〉
ρc

− 1 = (1± 0.2) % from Earth based

filling and checking processes. This last point will be de-
tailed in a separate analysis including recent post-flight
data.

The laser light transmission measurements were also
used to determine the relative coexistence temperature
Tcoex < Tc. The temperature difference Tc − Tcoex ≃
55 µK was estimated using the power law ∆ρ̃LV =

B (∆τ∗)β describing the symmetrized top of the coex-
istence curve, with ∆ρ̃LV = 〈δρ̃〉 and ∆ρ̃LV = ρL−ρV

2ρc
,

B = 1.596, β = 0.32575 and Tc (SF6) = 318733.000mK
[14]. ρL and ρV are the coexisting liquid and vapor den-
sities, respectively. Note that the absolute calibration
of the temperature sensors of the thermostat was not
required determining Tcoex (SF6)ALI, which can then be
used as a relative reference for the temperature scale as-
sociated to the ALI-DECLIC set up. In this case, the
thermal monitoring by the DECLIC facility gives a rela-
tive temperature uncertainty of the order of 15µK, with
a temperature resolution of 1µK during the complete du-
ration of the experimental run. Therefore, our turbidity
data were obtained from a few µK to 1K above Tcoex (i.e.,
10−7 ≤ ∆τ∗coex = T

Tcoex

− 1 ≤ 3.1× 10−3). Note that the
methodology for performing these ALI-DECLIC turbid-
ity experiments remains similar to the one for ALICE2
experiments in the MIR station (see Ref. [14]). The
major improvement results from the use of an upgraded
temperature timeline in DECLIC, which has taken great
benefit of the CADMOS and NASA teleoperational man-
aging of this facility. That was especially noticeable on
the (at least) two-days duration of the final part of the
timeline where the last decade T − Tcoex ≤ 1.2mK was
covered by performing a serie of −100µK temperature
depth quenches, of at least 4 hours relaxation period
each. Therefore by combining the µK resolution with
the 15µK uncertainty, a typical error bar of 30µK can
be attributed to the data point in the closest temper-
ature range. An upcoming detailed paper will describe
this preparation of a homogeneous thermodynamic state
of a near-critical fluid sample in weightlessness conditions
at the closest temperature above the two phase domain
(i.e., a few µK to ∼ 50µK above Tcoex, typically).

Our 327 τexp data are reported as functions of T−Tcoex

in Fig. 1, noting that 85 data are in the range T−Tcoex ≤
1mK and that the temperature range not affected by
gravity on a similar Earth experiment is restricted to
T − Tcoex ≥ 38mK [19]. The symbols defined in the
inserted table of Fig. 1 correspond to the twelve series of
ALI-DECLIC turbidity data. Each serie corresponds to
a typical, about five-day duration, temperature timeline,
performed during the different sequences, which covers
the temperature range Tcoex+1K → Tcoex. In Fig. 1, we
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Figure 1: (color online) lin-log plot of turbidity τ (expressed
in m−1) as a function of T − Tcoex (expressed in mK) ob-
tained from present ALI-DECLIC and previous ALICE2 light
transmission measurements in SF6 (symbols are given in the
inserted table) and compared to the predicted turbidity from
Eq. (2), using the CMM equation-of-state model with calcu-
lated parameters from column 3 of Table I. Black dashed
curve represents Eq. (2) for 〈δρ̃〉 = 0 (exact critical iso-
chore). The additional four (red full, red dot-dot-dashed,
blue dotted, blue dot-dashed) curves represent Eq. (2) for
〈δρ̃〉 covering the 0.7 to 1.0%-range, by using 0.1% steps, re-
spectively. The typical 30µK temperature error-bar is only
indicated by a horizontal red bar for the closest data point
(T − Tcoex ∼ 3µK).

have also added our previous turbidity data (as the form
of red full circles) obtained from the ALICE2 turbidity
experiments [14], using a cell with off-density criticality
〈δρ̃〉ALICE2 = (0.8± 0.1) %.

Turbidity functional forms for a near-critical fluid.
Turbidity of a fluid close to its liquid-gas critical point is
most essentially due to Rayleigh light scattering by den-
sity fluctuations. τ measurements as a function of the
distance from the critical point allow Ising-like asymp-
totic formulations for the static isothermal compressibil-
ity (κT , governed by the critical exponent γ along the
critical isochore) and the correlation length (ξ, governed
by the critical exponent ν along the critical isochore) to
be checked. Indeed, from the detailed analysis given in
[12], τ can be written in the following scaling form

τ =
πA0kBTκT

y2
H (η, y) (1)

where A0 = π2

λ4
0

[

(n2−1)(n2+2)
3

]2

and n is the fluid re-

fractive index. kB is the Boltzmann constant. y = k0ξ
is universal (non-dependent of the normalization) and
k0 = 2πn

λ0
is the amplitude of the incident light wave
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Figure 2: (color online) A joint fit result for the free pa-
rameters l0, m0 and u of the CPM model fitting the SF6

χ∗

T = κT pc, c
∗

V , and ∆ρ̃LV measurements of Refs. [22], [4],
and [23], respectively, as functions of |∆τ∗| along the criti-
cal isochore (see Ref. [18] for the amplitude notations and
inserted labels for the curves and the symbols).

vector (∼ 10−7 m−1 for λ0 ∼ 632.8 nm). H (η, y) is
the turbidity scaling function, which is universal as y is,
the critical exponent η satisfying thus the hyper-scaling
law γ = 2ν − ην. As shown in [12], when T → Tc,
i.e. y ≫ 1 or x → ∞, only the asymptotical criti-
cal behavior of H (η, y) must be explicited as a function
of the critical exponent η. In term of usual Ising-like
power law along the critical isochore, i.e., for y ≫ 1
and ∆τ∗ → 0, H (η, y) ∝ F × (∆τ∗)

−ην
where F is

an universal quantity. F is thus related to the satu-
rated finite turbidity at the exact critical point, such
as τ ∼ cte

η
, as shown by the asymptotic analysis of

Ferrell [20]. However, the Ferrell’s asymptotic analy-
sis, as well as its confirmation by the Martin-Mayor et
al Monte Carlo simulation of a simple cubic Ising lat-
tice [21], leads to Ising-like limiting forms of the tur-
bidity expected only valid for ∆τ∗ < 10−5, i.e. very
close to the critical temperature. At large distance from
Tc, when x ≤ 1, the turbidity reduces to the Puglielli
and Ford [19] estimation from the OZ theory. In such
a second limiting case, Eq. (1) takes the practical func-
tional form τPF = πA0kBTκT

y2 HPF (y), with HPF (y) =



4

1
8y4

[(

8y4 + 4y2 + 1
)

ln
(

1 + 4y2
)

− 4y2
(

1 + 2y2
)]

. The

ratio HPF(y)
y2 reaches the constant value 8

3 for y ≪ 1,

leading to τPF = τ0 (1 + ∆τ∗) (∆τ∗)
−γ

∝ TκT far away
from Tc. τ0 = πA0kBTcΓ

+
0 is a temperature independent

quantity, only proportional to the leading amplitude Γ+
0 .

Unfortunately, for a 3D Ising system, H (η, y) always re-
mains unknown between the above two limiting behav-
iors. Therefore, in our modelling we consider the phe-
nomenological fitting formulation proposed by Martin-
Mayor et al [21] to reproduce the crossover between the
turbidity results of the Monte Carlo simulation (close to
Tc) and the ones of the PF approximation (far from Tc),
such as

τMM,fit = τPF

[

0.666421 + 0.242339
(

1 + 0.0087936y2
)

η

2

+0.0911801
(

1 + 0.09y4
)

η

4

]

(2)
This fitting form recovers the condition τMM,fit ∼ τPF far
from the critical temperature (y ≤ 1 or ∆τ∗ ≥ 10−5).

Estimations of ξ, κT , and τ for near-critical SF6.
Our calculations of κT (∆τ∗, 〈δρ̃〉), ξ (∆τ∗, 〈δρ̃〉) and
τ (∆τ∗, 〈δρ̃〉) for the near-critical (〈δρ̃〉 6= 0) SF6 case
are similar to the critical (〈δρ̃〉 = 0) Xe case reported
in [12]. First, the CPM free adjustable parameters (l0,
m0 and u) for SF6 are obtained from a joint fitting of
isothermal compressibility [22], heat capacity at constant
volume [4], and coexisting density curve [23]. The results
are shown in Fig. 2, where only the reduced temperature
range of the cV data obtained in microgravity reaches the
10−5 − 10−4 decade. Second, the corresponding CMM
fixed parameters are obtained from the following rela-
tions

l0 = 3.38317
Z+

χ

ZM

3.28613 (Zc)
1
2 (Yc)

β+γ

m0 = ZM

3.28613 (Zc)
− 1

2 (Yc)
β

[uπ]
−2∆s (1− u) =

Z1+
κ

0.590 (Yc)
∆

(3)

neglecting quantum effects for the SF6 case and using
the arbitrary relation Λ

(ct)
1
2

= π initially adopted by the

authors in Ref. [18]. Z+
χ = 0.11975, ZM = 0.4665, and

Z1+
κ

= 0.555 [11]. Table I shows that the free (column
2) and fixed (column 3) values are in close-agreement.

Our theoretical estimation of τ using Eq. (2) with
CMM parameters (column 3, Table I) to calculate ξ and
κT for 〈δρ̃〉 = 0, corresponds to the black dashed curve
in a log-lin scale of Fig. 1. The additional four curves
correspond to the similar predictive modelling for four
near-critical isochores covering the 〈δρ̃〉 = (0.7 to 1.0)%-
range, using four 0.1% steps (see the inserted curve labels
in Fig. 1). This 〈δρ̃〉-range includes the experimental
central values 〈δρ̃〉ALI = 1% and 〈δρ̃〉ALICE2 = 0.8%.

Discussion. Figure 1 indicates that the τ calculations
from Eq. (2), without adjustable parameter, are in agree-
ment with our experimental data using 〈δρ̃〉 ≈ 0.9%
(blue dotted curve) for the present ALI-DECLIC case

SF6 CPM Joint fit CMM Turbidity fit (this work)

l0 38.303 ± 0.110 36.1923 36.472±0.694

m0 0.4877 ± 0.001 0.48568 0.4915±0.001

ū 0.166 ± 0.0001 0.124284 0.166 (fixed)

Λ (ct)
1
2 π (fixed) π (fixed) 〈δρ̃〉

ALI
= (0.95± 0.05) %

g
1
2 0.5215 ± 0.0001 0.39045 〈δρ̃〉

ALICE2
= (0.75± 0.17) %

Table I: Sulfurhexafluoride values of the Ising-like parameters
l0, m0 and u for CPM joint fit (see Fig. 2), CMM (see Eqs.
(3) and text), and fitting the turbidity data with ū = 0.166,

Λ (ct)
1
2 = π (fixed) and l0, m0, and 〈δρ̃〉 as free parameters

(see text).

and 〈δρ̃〉 ≈ 0.7% (red full curve) for the previous ALICE2
case. This good agreement is noticeable in the tempera-
ture range T − Tcoex . 25mK never investigated exper-
imentally until now as a function of 〈δρ̃〉, whereas the
estimated small differences (∼ −0.1%) from the above
central values are in the same order of magnitude as the
experimental error-bar. In addition, complementary fits
of the τ data (ALI-DECLIC+ALICE2), fixing u = 0.166
(joint fit value) with l0, m0 and 〈δρ̃〉 as the free parame-
ters, lead to the results reported in column 4 of Table I.
The l0 and m0 differences from column 2 could be eas-
ily understood by considering the limited available data
range of the joint fit, compared to the one of the turbidity
data. Similarly, the 〈δρ̃〉 values agree with an uncertainty
∼ 0.1%.

The current analysis shows that the off-critical den-
sity of the cell is the dominant effect which explains the
observed increasing deviation from the critical singular
behavior of the turbidity approaching Tc, thanks to the
microgravity environment and the high-level capabilities
of ALI-DECLIC for experimenting accurately at temper-
ature distances lower than 1mK from Tcoex. Here, the
multiple scattering effect is considered to be a negligible
factor (< 10%) in our forward scattering case (θ < 2.7°)
[24]. Moreover, the intrinsic gravitational effects in the
sample fluid at the size of the laser beam, which could
limit the growth of the correlation length on Earth, are
insignificant in microgravity conditions even at the re-
duced temperature of 10−7[7].

The modelling of τ is comparable (in amplitude and
uncertainty) to the three sets of Ising-like parame-
ters given in Table I. In addition, the estimated off-
criticality values of the cell densities are in agreement
with Earth-based experimental determinations. Finally,
in a temperature-density range very close to ρc and Tc

which has never been investigated until now, the turbid-
ity behavior is reasonably well understood from the use of
the parametric form of the equation of state without any
adjustable parameter. This modelling approach is made
in conformity with the Ising-like universality features of
the massive renormalization scheme, only knowing the
SF6 generalized critical coordinates.
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